{"$update": {"344": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "345": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36975": {"category_aro_name": "bacitracin F", "category_aro_cvterm_id": "36975", "category_aro_accession": "3000631", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bacitracin F is a component of bacitracin, an antibiotic mixture that interferes with bacterial cell wall synthesis. It is formed when the thiazoline ring of bacitracin A is oxidatively deaminated."}, "36973": {"category_aro_name": "bacitracin A", "category_aro_cvterm_id": "36973", "category_aro_accession": "3000629", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bacitracin A is the primary component of bacitracin. It contains many uncommon amino acids and interferes with bacterial cell wall synthesis."}, "36974": {"category_aro_name": "bacitracin B", "category_aro_cvterm_id": "36974", "category_aro_accession": "3000630", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bacitracin B is a component of bacitracin, an antibiotic mixture that interferes with bacterial cell wall synthesis. It differs from Bacitracin A with a valine instead of an isoleucine in its peptide."}}}}}, "346": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "347": {"$update": {"ARO_description": "SFH-1 confers resistance to carbapenems in Serratia fonticola.", "ARO_category": {"41374": {"category_aro_name": "SFH beta-lactamase", "category_aro_cvterm_id": "41374", "category_aro_accession": "3004210", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "This type of Subclass B2 beta-lactamases was first identified from a Serratia fonticola environmental isolate."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "340": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "341": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "342": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}}, "343": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "348": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "38788": {"category_aro_name": "OXY beta-lactamase", "category_aro_cvterm_id": "38788", "category_aro_accession": "3002388", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXY beta-lactamases are chromosomal class A beta-lactamases that are found in Klebsiella oxytoca. At constitutive low levels, OXY beta-lactamases confer resistance to aminopenicillins and carboxypenicillins. At high induced levels, OXY beta-lactamases confer resistance to penicillins, cephalosporins and aztreonam."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "349": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "39340": {"category_aro_name": "van ligase", "category_aro_cvterm_id": "39340", "category_aro_accession": "3002906", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "van ligases synthesize alternative substrates for peptidoglycan synthesis that reduce vancomycin binding affinity."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "1653": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2317": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$delete": ["39418", "40439", "40190"], "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "41433": {"category_aro_name": "pmr phosphoethanolamine transferase", "category_aro_cvterm_id": "41433", "category_aro_accession": "3004269", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "This family of phosphoethanolamine transferase catalyze the addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) and phosphoethanolamine to lipid A, which impedes the binding of colistin to the cell membrane."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "40429": {"category_aro_name": "resistance by absence", "category_aro_cvterm_id": "40429", "category_aro_accession": "3003764", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mechanism of antibiotic resistance conferred by deletion of gene (usually a porin)"}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "2310": {"$update": {"model_type": "protein variant model", "model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: \"strict\" and \"loose\". A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "ARO_category": {"37633": {"category_aro_name": "kirromycin", "category_aro_cvterm_id": "37633", "category_aro_accession": "3001234", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kirromycin, also known as mocimycin, is the representative molecule of its own class of elfamycins which is composed of more than 10 analogs. Kirromycin binds to the domain 1,2 interface of elongation factor Tu. This interaction maintains the EF-Tu*GTP conformation even after GTP is hydrolyzed to GDP. EF-Tu*GDP normally releases aa-tRNA and then exits the ribosome; however, kirromycin*EF-Tu*GDP*aa-tRNA forms a strong complex and remains bound to the ribosome, prohibits translocation of the peptide chain and translation is halted."}, "36725": {"category_aro_name": "pulvomycin", "category_aro_cvterm_id": "36725", "category_aro_accession": "3000586", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pulvomycin is a polyketide antibiotic that binds elongation factor Tu (EF-Tu) to inhibit protein biosynthesis by preventing the formation of the ternary complex (EF-Tu*GTP*aa-tRNA). Phenotypically, it was shown that pulvomycin sensitivity is dominant over resistance."}, "37711": {"category_aro_name": "elfamycin resistant EF-Tu", "category_aro_cvterm_id": "37711", "category_aro_accession": "3001312", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Sequence variants of elongation factor Tu that confer resistance to elfamycin antibiotics."}, "37636": {"category_aro_name": "GE2270A", "category_aro_cvterm_id": "37636", "category_aro_accession": "3001237", "category_aro_class_name": "Antibiotic", "category_aro_description": "GE2270A is the model molecule of cyclic thiazolyl peptide elfamycins. GE2270A is produced by Planobispora rosea. Biosynthesis of the molecule has been shown to originate as a ribosomally synthesized peptide that undergoes significant post-translational modification. Clinical use of cyclic thiazolyl peptides is hindered by their low water solubility and bioavailability."}, "40497": {"category_aro_name": "kirromycin self resistant EF-Tu", "category_aro_cvterm_id": "40497", "category_aro_accession": "3003810", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Natural producers of kirromycin and kirromycin-like antibiotics (i.e., kirrothrycin) possess self-resistance, which is classified here"}, "39998": {"category_aro_name": "LFF571", "category_aro_cvterm_id": "39998", "category_aro_accession": "3003414", "category_aro_class_name": "Antibiotic", "category_aro_description": "LFF571 is a novel semi-synthetic thiopeptide antibiotic derived from GE2270. It has been shown to possess potent in vitro and in vivo activity against Gram-positive bacteria. It is hypothesized that it a translation inhibitor leading to cell death."}, "37618": {"category_aro_name": "elfamycin antibiotic", "category_aro_cvterm_id": "37618", "category_aro_accession": "3001219", "category_aro_class_name": "Drug Class", "category_aro_description": "Elfamycins are molecules that inhibit bacterial elongation factor Tu (EF-Tu), a key protein which brings aminoacyl-tRNA (aa-tRNA) to the ribosome during protein synthesis. Elfamycins defined by their target (EF-Tu), rather than a conserved chemical backbone. Elfamycins follow two mechanisms to disrupt protein synthesis: 1. kirromycins and enacyloxin fix EF-Tu in the GTP bound conformation and lock EF-Tu onto the ribosome, and 2. pulvomycin and GE2270 cover the binding site of aa-tRNA disallowing EF-Tu from being charged with aa-tRNA. All elfamycins cause increased the affinity of EF-Tu for GTP."}, "37641": {"category_aro_name": "enacyloxin IIa", "category_aro_cvterm_id": "37641", "category_aro_accession": "3001242", "category_aro_class_name": "Antibiotic", "category_aro_description": "Enacyloxin IIa is structurally distinct but acts in a similar mechanism to kirromycin-like elfamycins. It prohibits the transfer of the amino acid at the A site to the elongating peptide chain. It is most likely that the mechanism of action is that EF-Tu*GDP is locked in the EF-Tu*GTP form, and EF-Tu*GDP*aa-tRNA is immobilized on the ribosome. It is an open question whether enacyloxin IIa actually belongs to the kirromycin-like group of elfamycins due to their high similarity."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}, "model_param": {"$insert": {"snp": {"param_type": "single resistance variant", "param_value": {"8300": "A379T"}, "clinical": {"8300": "A379T"}, "param_type_id": "36301", "param_description": "A nucleotide or amino acid substitution that confers elevated resistance to antibiotic(s) relative to wild type. The most common type encoded in the CARD is an amino acid substitution gleaned from the literature with format [wild-type][position][mutation], e.g. R184Q. When present in the associated gene or protein, a single resistance variant confers resistance to an antibiotic drug or drug class. Single resistance variants are used by the protein variant and rRNA mutation models to detect antibiotic resistance from submitted sequences."}}}, "model_type_id": "40293"}}, "298": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36216": {"category_aro_name": "vanY", "category_aro_cvterm_id": "36216", "category_aro_accession": "3000077", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanY is a D,D-carboxypeptidase that cleaves removes the terminal D-Ala from peptidoglycan for the addition of D-Lactate. The D-Ala-D-Lac peptidoglycan subunits have reduced binding affinity with vancomycin compared to D-Ala-D-Ala."}}}}, "299": {"$update": {"ARO_category": {"41363": {"category_aro_name": "CepS beta-lactamase", "category_aro_cvterm_id": "41363", "category_aro_accession": "3004199", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CepS beta-lactamases are Class C beta-lactamases capable of hydrolyzing cephalosporin."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "296": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "297": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "294": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "39434": {"category_aro_name": "CfxA beta-lactamase", "category_aro_cvterm_id": "39434", "category_aro_accession": "3003000", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "cfxA beta-lactamases are class A beta-lactamases"}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "295": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "292": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "293": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "290": {"$update": {"ARO_category": {"37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36592": {"category_aro_name": "streptogramin vat acetyltransferase", "category_aro_cvterm_id": "36592", "category_aro_accession": "3000453", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "vat (Virginiamycin acetyltransferases) enzymes catalyze the transfer of an acetyl group from acetyl-CoA to the secondary alcohol of streptogramin A compounds, thus inactivating virginiamycin-like antibiotics and conferring resistance to these compounds."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}}}}, "291": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36265": {"category_aro_name": "APH(3')", "category_aro_cvterm_id": "36265", "category_aro_accession": "3000126", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of 2-deoxystreptamine aminoglycosides on the hydroxyl group at position 3'"}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "37045": {"category_aro_name": "lividomycin B", "category_aro_cvterm_id": "37045", "category_aro_accession": "3000701", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lividomycin B is a derivative of lividomycin A with a removed mannose group (demannosyllividomycin A). Livodomycins interfere with bacterial protein synthesis."}, "37044": {"category_aro_name": "lividomycin A", "category_aro_cvterm_id": "37044", "category_aro_accession": "3000700", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lividomycin A is a pentasaccharide antibiotic which interferes with bacterial protein synthesis."}}}}, "270": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36236": {"category_aro_name": "LEN beta-lactamase", "category_aro_cvterm_id": "36236", "category_aro_accession": "3000097", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "LEN beta-lactamases are chromosomal class A beta-lactamases that confer resistance to ampicillin, amoxicillin, carbenicillin, and ticarcillin but not to extended-spectrum beta-lactams."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}}}}, "271": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "272": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "273": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36182": {"category_aro_name": "VEB beta-lactamase", "category_aro_cvterm_id": "36182", "category_aro_accession": "3000043", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VEB beta-lactamases or Vietnamese extended-spectrum beta-lactamases are class A beta-lactamases that confer high-level resistance to oxyimino cephalosporins and to aztreonam"}}}}, "274": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "275": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38817": {"category_aro_name": "OKP beta-lactamase", "category_aro_cvterm_id": "38817", "category_aro_accession": "3002417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OKP beta-lactamases are chromosomal class A beta-lactamase that confer resistance to penicillins and early cephalosporins in Klebsiella pneumoniae. OKP beta-lactamases can be subdivided into two groups: OKP-A and OKP-B which diverge by about 4.2%"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "276": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$delete": ["35950"], "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "277": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "278": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36720": {"category_aro_name": "CphA beta-lactamase", "category_aro_cvterm_id": "36720", "category_aro_accession": "3000581", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CphA is an Ambler Class B MBL; subclass B2 originally isolated from Aeromonas hydrophilia. This enzyme has specific activity against carbapenems and is active as a mono-zinc protein."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "279": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1132": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "2262": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}}}}}, "2260": {"$update": {"ARO_category": {"37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36592": {"category_aro_name": "streptogramin vat acetyltransferase", "category_aro_cvterm_id": "36592", "category_aro_accession": "3000453", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "vat (Virginiamycin acetyltransferases) enzymes catalyze the transfer of an acetyl group from acetyl-CoA to the secondary alcohol of streptogramin A compounds, thus inactivating virginiamycin-like antibiotics and conferring resistance to these compounds."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}}}}, "2261": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36360": {"category_aro_name": "lincosamide nucleotidyltransferase (LNU)", "category_aro_cvterm_id": "36360", "category_aro_accession": "3000221", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Resistance to the lincosamide antibiotic by ATP-dependent modification of the 3' and/or 4'-hydroxyl groups of the methylthiolincosamide sugar."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}, "2267": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "41240": {"category_aro_name": "nitrofuran antibiotic", "category_aro_cvterm_id": "41240", "category_aro_accession": "3004116", "category_aro_class_name": "Drug Class", "category_aro_description": "Nitrofurans are chemotherapeutic agents with antibacterial and antiprotozoal activity."}, "35992": {"category_aro_name": "nitrofurantoin", "category_aro_cvterm_id": "35992", "category_aro_accession": "0000075", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nitrofurantoin is an antibiotic used to treat urinary tract infections. It inhibits enzyme synthesis by inhibiting essential enzymes involved in the citric acid cycle, as well as those involved in DNA, RNA, and protein synthesis. It is marketed under the following brand names: Furadantin, Macrobid, Macrodantin, Nitro Macro and Urantoin."}, "40411": {"category_aro_name": "antibiotic resistant nfsA", "category_aro_cvterm_id": "40411", "category_aro_accession": "3003754", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The nfsA-encoded nitroreductase is the major oxygen-insensitive nitroreductase present in E. coli. NfsA uses only NADPH and has broad electron acceptor specificity. Mutations in nfsA cause resistance to nitrofurazone and furazolidone. Resistance to nitrofurantoin via mutation of nfsA reduces the fitness of clinical isolates of E. coli."}}}}, "2264": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "37247": {"category_aro_name": "oleandomycin", "category_aro_cvterm_id": "37247", "category_aro_accession": "3000867", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oleandomycin is a 14-membered macrolide produced by Streptomyces antibioticus. It is ssimilar to erythromycin, and contains a desosamine amino sugar and an oleandrose sugar. It targets the 50S ribosomal subunit to prevent protein synthesis."}}}}}, "2265": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"37716": {"category_aro_name": "pleuromutilin", "category_aro_cvterm_id": "37716", "category_aro_accession": "3001317", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pleuromutilin is a natural product antibiotic produced by Clitopilus passeckerianus. Related antibiotics of clinical significance, such as tiamulin and retapamulin, are semi-synthetic derivatives of this compound."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}}, "2445": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36699": {"category_aro_name": "Erm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36699", "category_aro_accession": "3000560", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Erm proteins are part of the RNA methyltransferase family and methylate A2058 (E. coli nomenclature) of the 23S ribosomal RNA conferring degrees of resistance to Macrolides, Lincosamides and Streptogramin b. This is called the MLSb phenotype."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}, "108": {"$update": {"ARO_category": {"36237": {"category_aro_name": "PDC beta-lactamase", "category_aro_cvterm_id": "36237", "category_aro_accession": "3000098", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PDC beta-lactamases are class C beta-lactamases that are found in Pseudomonas aeruginosa."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "109": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "37247": {"category_aro_name": "oleandomycin", "category_aro_cvterm_id": "37247", "category_aro_accession": "3000867", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oleandomycin is a 14-membered macrolide produced by Streptomyces antibioticus. It is ssimilar to erythromycin, and contains a desosamine amino sugar and an oleandrose sugar. It targets the 50S ribosomal subunit to prevent protein synthesis."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35974": {"category_aro_name": "telithromycin", "category_aro_cvterm_id": "35974", "category_aro_accession": "0000057", "category_aro_class_name": "Antibiotic", "category_aro_description": "Telithromycin is a semi-synthetic derivative of erythromycin. It is a 14-membered macrolide and is the first ketolide antibiotic to be used in clinics. Telithromycin binds the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36284": {"category_aro_name": "tylosin", "category_aro_cvterm_id": "36284", "category_aro_accession": "3000145", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tylosin is a 16-membered macrolide, naturally produced by Streptomyces fradiae. It interacts with the bacterial ribosome 50S subunit to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36315": {"category_aro_name": "dirithromycin", "category_aro_cvterm_id": "36315", "category_aro_accession": "3000176", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dirithromycin is an oxazine derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome to inhibit bacterial protein synthesis."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "36699": {"category_aro_name": "Erm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36699", "category_aro_accession": "3000560", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Erm proteins are part of the RNA methyltransferase family and methylate A2058 (E. coli nomenclature) of the 23S ribosomal RNA conferring degrees of resistance to Macrolides, Lincosamides and Streptogramin b. This is called the MLSb phenotype."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35946": {"category_aro_name": "roxithromycin", "category_aro_cvterm_id": "35946", "category_aro_accession": "0000027", "category_aro_class_name": "Antibiotic", "category_aro_description": "Roxithromycin is a semi-synthetic, 14-carbon ring macrolide antibiotic derived from erythromycin. It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36295": {"category_aro_name": "spiramycin", "category_aro_cvterm_id": "36295", "category_aro_accession": "3000156", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spiramycin is a 16-membered macrolide and is natural product produced by Streptomyces ambofaciens. It binds to the 50S subunit of bacterial ribosomes and inhibits peptidyl transfer activity to disrupt protein synthesis."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}, "102": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "39785": {"category_aro_name": "TLA beta-lactamase", "category_aro_cvterm_id": "39785", "category_aro_accession": "3003201", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The TLA beta-lactamases are resistant to expanded-spectrum cephalosporins, aztreonam, ciprofloxacin, and ofloxacin but was susceptible to amikacin, cefotetan, and imipenem."}}}}, "103": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35979": {"category_aro_name": "ceftriaxone", "category_aro_cvterm_id": "35979", "category_aro_accession": "0000062", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftriaxone is a third-generation cephalosporin antibiotic. The presence of an aminothiazolyl sidechain increases ceftriazone's resistance to beta-lactamases. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "100": {"$update": {"ARO_category": {"36659": {"category_aro_name": "isoniazid", "category_aro_cvterm_id": "36659", "category_aro_accession": "3000520", "category_aro_class_name": "Drug Class", "category_aro_description": "Isoniazid is an organic compound that is the first-line anti tuberculosis medication in prevention and treatment. As a prodrug, it is activated by mycobacterial catalase-peroxidases such as M. tuberculosis KatG. Isoniazid inhibits mycolic acid synthesis, which prevents cell wall synthesis in mycobacteria."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "40067": {"category_aro_name": "ethionamide", "category_aro_cvterm_id": "40067", "category_aro_accession": "3003474", "category_aro_class_name": "Drug Class", "category_aro_description": "ethionamide is a second-line antitubercular agent that inhibits mycolic acid synthesis"}, "40050": {"category_aro_name": "ethionamide resistant ethA", "category_aro_cvterm_id": "40050", "category_aro_accession": "3003457", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Mutations that occurs on the ethA genes resulting in the inability to catalyzes the oxidation of ethionamide (ETH) to the corresponding sulfoxide (the active drug)"}}}}, "101": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "106": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "36261": {"category_aro_name": "chloramphenicol acetyltransferase (CAT)", "category_aro_cvterm_id": "36261", "category_aro_accession": "3000122", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Inactivates chloramphenicol by addition of an acyl group. cat is used to describe many variants of the chloramphenicol acetyltransferase gene in a range of organisms including Acinetobacter calcoaceticus, Agrobacterium tumefaciens, Bacillus clausii, Bacillus subtilis, Campylobacter coli, Enterococcus faecalis, Enterococcus faecium, Lactococcus lactis, Listeria monocytogenes, Listonella anguillarum Morganella morganii, Photobacterium damselae subsp. piscicida, Proteus mirabilis, Salmonella typhi, Serratia marcescens, Shigella flexneri, Staphylococcus aureus, Staphylococcus haemolyticus, Staphylococcus intermedius, Streptococcus agalactiae, Streptococcus suis and Streptomyces acrimycini"}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "107": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "104": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "105": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36230": {"category_aro_name": "CARB beta-lactamase", "category_aro_cvterm_id": "36230", "category_aro_accession": "3000091", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CARB beta-lactamases are class A lactamases that can hydrolyze carbenicillin. Many of the PSE beta-lactamases have been renamed as CARB-lactamases with the notable exception of PSE-2 which is now OXA-10."}}}}, "2046": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "2047": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "2044": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "2045": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "38788": {"category_aro_name": "OXY beta-lactamase", "category_aro_cvterm_id": "38788", "category_aro_accession": "3002388", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXY beta-lactamases are chromosomal class A beta-lactamases that are found in Klebsiella oxytoca. At constitutive low levels, OXY beta-lactamases confer resistance to aminopenicillins and carboxypenicillins. At high induced levels, OXY beta-lactamases confer resistance to penicillins, cephalosporins and aztreonam."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "2042": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36199": {"category_aro_name": "IND beta-lactamase", "category_aro_cvterm_id": "36199", "category_aro_accession": "3000060", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "IND beta-lactamases are class B carbapenem-hydrolyzing beta-lactamases"}}}}, "2043": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "41439": {"category_aro_name": "ANT(3'')", "category_aro_cvterm_id": "41439", "category_aro_accession": "3004275", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotidylylation of streptomycin at the hydroxyl group at position 3''"}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2040": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "2041": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "2048": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "2049": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1213": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36421": {"category_aro_name": "sulfonamide antibiotic", "category_aro_cvterm_id": "36421", "category_aro_accession": "3000282", "category_aro_class_name": "Drug Class", "category_aro_description": "Sulfonamides are broad spectrum, synthetic antibiotics that contain the sulfonamide group. Sulfonamides inhibit dihydropteroate synthase, which catalyzes the conversion of p-aminobenzoic acid to dihydropteroic acid as part of the tetrahydrofolic acid biosynthetic pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor of many nucleotides and amino acids. Many sulfamides are taken with trimethoprim, an inhibitor of dihydrofolate reductase, also disturbing the trihydrofolic acid synthesis pathway."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "40362": {"category_aro_name": "panipenem", "category_aro_cvterm_id": "40362", "category_aro_accession": "3003708", "category_aro_class_name": "Antibiotic", "category_aro_description": "Panipenem is a carbapenem antibacterial agent with a broad spectrum of in vitro activity covering a wide range of Gram-negative and Gram-positive aerobic and anaerobic bacterial. It is used in combination with betamipron to inhibit panipenem uptake into the renal tubule and prevent nephrotoxicity."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35996": {"category_aro_name": "clavulanate", "category_aro_cvterm_id": "35996", "category_aro_accession": "0000079", "category_aro_class_name": "Adjuvant", "category_aro_description": "Clavulanic acid is a beta-lactamase inhibitor (marketed by GlaxoSmithKline, formerly Beecham) combined with penicillin group antibiotics to overcome certain types of antibiotic resistance. It is used to overcome resistance in bacteria that secrete beta-lactamase, which otherwise inactivates most penicillins."}, "35990": {"category_aro_name": "meropenem", "category_aro_cvterm_id": "35990", "category_aro_accession": "0000073", "category_aro_class_name": "Antibiotic", "category_aro_description": "Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36689": {"category_aro_name": "aztreonam", "category_aro_cvterm_id": "36689", "category_aro_accession": "3000550", "category_aro_class_name": "Antibiotic", "category_aro_description": "Aztreonam was the first monobactam discovered, and is greatly effective against Gram-negative bacteria while inactive against Gram-positive bacteria. Artreonam is a poor substrate for beta-lactamases, and may even act as an inhibitor. In Gram-negative bacteria, Aztreonam interferes with filamentation, inhibiting cell division and leading to cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35979": {"category_aro_name": "ceftriaxone", "category_aro_cvterm_id": "35979", "category_aro_accession": "0000062", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftriaxone is a third-generation cephalosporin antibiotic. The presence of an aminothiazolyl sidechain increases ceftriazone's resistance to beta-lactamases. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "40523": {"category_aro_name": "ticarcillin", "category_aro_cvterm_id": "40523", "category_aro_accession": "3003832", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ticarcillin is a carboxypenicillin used for the treatment of Gram-negative bacteria, particularly P. aeruginosa. Ticarcillin's antibiotic properties arise from its ability to prevent cross-linking of peptidoglycan during cell wall synthesis, when the bacteria try to divide, causing cell death."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36468": {"category_aro_name": "sulfamethoxazole", "category_aro_cvterm_id": "36468", "category_aro_accession": "3000329", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfamethoxazole is a sulfonamide antibiotic usually taken with trimethoprim, a diaminopyrimidine antibiotic. Sulfamethoxazole inhibits dihydropteroate synthase, essential to tetrahydrofolic acid biosynthesis. This pathway generates compounds used in the synthesis of many amino acids and nucleotides."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "40957": {"category_aro_name": "trimethoprim-sulfamethoxazole", "category_aro_cvterm_id": "40957", "category_aro_accession": "3004024", "category_aro_class_name": "Antibiotic", "category_aro_description": "An antibiotic cocktail containing the diaminopyrimidine antibiotic Trimethoprim and the sulfonamide antibiotic sulfamethoxazole (1 TMP:5 SMX)."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "2038": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36198": {"category_aro_name": "KPC beta-lactamase", "category_aro_cvterm_id": "36198", "category_aro_accession": "3000059", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Klebsiella pneumoniae carbapenem resistant (KPC) beta-lactamases are notorious for their ability to efficiently hydrolyze carbapenems, unlike other Ambler Class A beta-lactamases. There are currently 9 variants reported worldwide. These enzymes were first isolated from Klebsiella pneumoniae strains in 2001 in the United States. Hospital outbreaks have since been reported in Greece and Israel and KPC carrying strains are now endemic to New York facilities. KPC-1 and KPC-2 have been shown to be identical and are now referred to as KPC-2."}}}}, "1210": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}}}}}, "2688": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36421": {"category_aro_name": "sulfonamide antibiotic", "category_aro_cvterm_id": "36421", "category_aro_accession": "3000282", "category_aro_class_name": "Drug Class", "category_aro_description": "Sulfonamides are broad spectrum, synthetic antibiotics that contain the sulfonamide group. Sulfonamides inhibit dihydropteroate synthase, which catalyzes the conversion of p-aminobenzoic acid to dihydropteroic acid as part of the tetrahydrofolic acid biosynthetic pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor of many nucleotides and amino acids. Many sulfamides are taken with trimethoprim, an inhibitor of dihydrofolate reductase, also disturbing the trihydrofolic acid synthesis pathway."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "40362": {"category_aro_name": "panipenem", "category_aro_cvterm_id": "40362", "category_aro_accession": "3003708", "category_aro_class_name": "Antibiotic", "category_aro_description": "Panipenem is a carbapenem antibacterial agent with a broad spectrum of in vitro activity covering a wide range of Gram-negative and Gram-positive aerobic and anaerobic bacterial. It is used in combination with betamipron to inhibit panipenem uptake into the renal tubule and prevent nephrotoxicity."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35996": {"category_aro_name": "clavulanate", "category_aro_cvterm_id": "35996", "category_aro_accession": "0000079", "category_aro_class_name": "Adjuvant", "category_aro_description": "Clavulanic acid is a beta-lactamase inhibitor (marketed by GlaxoSmithKline, formerly Beecham) combined with penicillin group antibiotics to overcome certain types of antibiotic resistance. It is used to overcome resistance in bacteria that secrete beta-lactamase, which otherwise inactivates most penicillins."}, "35990": {"category_aro_name": "meropenem", "category_aro_cvterm_id": "35990", "category_aro_accession": "0000073", "category_aro_class_name": "Antibiotic", "category_aro_description": "Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36689": {"category_aro_name": "aztreonam", "category_aro_cvterm_id": "36689", "category_aro_accession": "3000550", "category_aro_class_name": "Antibiotic", "category_aro_description": "Aztreonam was the first monobactam discovered, and is greatly effective against Gram-negative bacteria while inactive against Gram-positive bacteria. Artreonam is a poor substrate for beta-lactamases, and may even act as an inhibitor. In Gram-negative bacteria, Aztreonam interferes with filamentation, inhibiting cell division and leading to cell death."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35979": {"category_aro_name": "ceftriaxone", "category_aro_cvterm_id": "35979", "category_aro_accession": "0000062", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftriaxone is a third-generation cephalosporin antibiotic. The presence of an aminothiazolyl sidechain increases ceftriazone's resistance to beta-lactamases. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36468": {"category_aro_name": "sulfamethoxazole", "category_aro_cvterm_id": "36468", "category_aro_accession": "3000329", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfamethoxazole is a sulfonamide antibiotic usually taken with trimethoprim, a diaminopyrimidine antibiotic. Sulfamethoxazole inhibits dihydropteroate synthase, essential to tetrahydrofolic acid biosynthesis. This pathway generates compounds used in the synthesis of many amino acids and nucleotides."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "40957": {"category_aro_name": "trimethoprim-sulfamethoxazole", "category_aro_cvterm_id": "40957", "category_aro_accession": "3004024", "category_aro_class_name": "Antibiotic", "category_aro_description": "An antibiotic cocktail containing the diaminopyrimidine antibiotic Trimethoprim and the sulfonamide antibiotic sulfamethoxazole (1 TMP:5 SMX)."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "2689": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36600": {"category_aro_name": "florfenicol", "category_aro_cvterm_id": "36600", "category_aro_accession": "3000461", "category_aro_class_name": "Antibiotic", "category_aro_description": "Florfenicol is a fluorine derivative of chloramphenicol, where the nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3) and the hydroxyl group (-OH), by a fluorine group (-F). The action mechanism is the same as chloramphenicol's, where the antibiotic binds to the 23S RNA of the 50S subunit of bacterial ribosomes to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "41123": {"category_aro_name": "23S rRNA with mutation conferring resistance to linezolid antibiotics", "category_aro_cvterm_id": "41123", "category_aro_accession": "3004057", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 23S rRNA subunit may confer resistance to linezolid and other oxazolidinone antibiotics."}, "35989": {"category_aro_name": "linezolid", "category_aro_cvterm_id": "35989", "category_aro_accession": "0000072", "category_aro_class_name": "Antibiotic", "category_aro_description": "Linezolid is a synthetic antibiotic used for the treatment of serious infections caused by Gram-positive bacteria that are resistant to several other antibiotics. It inhibits protein synthesis by binding to domain V of the 23S rRNA of the 50S subunit of bacterial ribosomes."}, "36218": {"category_aro_name": "oxazolidinone antibiotic", "category_aro_cvterm_id": "36218", "category_aro_accession": "3000079", "category_aro_class_name": "Drug Class", "category_aro_description": "Oxazolidinones are a class of synthetic antibiotics discovered the the 1980's. They inhibit protein synthesis by binding to domain V of the 23S rRNA of the 50S subunit of bacterial ribosomes. Linezolid is the only member of this class currently in clinical use."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "2685": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36421": {"category_aro_name": "sulfonamide antibiotic", "category_aro_cvterm_id": "36421", "category_aro_accession": "3000282", "category_aro_class_name": "Drug Class", "category_aro_description": "Sulfonamides are broad spectrum, synthetic antibiotics that contain the sulfonamide group. Sulfonamides inhibit dihydropteroate synthase, which catalyzes the conversion of p-aminobenzoic acid to dihydropteroic acid as part of the tetrahydrofolic acid biosynthetic pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor of many nucleotides and amino acids. Many sulfamides are taken with trimethoprim, an inhibitor of dihydrofolate reductase, also disturbing the trihydrofolic acid synthesis pathway."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "40362": {"category_aro_name": "panipenem", "category_aro_cvterm_id": "40362", "category_aro_accession": "3003708", "category_aro_class_name": "Antibiotic", "category_aro_description": "Panipenem is a carbapenem antibacterial agent with a broad spectrum of in vitro activity covering a wide range of Gram-negative and Gram-positive aerobic and anaerobic bacterial. It is used in combination with betamipron to inhibit panipenem uptake into the renal tubule and prevent nephrotoxicity."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35996": {"category_aro_name": "clavulanate", "category_aro_cvterm_id": "35996", "category_aro_accession": "0000079", "category_aro_class_name": "Adjuvant", "category_aro_description": "Clavulanic acid is a beta-lactamase inhibitor (marketed by GlaxoSmithKline, formerly Beecham) combined with penicillin group antibiotics to overcome certain types of antibiotic resistance. It is used to overcome resistance in bacteria that secrete beta-lactamase, which otherwise inactivates most penicillins."}, "35990": {"category_aro_name": "meropenem", "category_aro_cvterm_id": "35990", "category_aro_accession": "0000073", "category_aro_class_name": "Antibiotic", "category_aro_description": "Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36689": {"category_aro_name": "aztreonam", "category_aro_cvterm_id": "36689", "category_aro_accession": "3000550", "category_aro_class_name": "Antibiotic", "category_aro_description": "Aztreonam was the first monobactam discovered, and is greatly effective against Gram-negative bacteria while inactive against Gram-positive bacteria. Artreonam is a poor substrate for beta-lactamases, and may even act as an inhibitor. In Gram-negative bacteria, Aztreonam interferes with filamentation, inhibiting cell division and leading to cell death."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35979": {"category_aro_name": "ceftriaxone", "category_aro_cvterm_id": "35979", "category_aro_accession": "0000062", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftriaxone is a third-generation cephalosporin antibiotic. The presence of an aminothiazolyl sidechain increases ceftriazone's resistance to beta-lactamases. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria."}, "36468": {"category_aro_name": "sulfamethoxazole", "category_aro_cvterm_id": "36468", "category_aro_accession": "3000329", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfamethoxazole is a sulfonamide antibiotic usually taken with trimethoprim, a diaminopyrimidine antibiotic. Sulfamethoxazole inhibits dihydropteroate synthase, essential to tetrahydrofolic acid biosynthesis. This pathway generates compounds used in the synthesis of many amino acids and nucleotides."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "40957": {"category_aro_name": "trimethoprim-sulfamethoxazole", "category_aro_cvterm_id": "40957", "category_aro_accession": "3004024", "category_aro_class_name": "Antibiotic", "category_aro_description": "An antibiotic cocktail containing the diaminopyrimidine antibiotic Trimethoprim and the sulfonamide antibiotic sulfamethoxazole (1 TMP:5 SMX)."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "2686": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36421": {"category_aro_name": "sulfonamide antibiotic", "category_aro_cvterm_id": "36421", "category_aro_accession": "3000282", "category_aro_class_name": "Drug Class", "category_aro_description": "Sulfonamides are broad spectrum, synthetic antibiotics that contain the sulfonamide group. Sulfonamides inhibit dihydropteroate synthase, which catalyzes the conversion of p-aminobenzoic acid to dihydropteroic acid as part of the tetrahydrofolic acid biosynthetic pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor of many nucleotides and amino acids. Many sulfamides are taken with trimethoprim, an inhibitor of dihydrofolate reductase, also disturbing the trihydrofolic acid synthesis pathway."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "40362": {"category_aro_name": "panipenem", "category_aro_cvterm_id": "40362", "category_aro_accession": "3003708", "category_aro_class_name": "Antibiotic", "category_aro_description": "Panipenem is a carbapenem antibacterial agent with a broad spectrum of in vitro activity covering a wide range of Gram-negative and Gram-positive aerobic and anaerobic bacterial. It is used in combination with betamipron to inhibit panipenem uptake into the renal tubule and prevent nephrotoxicity."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35996": {"category_aro_name": "clavulanate", "category_aro_cvterm_id": "35996", "category_aro_accession": "0000079", "category_aro_class_name": "Adjuvant", "category_aro_description": "Clavulanic acid is a beta-lactamase inhibitor (marketed by GlaxoSmithKline, formerly Beecham) combined with penicillin group antibiotics to overcome certain types of antibiotic resistance. It is used to overcome resistance in bacteria that secrete beta-lactamase, which otherwise inactivates most penicillins."}, "35990": {"category_aro_name": "meropenem", "category_aro_cvterm_id": "35990", "category_aro_accession": "0000073", "category_aro_class_name": "Antibiotic", "category_aro_description": "Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36689": {"category_aro_name": "aztreonam", "category_aro_cvterm_id": "36689", "category_aro_accession": "3000550", "category_aro_class_name": "Antibiotic", "category_aro_description": "Aztreonam was the first monobactam discovered, and is greatly effective against Gram-negative bacteria while inactive against Gram-positive bacteria. Artreonam is a poor substrate for beta-lactamases, and may even act as an inhibitor. In Gram-negative bacteria, Aztreonam interferes with filamentation, inhibiting cell division and leading to cell death."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35979": {"category_aro_name": "ceftriaxone", "category_aro_cvterm_id": "35979", "category_aro_accession": "0000062", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftriaxone is a third-generation cephalosporin antibiotic. The presence of an aminothiazolyl sidechain increases ceftriazone's resistance to beta-lactamases. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36468": {"category_aro_name": "sulfamethoxazole", "category_aro_cvterm_id": "36468", "category_aro_accession": "3000329", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfamethoxazole is a sulfonamide antibiotic usually taken with trimethoprim, a diaminopyrimidine antibiotic. Sulfamethoxazole inhibits dihydropteroate synthase, essential to tetrahydrofolic acid biosynthesis. This pathway generates compounds used in the synthesis of many amino acids and nucleotides."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "40957": {"category_aro_name": "trimethoprim-sulfamethoxazole", "category_aro_cvterm_id": "40957", "category_aro_accession": "3004024", "category_aro_class_name": "Antibiotic", "category_aro_description": "An antibiotic cocktail containing the diaminopyrimidine antibiotic Trimethoprim and the sulfonamide antibiotic sulfamethoxazole (1 TMP:5 SMX)."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "2680": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36421": {"category_aro_name": "sulfonamide antibiotic", "category_aro_cvterm_id": "36421", "category_aro_accession": "3000282", "category_aro_class_name": "Drug Class", "category_aro_description": "Sulfonamides are broad spectrum, synthetic antibiotics that contain the sulfonamide group. Sulfonamides inhibit dihydropteroate synthase, which catalyzes the conversion of p-aminobenzoic acid to dihydropteroic acid as part of the tetrahydrofolic acid biosynthetic pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor of many nucleotides and amino acids. Many sulfamides are taken with trimethoprim, an inhibitor of dihydrofolate reductase, also disturbing the trihydrofolic acid synthesis pathway."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "40362": {"category_aro_name": "panipenem", "category_aro_cvterm_id": "40362", "category_aro_accession": "3003708", "category_aro_class_name": "Antibiotic", "category_aro_description": "Panipenem is a carbapenem antibacterial agent with a broad spectrum of in vitro activity covering a wide range of Gram-negative and Gram-positive aerobic and anaerobic bacterial. It is used in combination with betamipron to inhibit panipenem uptake into the renal tubule and prevent nephrotoxicity."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35996": {"category_aro_name": "clavulanate", "category_aro_cvterm_id": "35996", "category_aro_accession": "0000079", "category_aro_class_name": "Adjuvant", "category_aro_description": "Clavulanic acid is a beta-lactamase inhibitor (marketed by GlaxoSmithKline, formerly Beecham) combined with penicillin group antibiotics to overcome certain types of antibiotic resistance. It is used to overcome resistance in bacteria that secrete beta-lactamase, which otherwise inactivates most penicillins."}, "35990": {"category_aro_name": "meropenem", "category_aro_cvterm_id": "35990", "category_aro_accession": "0000073", "category_aro_class_name": "Antibiotic", "category_aro_description": "Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36689": {"category_aro_name": "aztreonam", "category_aro_cvterm_id": "36689", "category_aro_accession": "3000550", "category_aro_class_name": "Antibiotic", "category_aro_description": "Aztreonam was the first monobactam discovered, and is greatly effective against Gram-negative bacteria while inactive against Gram-positive bacteria. Artreonam is a poor substrate for beta-lactamases, and may even act as an inhibitor. In Gram-negative bacteria, Aztreonam interferes with filamentation, inhibiting cell division and leading to cell death."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35979": {"category_aro_name": "ceftriaxone", "category_aro_cvterm_id": "35979", "category_aro_accession": "0000062", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftriaxone is a third-generation cephalosporin antibiotic. The presence of an aminothiazolyl sidechain increases ceftriazone's resistance to beta-lactamases. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36468": {"category_aro_name": "sulfamethoxazole", "category_aro_cvterm_id": "36468", "category_aro_accession": "3000329", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfamethoxazole is a sulfonamide antibiotic usually taken with trimethoprim, a diaminopyrimidine antibiotic. Sulfamethoxazole inhibits dihydropteroate synthase, essential to tetrahydrofolic acid biosynthesis. This pathway generates compounds used in the synthesis of many amino acids and nucleotides."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "40957": {"category_aro_name": "trimethoprim-sulfamethoxazole", "category_aro_cvterm_id": "40957", "category_aro_accession": "3004024", "category_aro_class_name": "Antibiotic", "category_aro_description": "An antibiotic cocktail containing the diaminopyrimidine antibiotic Trimethoprim and the sulfonamide antibiotic sulfamethoxazole (1 TMP:5 SMX)."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "2681": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "41448": {"category_aro_name": "antibiotic resistance fabG", "category_aro_cvterm_id": "41448", "category_aro_accession": "3004284", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "fabG is a 3-oxoacyl-acyl carrier protein reductase involved in lipid metabolism and fatty acid biosynthesis. The bacterial biocide Triclosan blocks the final reduction step in fatty acid elongation, inhibiting biosynthesis. Point mutations in fabG can confer resistance to Triclosan."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}}, "ARO_name": "Escherichia coli fabG mutations conferring resistance to triclosan"}}, "2682": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36421": {"category_aro_name": "sulfonamide antibiotic", "category_aro_cvterm_id": "36421", "category_aro_accession": "3000282", "category_aro_class_name": "Drug Class", "category_aro_description": "Sulfonamides are broad spectrum, synthetic antibiotics that contain the sulfonamide group. Sulfonamides inhibit dihydropteroate synthase, which catalyzes the conversion of p-aminobenzoic acid to dihydropteroic acid as part of the tetrahydrofolic acid biosynthetic pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor of many nucleotides and amino acids. Many sulfamides are taken with trimethoprim, an inhibitor of dihydrofolate reductase, also disturbing the trihydrofolic acid synthesis pathway."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "40362": {"category_aro_name": "panipenem", "category_aro_cvterm_id": "40362", "category_aro_accession": "3003708", "category_aro_class_name": "Antibiotic", "category_aro_description": "Panipenem is a carbapenem antibacterial agent with a broad spectrum of in vitro activity covering a wide range of Gram-negative and Gram-positive aerobic and anaerobic bacterial. It is used in combination with betamipron to inhibit panipenem uptake into the renal tubule and prevent nephrotoxicity."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35996": {"category_aro_name": "clavulanate", "category_aro_cvterm_id": "35996", "category_aro_accession": "0000079", "category_aro_class_name": "Adjuvant", "category_aro_description": "Clavulanic acid is a beta-lactamase inhibitor (marketed by GlaxoSmithKline, formerly Beecham) combined with penicillin group antibiotics to overcome certain types of antibiotic resistance. It is used to overcome resistance in bacteria that secrete beta-lactamase, which otherwise inactivates most penicillins."}, "35990": {"category_aro_name": "meropenem", "category_aro_cvterm_id": "35990", "category_aro_accession": "0000073", "category_aro_class_name": "Antibiotic", "category_aro_description": "Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36689": {"category_aro_name": "aztreonam", "category_aro_cvterm_id": "36689", "category_aro_accession": "3000550", "category_aro_class_name": "Antibiotic", "category_aro_description": "Aztreonam was the first monobactam discovered, and is greatly effective against Gram-negative bacteria while inactive against Gram-positive bacteria. Artreonam is a poor substrate for beta-lactamases, and may even act as an inhibitor. In Gram-negative bacteria, Aztreonam interferes with filamentation, inhibiting cell division and leading to cell death."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35979": {"category_aro_name": "ceftriaxone", "category_aro_cvterm_id": "35979", "category_aro_accession": "0000062", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftriaxone is a third-generation cephalosporin antibiotic. The presence of an aminothiazolyl sidechain increases ceftriazone's resistance to beta-lactamases. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36468": {"category_aro_name": "sulfamethoxazole", "category_aro_cvterm_id": "36468", "category_aro_accession": "3000329", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfamethoxazole is a sulfonamide antibiotic usually taken with trimethoprim, a diaminopyrimidine antibiotic. Sulfamethoxazole inhibits dihydropteroate synthase, essential to tetrahydrofolic acid biosynthesis. This pathway generates compounds used in the synthesis of many amino acids and nucleotides."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "40957": {"category_aro_name": "trimethoprim-sulfamethoxazole", "category_aro_cvterm_id": "40957", "category_aro_accession": "3004024", "category_aro_class_name": "Antibiotic", "category_aro_description": "An antibiotic cocktail containing the diaminopyrimidine antibiotic Trimethoprim and the sulfonamide antibiotic sulfamethoxazole (1 TMP:5 SMX)."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "2683": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36421": {"category_aro_name": "sulfonamide antibiotic", "category_aro_cvterm_id": "36421", "category_aro_accession": "3000282", "category_aro_class_name": "Drug Class", "category_aro_description": "Sulfonamides are broad spectrum, synthetic antibiotics that contain the sulfonamide group. Sulfonamides inhibit dihydropteroate synthase, which catalyzes the conversion of p-aminobenzoic acid to dihydropteroic acid as part of the tetrahydrofolic acid biosynthetic pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor of many nucleotides and amino acids. Many sulfamides are taken with trimethoprim, an inhibitor of dihydrofolate reductase, also disturbing the trihydrofolic acid synthesis pathway."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "40362": {"category_aro_name": "panipenem", "category_aro_cvterm_id": "40362", "category_aro_accession": "3003708", "category_aro_class_name": "Antibiotic", "category_aro_description": "Panipenem is a carbapenem antibacterial agent with a broad spectrum of in vitro activity covering a wide range of Gram-negative and Gram-positive aerobic and anaerobic bacterial. It is used in combination with betamipron to inhibit panipenem uptake into the renal tubule and prevent nephrotoxicity."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35996": {"category_aro_name": "clavulanate", "category_aro_cvterm_id": "35996", "category_aro_accession": "0000079", "category_aro_class_name": "Adjuvant", "category_aro_description": "Clavulanic acid is a beta-lactamase inhibitor (marketed by GlaxoSmithKline, formerly Beecham) combined with penicillin group antibiotics to overcome certain types of antibiotic resistance. It is used to overcome resistance in bacteria that secrete beta-lactamase, which otherwise inactivates most penicillins."}, "35990": {"category_aro_name": "meropenem", "category_aro_cvterm_id": "35990", "category_aro_accession": "0000073", "category_aro_class_name": "Antibiotic", "category_aro_description": "Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36689": {"category_aro_name": "aztreonam", "category_aro_cvterm_id": "36689", "category_aro_accession": "3000550", "category_aro_class_name": "Antibiotic", "category_aro_description": "Aztreonam was the first monobactam discovered, and is greatly effective against Gram-negative bacteria while inactive against Gram-positive bacteria. Artreonam is a poor substrate for beta-lactamases, and may even act as an inhibitor. In Gram-negative bacteria, Aztreonam interferes with filamentation, inhibiting cell division and leading to cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35979": {"category_aro_name": "ceftriaxone", "category_aro_cvterm_id": "35979", "category_aro_accession": "0000062", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftriaxone is a third-generation cephalosporin antibiotic. The presence of an aminothiazolyl sidechain increases ceftriazone's resistance to beta-lactamases. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "40523": {"category_aro_name": "ticarcillin", "category_aro_cvterm_id": "40523", "category_aro_accession": "3003832", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ticarcillin is a carboxypenicillin used for the treatment of Gram-negative bacteria, particularly P. aeruginosa. Ticarcillin's antibiotic properties arise from its ability to prevent cross-linking of peptidoglycan during cell wall synthesis, when the bacteria try to divide, causing cell death."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36468": {"category_aro_name": "sulfamethoxazole", "category_aro_cvterm_id": "36468", "category_aro_accession": "3000329", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfamethoxazole is a sulfonamide antibiotic usually taken with trimethoprim, a diaminopyrimidine antibiotic. Sulfamethoxazole inhibits dihydropteroate synthase, essential to tetrahydrofolic acid biosynthesis. This pathway generates compounds used in the synthesis of many amino acids and nucleotides."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "40957": {"category_aro_name": "trimethoprim-sulfamethoxazole", "category_aro_cvterm_id": "40957", "category_aro_accession": "3004024", "category_aro_class_name": "Antibiotic", "category_aro_description": "An antibiotic cocktail containing the diaminopyrimidine antibiotic Trimethoprim and the sulfonamide antibiotic sulfamethoxazole (1 TMP:5 SMX)."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "99": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "98": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "91": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35973": {"category_aro_name": "oxacillin", "category_aro_cvterm_id": "35973", "category_aro_accession": "0000056", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxacillin is a penicillinase-resistant beta-lactam. It is similar to methicillin, and has replaced methicillin in clinical use. Oxacillin, especially in combination with other antibiotics, is effective against many penicillinase-producing strains of Staphylococcus aureus and Staphylococcus epidermidis."}, "35930": {"category_aro_name": "cloxacillin", "category_aro_cvterm_id": "35930", "category_aro_accession": "0000011", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cloxacillin is a semisynthetic, isoxazolyl penicillin derivative in the beta-lactam class of antibiotics. It interferes with peptidogylcan synthesis and is commonly used for treating penicillin-resistant Staphylococcus aureus infections."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "90": {"$update": {"ARO_category": {"36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36673": {"category_aro_name": "rifapentine", "category_aro_cvterm_id": "36673", "category_aro_accession": "3000534", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifapentine is a semisynthetic rifamycin that inhibits DNA-dependent RNA synthesis. It is often used in the treatment of tuberculosis and leprosy."}, "36669": {"category_aro_name": "rifabutin", "category_aro_cvterm_id": "36669", "category_aro_accession": "3000530", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifabutin is a semisynthetic rifamycin used in tuberculosis therapy. It inhibits DNA-dependent RNA synthesis."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36349": {"category_aro_name": "rifamycin-resistant beta-subunit of RNA polymerase (rpoB)", "category_aro_cvterm_id": "36349", "category_aro_accession": "3000210", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Rifampin resistant RNA polymerases include amino acids substitutions which disrupt the affinity of rifampin for its binding site. These mutations are frequently concentrated in the rif I region of the beta-subunit and most often involve amino acids which make direct interactions with rifampin. However, mutations which also confer resistance can occur outside this region and may involve amino acids which do not directly make contact with rifampin."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36656": {"category_aro_name": "rifaximin", "category_aro_cvterm_id": "36656", "category_aro_accession": "3000517", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifaximin is a semi-synthetic rifamycin used to treat traveller's diarrhea. Rifaximin inhibits RNA synthesis by binding to the beta subunit of bacterial RNA polymerase."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}}}}, "93": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "92": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "95": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "94": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "97": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36635": {"category_aro_name": "vanXY", "category_aro_cvterm_id": "36635", "category_aro_accession": "3000496", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanXY is a protein with both D,D-carboxypeptidase and D,D-dipeptidase activity, found in Enterococcus gallinarum. It cleaves and removes the terminal D-Ala of peptidoglycan subunits for the incorporation of D-Ser by VanC. D-Ala-D-Ser has low binding affinity with vancomycin."}}}}, "96": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1623": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "39772": {"category_aro_name": "GIM beta-lactamase", "category_aro_cvterm_id": "39772", "category_aro_accession": "3003195", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The GIM beta-lactamases are isolated from Pseudomonas aeruginosa. They are located in a distinct integron structure. They confers high broad spectrum resistant, including all \u00df-lactams, aminoglycosides and quinolones."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1622": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36011": {"category_aro_name": "vanW", "category_aro_cvterm_id": "36011", "category_aro_accession": "3000002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "vanW is an accessory gene, with unknown function, found on vancomycin resistance operons."}}}}, "1621": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1620": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1627": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1626": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37716": {"category_aro_name": "pleuromutilin", "category_aro_cvterm_id": "37716", "category_aro_accession": "3001317", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pleuromutilin is a natural product antibiotic produced by Clitopilus passeckerianus. Related antibiotics of clinical significance, such as tiamulin and retapamulin, are semi-synthetic derivatives of this compound."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}}}}}, "1625": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1624": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}}, "1999": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1998": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1629": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1628": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "559": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36635": {"category_aro_name": "vanXY", "category_aro_cvterm_id": "36635", "category_aro_accession": "3000496", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanXY is a protein with both D,D-carboxypeptidase and D,D-dipeptidase activity, found in Enterococcus gallinarum. It cleaves and removes the terminal D-Ala of peptidoglycan subunits for the incorporation of D-Ser by VanC. D-Ala-D-Ser has low binding affinity with vancomycin."}}}}, "558": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}}}}}, "555": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "554": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "557": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "556": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36216": {"category_aro_name": "vanY", "category_aro_cvterm_id": "36216", "category_aro_accession": "3000077", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanY is a D,D-carboxypeptidase that cleaves removes the terminal D-Ala from peptidoglycan for the addition of D-Lactate. The D-Ala-D-Lac peptidoglycan subunits have reduced binding affinity with vancomycin compared to D-Ala-D-Ala."}}}}, "551": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "550": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "553": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "552": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1502": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1439": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1199": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1198": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}}}}}, "1191": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35965": {"category_aro_name": "puromycin", "category_aro_cvterm_id": "35965", "category_aro_accession": "0000047", "category_aro_class_name": "Antibiotic", "category_aro_description": "Puromycin is an aminonucleoside antibiotic, derived from Streptomyces alboniger, that causes premature chain termination during ribosomal protein translation."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "1190": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1193": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36699": {"category_aro_name": "Erm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36699", "category_aro_accession": "3000560", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Erm proteins are part of the RNA methyltransferase family and methylate A2058 (E. coli nomenclature) of the 23S ribosomal RNA conferring degrees of resistance to Macrolides, Lincosamides and Streptogramin b. This is called the MLSb phenotype."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}, "1192": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36182": {"category_aro_name": "VEB beta-lactamase", "category_aro_cvterm_id": "36182", "category_aro_accession": "3000043", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VEB beta-lactamases or Vietnamese extended-spectrum beta-lactamases are class A beta-lactamases that confer high-level resistance to oxyimino cephalosporins and to aztreonam"}}}}, "1195": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1194": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1197": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "40003": {"category_aro_name": "antibiotic resistant rpsL", "category_aro_cvterm_id": "40003", "category_aro_accession": "3003419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Ribosomal protein S12 stabilizes the highly conserved pseudoknot structure formed by 16S rRNA. Amino acid substitutions in RpsL affect the higher-order structure of 16S rRNA and confer antibiotic resistance"}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1196": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1759": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "39340": {"category_aro_name": "van ligase", "category_aro_cvterm_id": "39340", "category_aro_accession": "3002906", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "van ligases synthesize alternative substrates for peptidoglycan synthesis that reduce vancomycin binding affinity."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "1758": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1757": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}}}}}, "1756": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1755": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1754": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "39340": {"category_aro_name": "van ligase", "category_aro_cvterm_id": "39340", "category_aro_accession": "3002906", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "van ligases synthesize alternative substrates for peptidoglycan synthesis that reduce vancomycin binding affinity."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "1753": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1752": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36251": {"category_aro_name": "multidrug and toxic compound extrusion (MATE) transporter", "category_aro_cvterm_id": "36251", "category_aro_accession": "3000112", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Multidrug and toxic compound extrusion (MATE) transporters utilize the cationic gradient across the membrane as an energy source. Although there is a diverse substrate specificity, almost all MATE transporters recognize fluoroquinolones. Arciflavine, ethidium and aminoglycosides are also good substrates."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}}}}}, "1751": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "37247": {"category_aro_name": "oleandomycin", "category_aro_cvterm_id": "37247", "category_aro_accession": "3000867", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oleandomycin is a 14-membered macrolide produced by Streptomyces antibioticus. It is ssimilar to erythromycin, and contains a desosamine amino sugar and an oleandrose sugar. It targets the 50S ribosomal subunit to prevent protein synthesis."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35974": {"category_aro_name": "telithromycin", "category_aro_cvterm_id": "35974", "category_aro_accession": "0000057", "category_aro_class_name": "Antibiotic", "category_aro_description": "Telithromycin is a semi-synthetic derivative of erythromycin. It is a 14-membered macrolide and is the first ketolide antibiotic to be used in clinics. Telithromycin binds the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36284": {"category_aro_name": "tylosin", "category_aro_cvterm_id": "36284", "category_aro_accession": "3000145", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tylosin is a 16-membered macrolide, naturally produced by Streptomyces fradiae. It interacts with the bacterial ribosome 50S subunit to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36315": {"category_aro_name": "dirithromycin", "category_aro_cvterm_id": "36315", "category_aro_accession": "3000176", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dirithromycin is an oxazine derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome to inhibit bacterial protein synthesis."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "36699": {"category_aro_name": "Erm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36699", "category_aro_accession": "3000560", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Erm proteins are part of the RNA methyltransferase family and methylate A2058 (E. coli nomenclature) of the 23S ribosomal RNA conferring degrees of resistance to Macrolides, Lincosamides and Streptogramin b. This is called the MLSb phenotype."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35946": {"category_aro_name": "roxithromycin", "category_aro_cvterm_id": "35946", "category_aro_accession": "0000027", "category_aro_class_name": "Antibiotic", "category_aro_description": "Roxithromycin is a semi-synthetic, 14-carbon ring macrolide antibiotic derived from erythromycin. It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36295": {"category_aro_name": "spiramycin", "category_aro_cvterm_id": "36295", "category_aro_accession": "3000156", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spiramycin is a 16-membered macrolide and is natural product produced by Streptomyces ambofaciens. It binds to the 50S subunit of bacterial ribosomes and inhibits peptidyl transfer activity to disrupt protein synthesis."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}, "1750": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1177": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36198": {"category_aro_name": "KPC beta-lactamase", "category_aro_cvterm_id": "36198", "category_aro_accession": "3000059", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Klebsiella pneumoniae carbapenem resistant (KPC) beta-lactamases are notorious for their ability to efficiently hydrolyze carbapenems, unlike other Ambler Class A beta-lactamases. There are currently 9 variants reported worldwide. These enzymes were first isolated from Klebsiella pneumoniae strains in 2001 in the United States. Hospital outbreaks have since been reported in Greece and Israel and KPC carrying strains are now endemic to New York facilities. KPC-1 and KPC-2 have been shown to be identical and are now referred to as KPC-2."}}}}, "1176": {"$update": {"ARO_category": {"36659": {"category_aro_name": "isoniazid", "category_aro_cvterm_id": "36659", "category_aro_accession": "3000520", "category_aro_class_name": "Drug Class", "category_aro_description": "Isoniazid is an organic compound that is the first-line anti tuberculosis medication in prevention and treatment. As a prodrug, it is activated by mycobacterial catalase-peroxidases such as M. tuberculosis KatG. Isoniazid inhibits mycolic acid synthesis, which prevents cell wall synthesis in mycobacteria."}, "40000": {"category_aro_name": "isoniazid resistant katG", "category_aro_cvterm_id": "40000", "category_aro_accession": "3003416", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Bifunctional enzyme with both catalase and broad-spectrum peroxidase activity. It is a catalase-peroxidases that catalyzes the activation of isoniazid. Mutations that arises within this protein cause changes that results in the inability for katG to activate antibiotics, conferring resistance"}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}, "model_param": {"$update": {"40394": {"$update": {"param_value": {"$insert": {"8241": "Y304STOP"}}}}, "snp": {"$update": {"param_value": {"$insert": {"8255": "V473I", "8254": "V473D", "8257": "V473R", "8256": "V473K", "8251": "L472K", "8250": "Q471H", "8253": "L472I", "8252": "L472Q", "8239": "S303L", "8259": "V473S", "8258": "V473M", "8242": "D311N", "3716": "M255C", "3717": "M255I", "8246": "L430V", "3721": "W328F", "3722": "R418L", "3719": "T275V", "3718": "M255Y", "8248": "L436G", "8249": "Q471Y", "8264": "V473N", "8243": "D311S", "8240": "S303C", "8260": "V473F", "8261": "V473W", "8244": "L427I", "8263": "V473G", "3715": "W107F", "8262": "V473Y", "3720": "W321F", "8247": "T435R"}}, "clinical": {"$insert": {"8255": "V473I", "8254": "V473D", "8257": "V473R", "8256": "V473K", "8251": "L472K", "8250": "Q471H", "8253": "L472I", "8252": "L472Q", "8239": "S303L", "8259": "V473S", "8258": "V473M", "8264": "V473N", "8246": "L430V", "8247": "T435R", "8262": "V473Y", "8248": "L436G", "8249": "Q471Y", "8242": "D311N", "8243": "D311S", "8240": "S303C", "8260": "V473F", "8261": "V473W", "8244": "L427I", "8263": "V473G"}}}, "$insert": {"experimental": {"3715": "W107F", "3717": "M255I", "3716": "M255C", "3719": "T275V", "3718": "M255Y", "3720": "W321F", "3721": "W328F", "3722": "R418L"}}}}}}}, "1175": {"$update": {"ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "39856": {"category_aro_name": "daptomycin resistant cls", "category_aro_cvterm_id": "39856", "category_aro_accession": "3003272", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Cardiolipin synthetase catalyzes the formation of cardiolipin from two phosphatidylglycerol molecules. Cardiolipin is important in membrane translocation and permeabilization. Current known mutations on the enzyme confer resistance to daptomycin."}, "35985": {"category_aro_name": "daptomycin", "category_aro_cvterm_id": "35985", "category_aro_accession": "0000068", "category_aro_class_name": "Antibiotic", "category_aro_description": "Daptomycin is a novel lipopeptide antibiotic used in the treatment of certain infections caused by Gram-positive organisms. Daptomycin interferes with the bacterial cell membrane, reducing membrane potential and inhibiting cell wall synthesis."}}}}, "1174": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1173": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1172": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1171": {"$update": {"ARO_category": {"36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35921": {"category_aro_name": "tetracycline-resistant ribosomal protection protein", "category_aro_cvterm_id": "35921", "category_aro_accession": "0000002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "A family of proteins known to bind to the 30S ribosomal subunit. This interaction prevents tetracycline and tetracycline derivatives from inhibiting ribosomal function. Thus, these proteins confer elevated resistance to tetracycline derivatives as a ribosomal protection protein."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}, "1170": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1179": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1178": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "511": {"$update": {"ARO_category": {"36476": {"category_aro_name": "iclaprim", "category_aro_cvterm_id": "36476", "category_aro_accession": "3000337", "category_aro_class_name": "Antibiotic", "category_aro_description": "Iclaprim is a bactericidal compound that inhibits dihydrofolate reductase. It is used against clinically important Gram-positive pathogens, including methicillin-sensitive Staphylococcus aureus and methicillin-resistant S. aureus."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36408": {"category_aro_name": "brodimoprim", "category_aro_cvterm_id": "36408", "category_aro_accession": "3000269", "category_aro_class_name": "Antibiotic", "category_aro_description": "Brodimoprim is a structural derivative of trimethoprim and an inhibitor of bacterial dihydrofolate reductase. The 4-methoxy group of trimethoprim is replaced with a bromine atom."}, "37617": {"category_aro_name": "trimethoprim resistant dihydrofolate reductase dfr", "category_aro_cvterm_id": "37617", "category_aro_accession": "3001218", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Alternative dihydropteroate synthase dfr present on plasmids produces alternate proteins that are less sensitive to trimethoprim from inhibiting its role in folate synthesis, thus conferring trimethoprim resistance."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36423": {"category_aro_name": "tetroxoprim", "category_aro_cvterm_id": "36423", "category_aro_accession": "3000284", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetroxoprim is a trimethoprim derivative that inhibits bacterial dihydrofolate reductase."}}}}, "510": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1005": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$delete": ["35950"], "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}}}}}, "1285": {"$update": {"ARO_description": "SAT-2 is a plasmid-mediated streptothricin acetyltransferase, which confers resistance to streptothricin, a nucleoside antibiotic. Originally described from an E. coli plasmid sequence by Heim et al., 1989.", "ARO_category": {"37249": {"category_aro_name": "streptothricin acetyltransferase (SAT)", "category_aro_cvterm_id": "37249", "category_aro_accession": "3000869", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "AcetylCoA dependent acetyltransferase that acetylate streptothricins such as nourseothricin at position 16 (beta position of beta-lysine)."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}}, "ARO_name": "SAT-2"}}, "1284": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36199": {"category_aro_name": "IND beta-lactamase", "category_aro_cvterm_id": "36199", "category_aro_accession": "3000060", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "IND beta-lactamases are class B carbapenem-hydrolyzing beta-lactamases"}}}}, "1287": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "512": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1281": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1280": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1283": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36198": {"category_aro_name": "KPC beta-lactamase", "category_aro_cvterm_id": "36198", "category_aro_accession": "3000059", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Klebsiella pneumoniae carbapenem resistant (KPC) beta-lactamases are notorious for their ability to efficiently hydrolyze carbapenems, unlike other Ambler Class A beta-lactamases. There are currently 9 variants reported worldwide. These enzymes were first isolated from Klebsiella pneumoniae strains in 2001 in the United States. Hospital outbreaks have since been reported in Greece and Israel and KPC carrying strains are now endemic to New York facilities. KPC-1 and KPC-2 have been shown to be identical and are now referred to as KPC-2."}}}}, "1282": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41370": {"category_aro_name": "SIM beta-lactamase", "category_aro_cvterm_id": "41370", "category_aro_accession": "3004206", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SIM beta-lactamases are Class B beta-lactamases that are capable of hydrolyzing a wide variety of beta-lactams, including penicillins, narrow- to expanded-spectrum cephalosporins, and carbapenem. The SIM family of beta-lactamases appear to be transferable through integrons."}}}}, "1003": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1289": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38817": {"category_aro_name": "OKP beta-lactamase", "category_aro_cvterm_id": "38817", "category_aro_accession": "3002417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OKP beta-lactamases are chromosomal class A beta-lactamase that confer resistance to penicillins and early cephalosporins in Klebsiella pneumoniae. OKP beta-lactamases can be subdivided into two groups: OKP-A and OKP-B which diverge by about 4.2%"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1288": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "514": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36236": {"category_aro_name": "LEN beta-lactamase", "category_aro_cvterm_id": "36236", "category_aro_accession": "3000097", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "LEN beta-lactamases are chromosomal class A beta-lactamases that confer resistance to ampicillin, amoxicillin, carbenicillin, and ticarcillin but not to extended-spectrum beta-lactams."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}}}}, "1579": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1578": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "689": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "688": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36222": {"category_aro_name": "MOX beta-lactamase", "category_aro_cvterm_id": "36222", "category_aro_accession": "3000083", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "MOX beta-lactamases are plasmid-mediated AmpC-type beta-lactamases."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "685": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "684": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "687": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "36265": {"category_aro_name": "APH(3')", "category_aro_cvterm_id": "36265", "category_aro_accession": "3000126", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of 2-deoxystreptamine aminoglycosides on the hydroxyl group at position 3'"}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "686": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "681": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "680": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "683": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "682": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1227": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "41439": {"category_aro_name": "ANT(3'')", "category_aro_cvterm_id": "41439", "category_aro_accession": "3004275", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotidylylation of streptomycin at the hydroxyl group at position 3''"}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1226": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "1240": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36472": {"category_aro_name": "macrolide phosphotransferase (MPH)", "category_aro_cvterm_id": "36472", "category_aro_accession": "3000333", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Macrolide phosphotransferases (MPH) are enzymes encoded by macrolide phosphotransferase genes (mph genes). These enzymes phosphorylate macrolides in GTP dependent manner at 2'-OH of desosamine sugar thereby inactivating them. Characterized MPH's are differentiated based on their substrate specificity."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}}}}, "621": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "37247": {"category_aro_name": "oleandomycin", "category_aro_cvterm_id": "37247", "category_aro_accession": "3000867", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oleandomycin is a 14-membered macrolide produced by Streptomyces antibioticus. It is ssimilar to erythromycin, and contains a desosamine amino sugar and an oleandrose sugar. It targets the 50S ribosomal subunit to prevent protein synthesis."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35974": {"category_aro_name": "telithromycin", "category_aro_cvterm_id": "35974", "category_aro_accession": "0000057", "category_aro_class_name": "Antibiotic", "category_aro_description": "Telithromycin is a semi-synthetic derivative of erythromycin. It is a 14-membered macrolide and is the first ketolide antibiotic to be used in clinics. Telithromycin binds the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36284": {"category_aro_name": "tylosin", "category_aro_cvterm_id": "36284", "category_aro_accession": "3000145", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tylosin is a 16-membered macrolide, naturally produced by Streptomyces fradiae. It interacts with the bacterial ribosome 50S subunit to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36315": {"category_aro_name": "dirithromycin", "category_aro_cvterm_id": "36315", "category_aro_accession": "3000176", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dirithromycin is an oxazine derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome to inhibit bacterial protein synthesis."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "36699": {"category_aro_name": "Erm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36699", "category_aro_accession": "3000560", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Erm proteins are part of the RNA methyltransferase family and methylate A2058 (E. coli nomenclature) of the 23S ribosomal RNA conferring degrees of resistance to Macrolides, Lincosamides and Streptogramin b. This is called the MLSb phenotype."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35946": {"category_aro_name": "roxithromycin", "category_aro_cvterm_id": "35946", "category_aro_accession": "0000027", "category_aro_class_name": "Antibiotic", "category_aro_description": "Roxithromycin is a semi-synthetic, 14-carbon ring macrolide antibiotic derived from erythromycin. It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36295": {"category_aro_name": "spiramycin", "category_aro_cvterm_id": "36295", "category_aro_accession": "3000156", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spiramycin is a 16-membered macrolide and is natural product produced by Streptomyces ambofaciens. It binds to the 50S subunit of bacterial ribosomes and inhibits peptidyl transfer activity to disrupt protein synthesis."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}, "873": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36198": {"category_aro_name": "KPC beta-lactamase", "category_aro_cvterm_id": "36198", "category_aro_accession": "3000059", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Klebsiella pneumoniae carbapenem resistant (KPC) beta-lactamases are notorious for their ability to efficiently hydrolyze carbapenems, unlike other Ambler Class A beta-lactamases. There are currently 9 variants reported worldwide. These enzymes were first isolated from Klebsiella pneumoniae strains in 2001 in the United States. Hospital outbreaks have since been reported in Greece and Israel and KPC carrying strains are now endemic to New York facilities. KPC-1 and KPC-2 have been shown to be identical and are now referred to as KPC-2."}}}}, "1224": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36699": {"category_aro_name": "Erm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36699", "category_aro_accession": "3000560", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Erm proteins are part of the RNA methyltransferase family and methylate A2058 (E. coli nomenclature) of the 23S ribosomal RNA conferring degrees of resistance to Macrolides, Lincosamides and Streptogramin b. This is called the MLSb phenotype."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}, "627": {"$update": {"ARO_category": {"36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36673": {"category_aro_name": "rifapentine", "category_aro_cvterm_id": "36673", "category_aro_accession": "3000534", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifapentine is a semisynthetic rifamycin that inhibits DNA-dependent RNA synthesis. It is often used in the treatment of tuberculosis and leprosy."}, "36669": {"category_aro_name": "rifabutin", "category_aro_cvterm_id": "36669", "category_aro_accession": "3000530", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifabutin is a semisynthetic rifamycin used in tuberculosis therapy. It inhibits DNA-dependent RNA synthesis."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36349": {"category_aro_name": "rifamycin-resistant beta-subunit of RNA polymerase (rpoB)", "category_aro_cvterm_id": "36349", "category_aro_accession": "3000210", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Rifampin resistant RNA polymerases include amino acids substitutions which disrupt the affinity of rifampin for its binding site. These mutations are frequently concentrated in the rif I region of the beta-subunit and most often involve amino acids which make direct interactions with rifampin. However, mutations which also confer resistance can occur outside this region and may involve amino acids which do not directly make contact with rifampin."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36656": {"category_aro_name": "rifaximin", "category_aro_cvterm_id": "36656", "category_aro_accession": "3000517", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifaximin is a semi-synthetic rifamycin used to treat traveller's diarrhea. Rifaximin inhibits RNA synthesis by binding to the beta subunit of bacterial RNA polymerase."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}}}}, "1222": {"$update": {"ARO_category": {"35944": {"category_aro_name": "fosfomycin", "category_aro_cvterm_id": "35944", "category_aro_accession": "0000025", "category_aro_class_name": "Drug Class", "category_aro_description": "Fosfomycin (also known as phosphomycin and phosphonomycin) is a broad-spectrum antibiotic produced by certain Streptomyces species. It is effective on gram positive and negative bacteria as it targets the cell wall, an essential feature shared by both bacteria. Its specific target is MurA (MurZ in E.coli), which attaches phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine, a step of commitment to cell wall synthesis. In the active site of MurA, the active cysteine molecule is alkylated which stops the catalytic reaction."}, "36272": {"category_aro_name": "fosfomycin thiol transferase", "category_aro_cvterm_id": "36272", "category_aro_accession": "3000133", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Catalyzes the addition of a thiol group from a nucleophilic molecule to fosfomycin."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "1221": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "624": {"$update": {"ARO_category": {"36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36673": {"category_aro_name": "rifapentine", "category_aro_cvterm_id": "36673", "category_aro_accession": "3000534", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifapentine is a semisynthetic rifamycin that inhibits DNA-dependent RNA synthesis. It is often used in the treatment of tuberculosis and leprosy."}, "36669": {"category_aro_name": "rifabutin", "category_aro_cvterm_id": "36669", "category_aro_accession": "3000530", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifabutin is a semisynthetic rifamycin used in tuberculosis therapy. It inhibits DNA-dependent RNA synthesis."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36349": {"category_aro_name": "rifamycin-resistant beta-subunit of RNA polymerase (rpoB)", "category_aro_cvterm_id": "36349", "category_aro_accession": "3000210", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Rifampin resistant RNA polymerases include amino acids substitutions which disrupt the affinity of rifampin for its binding site. These mutations are frequently concentrated in the rif I region of the beta-subunit and most often involve amino acids which make direct interactions with rifampin. However, mutations which also confer resistance can occur outside this region and may involve amino acids which do not directly make contact with rifampin."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36656": {"category_aro_name": "rifaximin", "category_aro_cvterm_id": "36656", "category_aro_accession": "3000517", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifaximin is a semi-synthetic rifamycin used to treat traveller's diarrhea. Rifaximin inhibits RNA synthesis by binding to the beta subunit of bacterial RNA polymerase."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}}}}, "2743": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "407": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1370": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "405": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1372": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "41440": {"category_aro_name": "ANT(2'')", "category_aro_cvterm_id": "41440", "category_aro_accession": "3004276", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucelotidylylation of streptomycin at the hydroxyl group at position 2''."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1375": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1374": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41361": {"category_aro_name": "blaZ beta-lactamase", "category_aro_cvterm_id": "41361", "category_aro_accession": "3004197", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "blaZ beta-lactamases are Class A beta-lactamases. These beta-lactamases are responsible for penicillin resistance in Staphylococcus aures."}}}}, "1377": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "400": {"$update": {"ARO_category": {"36237": {"category_aro_name": "PDC beta-lactamase", "category_aro_cvterm_id": "36237", "category_aro_accession": "3000098", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PDC beta-lactamases are class C beta-lactamases that are found in Pseudomonas aeruginosa."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1379": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1378": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36461": {"category_aro_name": "AAC(3)", "category_aro_cvterm_id": "36461", "category_aro_accession": "3000322", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 3."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1342": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "36261": {"category_aro_name": "chloramphenicol acetyltransferase (CAT)", "category_aro_cvterm_id": "36261", "category_aro_accession": "3000122", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Inactivates chloramphenicol by addition of an acyl group. cat is used to describe many variants of the chloramphenicol acetyltransferase gene in a range of organisms including Acinetobacter calcoaceticus, Agrobacterium tumefaciens, Bacillus clausii, Bacillus subtilis, Campylobacter coli, Enterococcus faecalis, Enterococcus faecium, Lactococcus lactis, Listeria monocytogenes, Listonella anguillarum Morganella morganii, Photobacterium damselae subsp. piscicida, Proteus mirabilis, Salmonella typhi, Serratia marcescens, Shigella flexneri, Staphylococcus aureus, Staphylococcus haemolyticus, Staphylococcus intermedius, Streptococcus agalactiae, Streptococcus suis and Streptomyces acrimycini"}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "409": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36713": {"category_aro_name": "vanR", "category_aro_cvterm_id": "36713", "category_aro_accession": "3000574", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanR is a OmpR-family transcriptional activator in the VanSR regulatory system. When activated by VanS, it promotes cotranscription of VanA, VanH, and VanX."}, "35947": {"category_aro_name": "vancomycin", "category_aro_cvterm_id": "35947", "category_aro_accession": "0000028", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vancomycin is a glycopeptide antibiotic used in the prophylaxis and treatment of infections caused by Gram-positive bacteria. Vancomycin inhibits the synthesis of peptidoglycan, the major component of the cell wall of gram-positive bacteria. Its mechanism of action is unusual in that it acts by binding precursors of peptidoglycan, rather than by interacting with an enzyme."}}}}, "408": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "453": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$delete": ["36590"], "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35971": {"category_aro_name": "penicillin", "category_aro_cvterm_id": "35971", "category_aro_accession": "0000054", "category_aro_class_name": "Antibiotic", "category_aro_description": "Penicillin (sometimes abbreviated PCN) is a beta-lactam antibiotic used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms. It works by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "2747": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}}}}}, "454": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36198": {"category_aro_name": "KPC beta-lactamase", "category_aro_cvterm_id": "36198", "category_aro_accession": "3000059", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Klebsiella pneumoniae carbapenem resistant (KPC) beta-lactamases are notorious for their ability to efficiently hydrolyze carbapenems, unlike other Ambler Class A beta-lactamases. There are currently 9 variants reported worldwide. These enzymes were first isolated from Klebsiella pneumoniae strains in 2001 in the United States. Hospital outbreaks have since been reported in Greece and Israel and KPC carrying strains are now endemic to New York facilities. KPC-1 and KPC-2 have been shown to be identical and are now referred to as KPC-2."}}}}, "2746": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}}, "1345": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "2749": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36360": {"category_aro_name": "lincosamide nucleotidyltransferase (LNU)", "category_aro_cvterm_id": "36360", "category_aro_accession": "3000221", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Resistance to the lincosamide antibiotic by ATP-dependent modification of the 3' and/or 4'-hydroxyl groups of the methylthiolincosamide sugar."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}, "1346": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1347": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1245": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "379": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "378": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "371": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "370": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "373": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36197": {"category_aro_name": "MIR beta-lactamase", "category_aro_cvterm_id": "36197", "category_aro_accession": "3000058", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "MIR beta-lactamases are plasmid-mediated beta-lactamases that confer resistance to oxyimino- and alpha-methoxy beta-lactams"}}}}, "372": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}}}}}, "375": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35942": {"category_aro_name": "enoxacin", "category_aro_cvterm_id": "35942", "category_aro_accession": "0000023", "category_aro_class_name": "Antibiotic", "category_aro_description": "Enoxacin belongs to a group called fluoroquinolones. Its mode of action depends upon blocking bacterial DNA replication by binding itself to DNA gyrase and causing double-stranded breaks in the bacterial chromosome."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}}}}}, "374": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "377": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36251": {"category_aro_name": "multidrug and toxic compound extrusion (MATE) transporter", "category_aro_cvterm_id": "36251", "category_aro_accession": "3000112", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Multidrug and toxic compound extrusion (MATE) transporters utilize the cationic gradient across the membrane as an energy source. Although there is a diverse substrate specificity, almost all MATE transporters recognize fluoroquinolones. Arciflavine, ethidium and aminoglycosides are also good substrates."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "376": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36360": {"category_aro_name": "lincosamide nucleotidyltransferase (LNU)", "category_aro_cvterm_id": "36360", "category_aro_accession": "3000221", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Resistance to the lincosamide antibiotic by ATP-dependent modification of the 3' and/or 4'-hydroxyl groups of the methylthiolincosamide sugar."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}, "393": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "392": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41369": {"category_aro_name": "TUS beta-lactamase", "category_aro_cvterm_id": "41369", "category_aro_accession": "3004205", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TUS beta-lactamases are Class B beta-lactamases that can hydrolyze a variety of beta-lactams, such as cephems and carbapenems"}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "391": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "390": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36210": {"category_aro_name": "vanS", "category_aro_cvterm_id": "36210", "category_aro_accession": "3000071", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanS is similar to histidine protein kinases like EnvZ and acts as a response regulator by activating VanR. VanS is required for high level transcription of other van glycopeptide resistance genes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35947": {"category_aro_name": "vancomycin", "category_aro_cvterm_id": "35947", "category_aro_accession": "0000028", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vancomycin is a glycopeptide antibiotic used in the prophylaxis and treatment of infections caused by Gram-positive bacteria. Vancomycin inhibits the synthesis of peptidoglycan, the major component of the cell wall of gram-positive bacteria. Its mechanism of action is unusual in that it acts by binding precursors of peptidoglycan, rather than by interacting with an enzyme."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}}}}, "397": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "396": {"$update": {"ARO_category": {"36463": {"category_aro_name": "sulfadiazine", "category_aro_cvterm_id": "36463", "category_aro_accession": "3000324", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfadiazine is a potent inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids."}, "36466": {"category_aro_name": "sulfadoxine", "category_aro_cvterm_id": "36466", "category_aro_accession": "3000327", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfadoxine is an inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids."}, "37027": {"category_aro_name": "sulfacetamide", "category_aro_cvterm_id": "37027", "category_aro_accession": "3000683", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfacetamide is a very soluable sulfonamide antibiotic previously used to treat urinary tract infections. Its relatively low activity and toxicity to those with Stevens-Johnson syndrome have reduced its use and availability."}, "36464": {"category_aro_name": "sulfadimidine", "category_aro_cvterm_id": "36464", "category_aro_accession": "3000325", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfadimidine is an alkaline sulfonamide antibiotic that inhibits dihydropteroate synthase, and enzyme in the tetrahydrofolic acid biosynthesis pathway. This interferes with the production of folate, which is a precursor to many amino acids and nucleotides."}, "37028": {"category_aro_name": "mafenide", "category_aro_cvterm_id": "37028", "category_aro_accession": "3000684", "category_aro_class_name": "Antibiotic", "category_aro_description": "Mafenide is a sulfonamide used topically for treating burns."}, "36468": {"category_aro_name": "sulfamethoxazole", "category_aro_cvterm_id": "36468", "category_aro_accession": "3000329", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfamethoxazole is a sulfonamide antibiotic usually taken with trimethoprim, a diaminopyrimidine antibiotic. Sulfamethoxazole inhibits dihydropteroate synthase, essential to tetrahydrofolic acid biosynthesis. This pathway generates compounds used in the synthesis of many amino acids and nucleotides."}, "36469": {"category_aro_name": "sulfisoxazole", "category_aro_cvterm_id": "36469", "category_aro_accession": "3000330", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfisoxazole is an inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids."}, "41402": {"category_aro_name": "sulfonamide resistant sul", "category_aro_cvterm_id": "41402", "category_aro_accession": "3004238", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The sul genes encode forms of dihydropteroate synthase that confer resistance to sulfonamide."}, "39996": {"category_aro_name": "dapsone", "category_aro_cvterm_id": "39996", "category_aro_accession": "3003412", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dapsone is a sulfone in which it inhibits folic acid synthesis, such as the dihydropteroate synthase."}, "39985": {"category_aro_name": "sulfone antibiotic", "category_aro_cvterm_id": "39985", "category_aro_accession": "3003401", "category_aro_class_name": "Drug Class", "category_aro_description": "A sulfone active against a wide range of bacteria but mainly employed for its actions against mycobacterium laprae. Its mechanism of action involves inhibition of folic acid synthesis in susceptible organisms."}, "37043": {"category_aro_name": "sulfamethizole", "category_aro_cvterm_id": "37043", "category_aro_accession": "3000699", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfamethizole is a short-acting sulfonamide that inhibits dihydropteroate synthetase."}, "37042": {"category_aro_name": "sulfasalazine", "category_aro_cvterm_id": "37042", "category_aro_accession": "3000698", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfasalazine is a derivative of the early sulfonamide sulfapyridine (salicylazosulfapyridine). It was developed to increase water solubility and is taken orally for ulcerative colitis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36421": {"category_aro_name": "sulfonamide antibiotic", "category_aro_cvterm_id": "36421", "category_aro_accession": "3000282", "category_aro_class_name": "Drug Class", "category_aro_description": "Sulfonamides are broad spectrum, synthetic antibiotics that contain the sulfonamide group. Sulfonamides inhibit dihydropteroate synthase, which catalyzes the conversion of p-aminobenzoic acid to dihydropteroic acid as part of the tetrahydrofolic acid biosynthetic pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor of many nucleotides and amino acids. Many sulfamides are taken with trimethoprim, an inhibitor of dihydrofolate reductase, also disturbing the trihydrofolic acid synthesis pathway."}}}}, "395": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41397": {"category_aro_name": "blaF family beta-lactamase", "category_aro_cvterm_id": "41397", "category_aro_accession": "3004233", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Class A Beta-lactamases first isolated from Mycobacterium fortuitum."}}}}, "394": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "399": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36197": {"category_aro_name": "MIR beta-lactamase", "category_aro_cvterm_id": "36197", "category_aro_accession": "3000058", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "MIR beta-lactamases are plasmid-mediated beta-lactamases that confer resistance to oxyimino- and alpha-methoxy beta-lactams"}}}}, "398": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1247": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "2303": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35972": {"category_aro_name": "bicyclomycin", "category_aro_cvterm_id": "35972", "category_aro_accession": "0000055", "category_aro_class_name": "Drug Class", "category_aro_description": "Bicyclomycin represents a unique class of antibiotics, discovered in 1972. It is obtained by the fermentation of Streptomyces sapporonensis. In the crystalline form bicyclomycin is observed to be rhombic or monoclinic, depending on the solvent used. This antibiotic kills bacteria by inhibiting the Rho transcription terminator factor, halting ribonucleic acid (RNA) synthesis."}}}}}, "2306": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$delete": ["35950"], "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "245": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "244": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "247": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "246": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "241": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36211": {"category_aro_name": "ACT beta-lactamase", "category_aro_cvterm_id": "36211", "category_aro_accession": "3000072", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "240": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36713": {"category_aro_name": "vanR", "category_aro_cvterm_id": "36713", "category_aro_accession": "3000574", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanR is a OmpR-family transcriptional activator in the VanSR regulatory system. When activated by VanS, it promotes cotranscription of VanA, VanH, and VanX."}, "35947": {"category_aro_name": "vancomycin", "category_aro_cvterm_id": "35947", "category_aro_accession": "0000028", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vancomycin is a glycopeptide antibiotic used in the prophylaxis and treatment of infections caused by Gram-positive bacteria. Vancomycin inhibits the synthesis of peptidoglycan, the major component of the cell wall of gram-positive bacteria. Its mechanism of action is unusual in that it acts by binding precursors of peptidoglycan, rather than by interacting with an enzyme."}}}}, "243": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "242": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "249": {"$update": {"ARO_category": {"41433": {"category_aro_name": "pmr phosphoethanolamine transferase", "category_aro_cvterm_id": "41433", "category_aro_accession": "3004269", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "This family of phosphoethanolamine transferase catalyze the addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) and phosphoethanolamine to lipid A, which impedes the binding of colistin to the cell membrane."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "248": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38817": {"category_aro_name": "OKP beta-lactamase", "category_aro_cvterm_id": "38817", "category_aro_accession": "3002417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OKP beta-lactamases are chromosomal class A beta-lactamase that confer resistance to penicillins and early cephalosporins in Klebsiella pneumoniae. OKP beta-lactamases can be subdivided into two groups: OKP-A and OKP-B which diverge by about 4.2%"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "2274": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37697": {"category_aro_name": "non-erm 23S ribosomal RNA methyltransferase (G748)", "category_aro_cvterm_id": "37697", "category_aro_accession": "3001298", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Non-erm 23S ribosomal RNA methyltransferases modify guanosine 748 (E. coli numbering) to confer resistance to some macrolides and lincosamides"}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}, "2277": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36472": {"category_aro_name": "macrolide phosphotransferase (MPH)", "category_aro_cvterm_id": "36472", "category_aro_accession": "3000333", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Macrolide phosphotransferases (MPH) are enzymes encoded by macrolide phosphotransferase genes (mph genes). These enzymes phosphorylate macrolides in GTP dependent manner at 2'-OH of desosamine sugar thereby inactivating them. Characterized MPH's are differentiated based on their substrate specificity."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}}}}, "2279": {"$update": {"ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37243": {"category_aro_name": "defensin resistant mprF", "category_aro_cvterm_id": "37243", "category_aro_accession": "3000863", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "MprF is a integral membrane protein that modifies the negatively-charged phosphatidylglycerol on the membrane surface of both Gram-positive and Gram-negative bacteria. This confers resistance to cationic peptides that disrupt the cell membrane, including defensins."}, "37037": {"category_aro_name": "defensin", "category_aro_cvterm_id": "37037", "category_aro_accession": "3000693", "category_aro_class_name": "Antibiotic", "category_aro_description": "Defensins are natural cationic peptides that have antibiotic properties. It is part of the innate immune system of plants and animals."}}}}, "2278": {"$update": {"ARO_category": {"36585": {"category_aro_name": "antibiotic resistant isoleucyl-tRNA synthetase (ileS)", "category_aro_cvterm_id": "36585", "category_aro_accession": "3000446", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Mupirocin inhibits protein synthesis by interfering with isoleucyl-tRNA synthetase (ileS). Mutations in ileS can confer low-level mupirocin resistance."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36693": {"category_aro_name": "mupirocin", "category_aro_cvterm_id": "36693", "category_aro_accession": "3000554", "category_aro_class_name": "Drug Class", "category_aro_description": "Mupirocin, also known as pseudomonic acid, is a bacteriostatic polyketide antibiotic from Pseudomonas fluorescens used to treat S. aureus and MRSA. It inhibits Ile tRNA synthetase."}}, "ARO_name": "Bifidobacterium ileS conferring resistance to mupirocin"}}, "2154": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "179": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "178": {"$update": {"ARO_category": {"36015": {"category_aro_name": "vanH", "category_aro_cvterm_id": "36015", "category_aro_accession": "3000006", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanH is a D-specific alpha-ketoacid dehydrogenase that synthesizes D-lactate. D-lactate is incorporated into the end of the peptidoglycan subunits, decreasing vancomycin binding affinity."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35948": {"category_aro_name": "teicoplanin", "category_aro_cvterm_id": "35948", "category_aro_accession": "0000029", "category_aro_class_name": "Antibiotic", "category_aro_description": "Teicoplanin is a glycopeptide antibiotic used in the prophylaxis and treatment of serious infections caused by Gram-positive bacteria. Teicoplanin has a unique acyl-aliphatic chain, and binds to cell wall precursors to inhibit transglycosylation and transpeptidation."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35947": {"category_aro_name": "vancomycin", "category_aro_cvterm_id": "35947", "category_aro_accession": "0000028", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vancomycin is a glycopeptide antibiotic used in the prophylaxis and treatment of infections caused by Gram-positive bacteria. Vancomycin inhibits the synthesis of peptidoglycan, the major component of the cell wall of gram-positive bacteria. Its mechanism of action is unusual in that it acts by binding precursors of peptidoglycan, rather than by interacting with an enzyme."}}}}, "177": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "176": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "175": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "174": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "39434": {"category_aro_name": "CfxA beta-lactamase", "category_aro_cvterm_id": "39434", "category_aro_accession": "3003000", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "cfxA beta-lactamases are class A beta-lactamases"}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "173": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36673": {"category_aro_name": "rifapentine", "category_aro_cvterm_id": "36673", "category_aro_accession": "3000534", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifapentine is a semisynthetic rifamycin that inhibits DNA-dependent RNA synthesis. It is often used in the treatment of tuberculosis and leprosy."}, "36669": {"category_aro_name": "rifabutin", "category_aro_cvterm_id": "36669", "category_aro_accession": "3000530", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifabutin is a semisynthetic rifamycin used in tuberculosis therapy. It inhibits DNA-dependent RNA synthesis."}, "36529": {"category_aro_name": "rifampin ADP-ribosyltransferase (Arr)", "category_aro_cvterm_id": "36529", "category_aro_accession": "3000390", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Enzyme responsible for the ADP-ribosylative inactivation of rifampin at the 23-OH position using NAD+."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "36656": {"category_aro_name": "rifaximin", "category_aro_cvterm_id": "36656", "category_aro_accession": "3000517", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifaximin is a semi-synthetic rifamycin used to treat traveller's diarrhea. Rifaximin inhibits RNA synthesis by binding to the beta subunit of bacterial RNA polymerase."}}}}, "172": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "171": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "170": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "2051": {"$update": {"ARO_category": {"36476": {"category_aro_name": "iclaprim", "category_aro_cvterm_id": "36476", "category_aro_accession": "3000337", "category_aro_class_name": "Antibiotic", "category_aro_description": "Iclaprim is a bactericidal compound that inhibits dihydrofolate reductase. It is used against clinically important Gram-positive pathogens, including methicillin-sensitive Staphylococcus aureus and methicillin-resistant S. aureus."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36408": {"category_aro_name": "brodimoprim", "category_aro_cvterm_id": "36408", "category_aro_accession": "3000269", "category_aro_class_name": "Antibiotic", "category_aro_description": "Brodimoprim is a structural derivative of trimethoprim and an inhibitor of bacterial dihydrofolate reductase. The 4-methoxy group of trimethoprim is replaced with a bromine atom."}, "37617": {"category_aro_name": "trimethoprim resistant dihydrofolate reductase dfr", "category_aro_cvterm_id": "37617", "category_aro_accession": "3001218", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Alternative dihydropteroate synthase dfr present on plasmids produces alternate proteins that are less sensitive to trimethoprim from inhibiting its role in folate synthesis, thus conferring trimethoprim resistance."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36423": {"category_aro_name": "tetroxoprim", "category_aro_cvterm_id": "36423", "category_aro_accession": "3000284", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetroxoprim is a trimethoprim derivative that inhibits bacterial dihydrofolate reductase."}}}}, "2050": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "2053": {"$update": {"ARO_category": {"36476": {"category_aro_name": "iclaprim", "category_aro_cvterm_id": "36476", "category_aro_accession": "3000337", "category_aro_class_name": "Antibiotic", "category_aro_description": "Iclaprim is a bactericidal compound that inhibits dihydrofolate reductase. It is used against clinically important Gram-positive pathogens, including methicillin-sensitive Staphylococcus aureus and methicillin-resistant S. aureus."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36408": {"category_aro_name": "brodimoprim", "category_aro_cvterm_id": "36408", "category_aro_accession": "3000269", "category_aro_class_name": "Antibiotic", "category_aro_description": "Brodimoprim is a structural derivative of trimethoprim and an inhibitor of bacterial dihydrofolate reductase. The 4-methoxy group of trimethoprim is replaced with a bromine atom."}, "37617": {"category_aro_name": "trimethoprim resistant dihydrofolate reductase dfr", "category_aro_cvterm_id": "37617", "category_aro_accession": "3001218", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Alternative dihydropteroate synthase dfr present on plasmids produces alternate proteins that are less sensitive to trimethoprim from inhibiting its role in folate synthesis, thus conferring trimethoprim resistance."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36423": {"category_aro_name": "tetroxoprim", "category_aro_cvterm_id": "36423", "category_aro_accession": "3000284", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetroxoprim is a trimethoprim derivative that inhibits bacterial dihydrofolate reductase."}}}}, "2052": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36266": {"category_aro_name": "APH(3'')", "category_aro_cvterm_id": "36266", "category_aro_accession": "3000127", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of streptomycin on the hydroxyl group at position 3''"}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2055": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41390": {"category_aro_name": "subclass B3 LRA beta-lactamase", "category_aro_cvterm_id": "41390", "category_aro_accession": "3004226", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Beta-lactamases that are part of the LRA gene family and are classified as B3 (metallo-) beta-lactamases."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "2054": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}}}}}, "2057": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "2056": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}, "35965": {"category_aro_name": "puromycin", "category_aro_cvterm_id": "35965", "category_aro_accession": "0000047", "category_aro_class_name": "Antibiotic", "category_aro_description": "Puromycin is an aminonucleoside antibiotic, derived from Streptomyces alboniger, that causes premature chain termination during ribosomal protein translation."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}}}}}, "2059": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38817": {"category_aro_name": "OKP beta-lactamase", "category_aro_cvterm_id": "38817", "category_aro_accession": "3002417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OKP beta-lactamases are chromosomal class A beta-lactamase that confer resistance to penicillins and early cephalosporins in Klebsiella pneumoniae. OKP beta-lactamases can be subdivided into two groups: OKP-A and OKP-B which diverge by about 4.2%"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "2058": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36600": {"category_aro_name": "florfenicol", "category_aro_cvterm_id": "36600", "category_aro_accession": "3000461", "category_aro_class_name": "Antibiotic", "category_aro_description": "Florfenicol is a fluorine derivative of chloramphenicol, where the nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3) and the hydroxyl group (-OH), by a fluorine group (-F). The action mechanism is the same as chloramphenicol's, where the antibiotic binds to the 23S RNA of the 50S subunit of bacterial ribosomes to inhibit protein synthesis."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "1500": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36290": {"category_aro_name": "APH(6)", "category_aro_cvterm_id": "36290", "category_aro_accession": "3000151", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of streptomycin on the hydroxyl group at position 6"}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1501": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1506": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36211": {"category_aro_name": "ACT beta-lactamase", "category_aro_cvterm_id": "36211", "category_aro_accession": "3000072", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1507": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}}, "1504": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1977": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1600": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$delete": ["39418", "40190"], "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "36968": {"category_aro_name": "colistin B", "category_aro_cvterm_id": "36968", "category_aro_accession": "3000624", "category_aro_class_name": "Antibiotic", "category_aro_description": "Colistin B, or polymyxin E2, has a 6-heptanoic acid lipid tail. Polymyxins disrupt the cell membrane of Gram-negative bacteria."}, "41433": {"category_aro_name": "pmr phosphoethanolamine transferase", "category_aro_cvterm_id": "41433", "category_aro_accession": "3004269", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "This family of phosphoethanolamine transferase catalyze the addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) and phosphoethanolamine to lipid A, which impedes the binding of colistin to the cell membrane."}, "36966": {"category_aro_name": "colistin A", "category_aro_cvterm_id": "36966", "category_aro_accession": "3000622", "category_aro_class_name": "Antibiotic", "category_aro_description": "Colistin A, or polymyxin E1, has a 6-octanoic acid lipid tail. Polymyxins disrupt the cell membrane of Gram-negative bacteria."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "2697": {"$update": {"ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36666": {"category_aro_name": "polyamine antibiotic", "category_aro_cvterm_id": "36666", "category_aro_accession": "3000527", "category_aro_class_name": "Drug Class", "category_aro_description": "Polyamine antibiotics are organic compounds having two or more primary amino groups."}, "41131": {"category_aro_name": "Edeine acetyltransferase", "category_aro_cvterm_id": "41131", "category_aro_accession": "3004064", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Edeine acetyltransferase enzymes catalyze the transfer of an acetyl group to active edeine, converting it to an inactive form in vivo. This mechanism is used for high-level self-resistance in edeine-producing Brevibacillus spp."}}}}, "2695": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "2694": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "2693": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "1975": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}}}}}, "2691": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "1974": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}}}}}, "1973": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1972": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1971": {"$update": {"ARO_category": {"36476": {"category_aro_name": "iclaprim", "category_aro_cvterm_id": "36476", "category_aro_accession": "3000337", "category_aro_class_name": "Antibiotic", "category_aro_description": "Iclaprim is a bactericidal compound that inhibits dihydrofolate reductase. It is used against clinically important Gram-positive pathogens, including methicillin-sensitive Staphylococcus aureus and methicillin-resistant S. aureus."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36408": {"category_aro_name": "brodimoprim", "category_aro_cvterm_id": "36408", "category_aro_accession": "3000269", "category_aro_class_name": "Antibiotic", "category_aro_description": "Brodimoprim is a structural derivative of trimethoprim and an inhibitor of bacterial dihydrofolate reductase. The 4-methoxy group of trimethoprim is replaced with a bromine atom."}, "37617": {"category_aro_name": "trimethoprim resistant dihydrofolate reductase dfr", "category_aro_cvterm_id": "37617", "category_aro_accession": "3001218", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Alternative dihydropteroate synthase dfr present on plasmids produces alternate proteins that are less sensitive to trimethoprim from inhibiting its role in folate synthesis, thus conferring trimethoprim resistance."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36423": {"category_aro_name": "tetroxoprim", "category_aro_cvterm_id": "36423", "category_aro_accession": "3000284", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetroxoprim is a trimethoprim derivative that inhibits bacterial dihydrofolate reductase."}}}}, "1970": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1968": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1969": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "1618": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1619": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "41379": {"category_aro_name": "L1 family beta-lactamase", "category_aro_cvterm_id": "41379", "category_aro_accession": "3004215", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "This subclass B3 of beta-lactamses have the ability to hydrolyze cephalosporins."}}}}, "1616": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1617": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "39340": {"category_aro_name": "van ligase", "category_aro_cvterm_id": "39340", "category_aro_accession": "3002906", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "van ligases synthesize alternative substrates for peptidoglycan synthesis that reduce vancomycin binding affinity."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "1614": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1615": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36267": {"category_aro_name": "APH(2'')", "category_aro_cvterm_id": "36267", "category_aro_accession": "3000128", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of 2-deoxystreptamine aminoglycosides on the hydroxyl group at position 2''"}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1960": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}}, "1613": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1610": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1611": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36194": {"category_aro_name": "SME beta-lactamase", "category_aro_cvterm_id": "36194", "category_aro_accession": "3000055", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SME beta-lactamases are chromosome-mediated class A beta-lactamases that hydrolyze carbapenems in Serratia marcescens."}}}}, "1768": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1769": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1762": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "41439": {"category_aro_name": "ANT(3'')", "category_aro_cvterm_id": "41439", "category_aro_accession": "3004275", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotidylylation of streptomycin at the hydroxyl group at position 3''"}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1763": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36196": {"category_aro_name": "NDM beta-lactamase", "category_aro_cvterm_id": "36196", "category_aro_accession": "3000057", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "NDM beta-lactamases or New Delhi metallo-beta-lactamases are class B beta-lactamases that confer resistance to a broad range of antibiotics including carbapenems, cephalosporins and penicillins."}}}}, "1760": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1761": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1766": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "1767": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38817": {"category_aro_name": "OKP beta-lactamase", "category_aro_cvterm_id": "38817", "category_aro_accession": "3002417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OKP beta-lactamases are chromosomal class A beta-lactamase that confer resistance to penicillins and early cephalosporins in Klebsiella pneumoniae. OKP beta-lactamases can be subdivided into two groups: OKP-A and OKP-B which diverge by about 4.2%"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1764": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1765": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1142": {"$update": {"ARO_category": {"36476": {"category_aro_name": "iclaprim", "category_aro_cvterm_id": "36476", "category_aro_accession": "3000337", "category_aro_class_name": "Antibiotic", "category_aro_description": "Iclaprim is a bactericidal compound that inhibits dihydrofolate reductase. It is used against clinically important Gram-positive pathogens, including methicillin-sensitive Staphylococcus aureus and methicillin-resistant S. aureus."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36408": {"category_aro_name": "brodimoprim", "category_aro_cvterm_id": "36408", "category_aro_accession": "3000269", "category_aro_class_name": "Antibiotic", "category_aro_description": "Brodimoprim is a structural derivative of trimethoprim and an inhibitor of bacterial dihydrofolate reductase. The 4-methoxy group of trimethoprim is replaced with a bromine atom."}, "37617": {"category_aro_name": "trimethoprim resistant dihydrofolate reductase dfr", "category_aro_cvterm_id": "37617", "category_aro_accession": "3001218", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Alternative dihydropteroate synthase dfr present on plasmids produces alternate proteins that are less sensitive to trimethoprim from inhibiting its role in folate synthesis, thus conferring trimethoprim resistance."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36423": {"category_aro_name": "tetroxoprim", "category_aro_cvterm_id": "36423", "category_aro_accession": "3000284", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetroxoprim is a trimethoprim derivative that inhibits bacterial dihydrofolate reductase."}}}}, "1143": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1140": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1141": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1146": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1147": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1144": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36515": {"category_aro_name": "streptogramin vgb lyase", "category_aro_cvterm_id": "36515", "category_aro_accession": "3000376", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "vgb (Virginiamycin B) lyase inactivates type B streptogramin antibiotics by linearizing the streptogramin lactone ring at the ester linkage through an elimination mechanism, thus conferring resistance to these compounds."}}}}, "1145": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1148": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1149": {"$update": {"ARO_category": {"36228": {"category_aro_name": "AER beta-lactamase", "category_aro_cvterm_id": "36228", "category_aro_accession": "3000089", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "AER beta-lactamases are capable of hydrolyzing arbenicillin."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "690": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "692": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "693": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1544": {"$update": {"ARO_category": {"36476": {"category_aro_name": "iclaprim", "category_aro_cvterm_id": "36476", "category_aro_accession": "3000337", "category_aro_class_name": "Antibiotic", "category_aro_description": "Iclaprim is a bactericidal compound that inhibits dihydrofolate reductase. It is used against clinically important Gram-positive pathogens, including methicillin-sensitive Staphylococcus aureus and methicillin-resistant S. aureus."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36408": {"category_aro_name": "brodimoprim", "category_aro_cvterm_id": "36408", "category_aro_accession": "3000269", "category_aro_class_name": "Antibiotic", "category_aro_description": "Brodimoprim is a structural derivative of trimethoprim and an inhibitor of bacterial dihydrofolate reductase. The 4-methoxy group of trimethoprim is replaced with a bromine atom."}, "37617": {"category_aro_name": "trimethoprim resistant dihydrofolate reductase dfr", "category_aro_cvterm_id": "37617", "category_aro_accession": "3001218", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Alternative dihydropteroate synthase dfr present on plasmids produces alternate proteins that are less sensitive to trimethoprim from inhibiting its role in folate synthesis, thus conferring trimethoprim resistance."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36423": {"category_aro_name": "tetroxoprim", "category_aro_cvterm_id": "36423", "category_aro_accession": "3000284", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetroxoprim is a trimethoprim derivative that inhibits bacterial dihydrofolate reductase."}}}}, "691": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36713": {"category_aro_name": "vanR", "category_aro_cvterm_id": "36713", "category_aro_accession": "3000574", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanR is a OmpR-family transcriptional activator in the VanSR regulatory system. When activated by VanS, it promotes cotranscription of VanA, VanH, and VanX."}, "35947": {"category_aro_name": "vancomycin", "category_aro_cvterm_id": "35947", "category_aro_accession": "0000028", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vancomycin is a glycopeptide antibiotic used in the prophylaxis and treatment of infections caused by Gram-positive bacteria. Vancomycin inhibits the synthesis of peptidoglycan, the major component of the cell wall of gram-positive bacteria. Its mechanism of action is unusual in that it acts by binding precursors of peptidoglycan, rather than by interacting with an enzyme."}}}}, "696": {"$update": {"ARO_category": {"37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37015": {"category_aro_name": "tiamulin", "category_aro_cvterm_id": "37015", "category_aro_accession": "3000671", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tiamulin is a pleuromutilin derivative currently used in veterinary medicine. It binds to the 23 rRNA of the 50S ribosomal subunit to inhibit protein translation."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35989": {"category_aro_name": "linezolid", "category_aro_cvterm_id": "35989", "category_aro_accession": "0000072", "category_aro_class_name": "Antibiotic", "category_aro_description": "Linezolid is a synthetic antibiotic used for the treatment of serious infections caused by Gram-positive bacteria that are resistant to several other antibiotics. It inhibits protein synthesis by binding to domain V of the 23S rRNA of the 50S subunit of bacterial ribosomes."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36218": {"category_aro_name": "oxazolidinone antibiotic", "category_aro_cvterm_id": "36218", "category_aro_accession": "3000079", "category_aro_class_name": "Drug Class", "category_aro_description": "Oxazolidinones are a class of synthetic antibiotics discovered the the 1980's. They inhibit protein synthesis by binding to domain V of the 23S rRNA of the 50S subunit of bacterial ribosomes. Linezolid is the only member of this class currently in clinical use."}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36341": {"category_aro_name": "Cfr 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36341", "category_aro_accession": "3000202", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Cfr genes produce enzymes which catalyze the methylation of the 23S rRNA subunit at position 8 of adenine-2503. Methylation of 23S rRNA at this site confers resistance to some classes of antibiotics, including streptogramins, chloramphenicols, florfenicols, linezolids and clindamycin."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}, "697": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36699": {"category_aro_name": "Erm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36699", "category_aro_accession": "3000560", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Erm proteins are part of the RNA methyltransferase family and methylate A2058 (E. coli nomenclature) of the 23S ribosomal RNA conferring degrees of resistance to Macrolides, Lincosamides and Streptogramin b. This is called the MLSb phenotype."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}, "694": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "695": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "698": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "699": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1548": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "36265": {"category_aro_name": "APH(3')", "category_aro_cvterm_id": "36265", "category_aro_accession": "3000126", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of 2-deoxystreptamine aminoglycosides on the hydroxyl group at position 3'"}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1549": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "37247": {"category_aro_name": "oleandomycin", "category_aro_cvterm_id": "37247", "category_aro_accession": "3000867", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oleandomycin is a 14-membered macrolide produced by Streptomyces antibioticus. It is ssimilar to erythromycin, and contains a desosamine amino sugar and an oleandrose sugar. It targets the 50S ribosomal subunit to prevent protein synthesis."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35974": {"category_aro_name": "telithromycin", "category_aro_cvterm_id": "35974", "category_aro_accession": "0000057", "category_aro_class_name": "Antibiotic", "category_aro_description": "Telithromycin is a semi-synthetic derivative of erythromycin. It is a 14-membered macrolide and is the first ketolide antibiotic to be used in clinics. Telithromycin binds the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36284": {"category_aro_name": "tylosin", "category_aro_cvterm_id": "36284", "category_aro_accession": "3000145", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tylosin is a 16-membered macrolide, naturally produced by Streptomyces fradiae. It interacts with the bacterial ribosome 50S subunit to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36315": {"category_aro_name": "dirithromycin", "category_aro_cvterm_id": "36315", "category_aro_accession": "3000176", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dirithromycin is an oxazine derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome to inhibit bacterial protein synthesis."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "36699": {"category_aro_name": "Erm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36699", "category_aro_accession": "3000560", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Erm proteins are part of the RNA methyltransferase family and methylate A2058 (E. coli nomenclature) of the 23S ribosomal RNA conferring degrees of resistance to Macrolides, Lincosamides and Streptogramin b. This is called the MLSb phenotype."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35946": {"category_aro_name": "roxithromycin", "category_aro_cvterm_id": "35946", "category_aro_accession": "0000027", "category_aro_class_name": "Antibiotic", "category_aro_description": "Roxithromycin is a semi-synthetic, 14-carbon ring macrolide antibiotic derived from erythromycin. It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36295": {"category_aro_name": "spiramycin", "category_aro_cvterm_id": "36295", "category_aro_accession": "3000156", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spiramycin is a 16-membered macrolide and is natural product produced by Streptomyces ambofaciens. It binds to the 50S subunit of bacterial ribosomes and inhibits peptidyl transfer activity to disrupt protein synthesis."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}, "542": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "543": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "540": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "541": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "546": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "39785": {"category_aro_name": "TLA beta-lactamase", "category_aro_cvterm_id": "39785", "category_aro_accession": "3003201", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The TLA beta-lactamases are resistant to expanded-spectrum cephalosporins, aztreonam, ciprofloxacin, and ofloxacin but was susceptible to amikacin, cefotetan, and imipenem."}}}}, "547": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36673": {"category_aro_name": "rifapentine", "category_aro_cvterm_id": "36673", "category_aro_accession": "3000534", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifapentine is a semisynthetic rifamycin that inhibits DNA-dependent RNA synthesis. It is often used in the treatment of tuberculosis and leprosy."}, "36669": {"category_aro_name": "rifabutin", "category_aro_cvterm_id": "36669", "category_aro_accession": "3000530", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifabutin is a semisynthetic rifamycin used in tuberculosis therapy. It inhibits DNA-dependent RNA synthesis."}, "36529": {"category_aro_name": "rifampin ADP-ribosyltransferase (Arr)", "category_aro_cvterm_id": "36529", "category_aro_accession": "3000390", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Enzyme responsible for the ADP-ribosylative inactivation of rifampin at the 23-OH position using NAD+."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "36656": {"category_aro_name": "rifaximin", "category_aro_cvterm_id": "36656", "category_aro_accession": "3000517", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifaximin is a semi-synthetic rifamycin used to treat traveller's diarrhea. Rifaximin inhibits RNA synthesis by binding to the beta subunit of bacterial RNA polymerase."}}}}, "544": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "545": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36205": {"category_aro_name": "GES beta-lactamase", "category_aro_cvterm_id": "36205", "category_aro_accession": "3000066", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "GES beta-lactamases or Guiana extended-spectrum beta-lactamases are related to the other plasmid-located class A beta-lactamases"}}}}, "548": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "549": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1782": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1783": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "1784": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1982": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1785": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1786": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35990": {"category_aro_name": "meropenem", "category_aro_cvterm_id": "35990", "category_aro_accession": "0000073", "category_aro_class_name": "Antibiotic", "category_aro_description": "Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}}, "1787": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "414": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "415": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "416": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "417": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "410": {"$update": {"ARO_category": {"35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36461": {"category_aro_name": "AAC(3)", "category_aro_cvterm_id": "36461", "category_aro_accession": "3000322", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 3."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "411": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "412": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "413": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1384": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1385": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "1386": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36367": {"category_aro_name": "ANT(9)", "category_aro_cvterm_id": "36367", "category_aro_accession": "3000228", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotidylylation of spectinomycin at the hydroxyl group at position 9"}}}}, "1387": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1380": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "419": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40158": {"category_aro_name": "SHW beta-lactamase", "category_aro_cvterm_id": "40158", "category_aro_accession": "3003555", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "This family of sublcass B1 beta-lactamases were discovered in species of the Shewanella genus."}}}}, "1382": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "41435": {"category_aro_name": "16S rRNA methyltransferase (G1405)", "category_aro_cvterm_id": "41435", "category_aro_accession": "3004271", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Methyltransferases that methylate the G1405 position of 16S rRNA, which is part of an aminoglycoside binding site."}}}}, "1383": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36027": {"category_aro_name": "IMI beta-lactamase", "category_aro_cvterm_id": "36027", "category_aro_accession": "3000018", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "IMI beta-lactamases are a group of TEM-1-like beta-lactamase that are known to hydrolyze imipenem. IMI beta-lactamases are inhibited by clavulanic acid and tazobactam."}}}}, "368": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36230": {"category_aro_name": "CARB beta-lactamase", "category_aro_cvterm_id": "36230", "category_aro_accession": "3000091", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CARB beta-lactamases are class A lactamases that can hydrolyze carbenicillin. Many of the PSE beta-lactamases have been renamed as CARB-lactamases with the notable exception of PSE-2 which is now OXA-10."}}}}, "369": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "366": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$delete": ["35950", "40134"], "$insert": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "40040": {"category_aro_name": "Ethambutol resistant iniA", "category_aro_cvterm_id": "40040", "category_aro_accession": "3003447", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Mutations that occurs on the iniA genes resulting in the resistance to ethambutol"}, "36666": {"category_aro_name": "polyamine antibiotic", "category_aro_cvterm_id": "36666", "category_aro_accession": "3000527", "category_aro_class_name": "Drug Class", "category_aro_description": "Polyamine antibiotics are organic compounds having two or more primary amino groups."}, "36636": {"category_aro_name": "ethambutol", "category_aro_cvterm_id": "36636", "category_aro_accession": "3000497", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ethambutol is an antimycobacterial drug prescribed to treat tuberculosis. It is usually given in combination with other tuberculosis drugs, such as isoniazid, rifampicin, and pyrazinamide. Ethambutol inhibits arabinosyl biosynthesis, disrupting mycobacterial cell wall formation."}}}}}, "367": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "364": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "365": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "362": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "363": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "360": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "361": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "380": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "381": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "382": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "383": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$delete": ["39418", "40190"], "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "41433": {"category_aro_name": "pmr phosphoethanolamine transferase", "category_aro_cvterm_id": "41433", "category_aro_accession": "3004269", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "This family of phosphoethanolamine transferase catalyze the addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) and phosphoethanolamine to lipid A, which impedes the binding of colistin to the cell membrane."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "384": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36267": {"category_aro_name": "APH(2'')", "category_aro_cvterm_id": "36267", "category_aro_accession": "3000128", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of 2-deoxystreptamine aminoglycosides on the hydroxyl group at position 2''"}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "385": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "386": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36236": {"category_aro_name": "LEN beta-lactamase", "category_aro_cvterm_id": "36236", "category_aro_accession": "3000097", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "LEN beta-lactamases are chromosomal class A beta-lactamases that confer resistance to ampicillin, amoxicillin, carbenicillin, and ticarcillin but not to extended-spectrum beta-lactams."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}}}}, "387": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}}}}}, "388": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "389": {"$update": {"ARO_category": {"36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35921": {"category_aro_name": "tetracycline-resistant ribosomal protection protein", "category_aro_cvterm_id": "35921", "category_aro_accession": "0000002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "A family of proteins known to bind to the 30S ribosomal subunit. This interaction prevents tetracycline and tetracycline derivatives from inhibiting ribosomal function. Thus, these proteins confer elevated resistance to tetracycline derivatives as a ribosomal protection protein."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}, "2191": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "258": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "2193": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}}}}}, "2194": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}}}}}, "2195": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}}}}}, "2196": {"$update": {"ARO_category": {"40463": {"category_aro_name": "nybomycin", "category_aro_cvterm_id": "40463", "category_aro_accession": "3003780", "category_aro_class_name": "Drug Class", "category_aro_description": "A heterocyclic antibiotic that targets mutant gyrA (type II topoisomerase) containing an S84L substitution, counteracting acquired quinolone resistance. It is effective against quinolone-resistant Gram-positive bacteria including S. aureus and E. faecalis. Due to its ability to counteract quinolone resistance by targeting the mutant form of the gyrA protein, it is classified as a reverse antibiotic (RA)."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "39876": {"category_aro_name": "fluoroquinolone resistant gyrA", "category_aro_cvterm_id": "39876", "category_aro_accession": "3003292", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DNA gyrase is responsible for DNA supercoiling and consists of two alpha and two beta subunits. GyrA point mutations confer resistance by preventing fluoroquinolone antibiotics from binding the alpha-subunit."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37142": {"category_aro_name": "pefloxacin", "category_aro_cvterm_id": "37142", "category_aro_accession": "3000762", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pefloxacin is structurally and functionally similar to norfloxacin. It is poorly active against mycobacteria, while anaerobes are resistant."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "40338": {"category_aro_name": "sitafloxacin", "category_aro_cvterm_id": "40338", "category_aro_accession": "3003690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sitafloxacin is a fluoroquinolone active against multi-resistant Gram-positive and negative pathogens. Sitafloxacin shows inhibitory activity against DNA gyrase and topoisomerase IV, which blocks bacterial DNA replication, thereby causing double-stranded breaks in the bacterial chromosome."}}}}, "2198": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "39897": {"category_aro_name": "fluoroquinolone resistant parE", "category_aro_cvterm_id": "39897", "category_aro_accession": "3003313", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ParE is a subunit of topoisomerase IV, necessary for cell survival. Point mutations in ParE prevent fluoroquinolones from inhibiting DNA synthesis, thus conferring resistance."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}}}}, "253": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36635": {"category_aro_name": "vanXY", "category_aro_cvterm_id": "36635", "category_aro_accession": "3000496", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanXY is a protein with both D,D-carboxypeptidase and D,D-dipeptidase activity, found in Enterococcus gallinarum. It cleaves and removes the terminal D-Ala of peptidoglycan subunits for the incorporation of D-Ser by VanC. D-Ala-D-Ser has low binding affinity with vancomycin."}}}}, "250": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "251": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36265": {"category_aro_name": "APH(3')", "category_aro_cvterm_id": "36265", "category_aro_accession": "3000126", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of 2-deoxystreptamine aminoglycosides on the hydroxyl group at position 3'"}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "256": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "257": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36211": {"category_aro_name": "ACT beta-lactamase", "category_aro_cvterm_id": "36211", "category_aro_accession": "3000072", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "254": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "255": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41420": {"category_aro_name": "Bleomycin resistant protein", "category_aro_cvterm_id": "41420", "category_aro_accession": "3004256", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Bleomycin resistant proteins (BRP) confer resistance to bleomycin and to bleomycin-like molecules."}}}}, "2200": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36265": {"category_aro_name": "APH(3')", "category_aro_cvterm_id": "36265", "category_aro_accession": "3000126", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of 2-deoxystreptamine aminoglycosides on the hydroxyl group at position 3'"}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2201": {"$update": {"ARO_category": {"41450": {"category_aro_name": "phenotypic variant regulator", "category_aro_cvterm_id": "41450", "category_aro_accession": "3004286", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phenotypic variant regulator proteins play a role in controlling the switch between antibiotic-susceptible and antibiotic-resistant forms of bacteria. The characterized member of this family is the PvrR protein in Pseudomonas aeruginosa, which when absent, confers antibiotic resistance."}, "40429": {"category_aro_name": "resistance by absence", "category_aro_cvterm_id": "40429", "category_aro_accession": "3003764", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mechanism of antibiotic resistance conferred by deletion of gene (usually a porin)"}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2202": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36461": {"category_aro_name": "AAC(3)", "category_aro_cvterm_id": "36461", "category_aro_accession": "3000322", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 3."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2203": {"$update": {"ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "41432": {"category_aro_name": "MCR phosphoethanolamine transferase", "category_aro_cvterm_id": "41432", "category_aro_accession": "3004268", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "A group of mobile colistin resistance genes encode the MCR family of phosphoethanolamine transferases, which catalyze the addition of phosphoethanolamine onto lipid A, thus interfering with the binding of colistin to the cell membrane."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36968": {"category_aro_name": "colistin B", "category_aro_cvterm_id": "36968", "category_aro_accession": "3000624", "category_aro_class_name": "Antibiotic", "category_aro_description": "Colistin B, or polymyxin E2, has a 6-heptanoic acid lipid tail. Polymyxins disrupt the cell membrane of Gram-negative bacteria."}, "36966": {"category_aro_name": "colistin A", "category_aro_cvterm_id": "36966", "category_aro_accession": "3000622", "category_aro_class_name": "Antibiotic", "category_aro_description": "Colistin A, or polymyxin E1, has a 6-octanoic acid lipid tail. Polymyxins disrupt the cell membrane of Gram-negative bacteria."}}}}, "2204": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2205": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "2206": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "2207": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "2208": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "2428": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$delete": ["36590"], "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "40730": {"category_aro_name": "linoleic acid", "category_aro_cvterm_id": "40730", "category_aro_accession": "3003959", "category_aro_class_name": "Antibiotic", "category_aro_description": "Linoleic acid is a polyunsaturated omega-6 fatty acid. Linoleic acid has been found to have antibacterial activity, particularly in inhibiting the growth of Gram-positive bacterial species."}, "40727": {"category_aro_name": "antibacterial free fatty acids", "category_aro_cvterm_id": "40727", "category_aro_accession": "3003956", "category_aro_class_name": "Drug Class", "category_aro_description": "Amongst the diverse and potent biological activities of free fatty acids (FFAs) is the ability to kill or inhibit the growth of bacteria. The antibacterial properties of FFAs are used by many organisms to defend against parasitic or pathogenic bacteria. The prime target of FFA action is the cell membrane, where FFAs disrupt the electron transport chain and oxidative phosphorylation. Besides interfering with cellular energy production, FFA action may also result from the inhibition of enzyme activity, impairment of nutrient uptake, generation of peroxidation and auto-oxidation degradation products or direct lysis of bacterial cells."}, "40728": {"category_aro_name": "palmitic acid", "category_aro_cvterm_id": "40728", "category_aro_accession": "3003957", "category_aro_class_name": "Antibiotic", "category_aro_description": "Palmitic acid is the most common saturated fatty acid found in animals, plants, and microorganisms. Palmitic acid is found to have antibacterial properties."}, "40729": {"category_aro_name": "oleic acid", "category_aro_cvterm_id": "40729", "category_aro_accession": "3003958", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oleic acid is a fatty acid that occurs naturally in various animal and vegetable fats and oils. Oleic acid is found to have antibacterial activity, particularly in inhibiting the growth of several Gram-positive bacterial species."}}}}}, "2429": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$delete": ["36590"], "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "40730": {"category_aro_name": "linoleic acid", "category_aro_cvterm_id": "40730", "category_aro_accession": "3003959", "category_aro_class_name": "Antibiotic", "category_aro_description": "Linoleic acid is a polyunsaturated omega-6 fatty acid. Linoleic acid has been found to have antibacterial activity, particularly in inhibiting the growth of Gram-positive bacterial species."}, "40727": {"category_aro_name": "antibacterial free fatty acids", "category_aro_cvterm_id": "40727", "category_aro_accession": "3003956", "category_aro_class_name": "Drug Class", "category_aro_description": "Amongst the diverse and potent biological activities of free fatty acids (FFAs) is the ability to kill or inhibit the growth of bacteria. The antibacterial properties of FFAs are used by many organisms to defend against parasitic or pathogenic bacteria. The prime target of FFA action is the cell membrane, where FFAs disrupt the electron transport chain and oxidative phosphorylation. Besides interfering with cellular energy production, FFA action may also result from the inhibition of enzyme activity, impairment of nutrient uptake, generation of peroxidation and auto-oxidation degradation products or direct lysis of bacterial cells."}, "40728": {"category_aro_name": "palmitic acid", "category_aro_cvterm_id": "40728", "category_aro_accession": "3003957", "category_aro_class_name": "Antibiotic", "category_aro_description": "Palmitic acid is the most common saturated fatty acid found in animals, plants, and microorganisms. Palmitic acid is found to have antibacterial properties."}, "40729": {"category_aro_name": "oleic acid", "category_aro_cvterm_id": "40729", "category_aro_accession": "3003958", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oleic acid is a fatty acid that occurs naturally in various animal and vegetable fats and oils. Oleic acid is found to have antibacterial activity, particularly in inhibiting the growth of several Gram-positive bacterial species."}}}}}, "2400": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "41240": {"category_aro_name": "nitrofuran antibiotic", "category_aro_cvterm_id": "41240", "category_aro_accession": "3004116", "category_aro_class_name": "Drug Class", "category_aro_description": "Nitrofurans are chemotherapeutic agents with antibacterial and antiprotozoal activity."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35992": {"category_aro_name": "nitrofurantoin", "category_aro_cvterm_id": "35992", "category_aro_accession": "0000075", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nitrofurantoin is an antibiotic used to treat urinary tract infections. It inhibits enzyme synthesis by inhibiting essential enzymes involved in the citric acid cycle, as well as those involved in DNA, RNA, and protein synthesis. It is marketed under the following brand names: Furadantin, Macrobid, Macrodantin, Nitro Macro and Urantoin."}}}}}, "2421": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "2422": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "2423": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"41239": {"category_aro_name": "nitroimidazole antibiotic", "category_aro_cvterm_id": "41239", "category_aro_accession": "3004115", "category_aro_class_name": "Drug Class", "category_aro_description": "Nitroimidazoles are a group of drugs that have both antiprotozoal and antibacterial activity, classified with respect to the location of the nitro functional group."}, "37033": {"category_aro_name": "metronidazole", "category_aro_cvterm_id": "37033", "category_aro_accession": "3000689", "category_aro_class_name": "Antibiotic", "category_aro_description": "Metronidazole is a nitroimidazole that is active against anaerobic bacteria and protozoa. It is not effective against aerobic bacteria. Nitroimidazoles act by oxidizing DNA causing strand breaks and cell death."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}}}}}, "2424": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "40721": {"category_aro_name": "microcin J25", "category_aro_cvterm_id": "40721", "category_aro_accession": "3003951", "category_aro_class_name": "Antibiotic", "category_aro_description": "microcin J25 is a peptide antibiotic that inhibits transcription by bacterial RNA polymerase. MccJ25 is produced by Escherichia coli strains that harbor a plasmid-borne antibiotic-synthesis and antibiotic-export cassette, consisting of a gene for MccJ25 precursor (a 58 residue linear peptide), two genes for factors that process MccJ25 precursor into MccJ25, and one gene for export of MccJ25."}}}}}, "1849": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40036": {"category_aro_name": "Antibiotic resistant tlyA", "category_aro_cvterm_id": "40036", "category_aro_accession": "3003443", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "tlyA encodes for hemolysin. It Catalyzes the 2'-O-methylation at nucleotides C1409 in 16S rRNA and C1920 in 23S rRNA. Mutation that arise within this gene reduces the binding affinity of aminoglycosides to rRNA"}}, "model_param": {"$update": {"snp": {"$update": {"param_value": {"$insert": {"3836": "F185L", "3831": "A67E", "3832": "K69E", "3833": "V128E", "3401": "L118P", "3840": "E238K", "2259": "P183L"}}, "experimental": {"$insert": {"3836": "F185L", "3831": "A67E", "3832": "K69E", "3833": "V128E", "3401": "L118P", "3840": "E238K", "2259": "P183L"}}}}}}}}, "2426": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "2427": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36659": {"category_aro_name": "isoniazid", "category_aro_cvterm_id": "36659", "category_aro_accession": "3000520", "category_aro_class_name": "Drug Class", "category_aro_description": "Isoniazid is an organic compound that is the first-line anti tuberculosis medication in prevention and treatment. As a prodrug, it is activated by mycobacterial catalase-peroxidases such as M. tuberculosis KatG. Isoniazid inhibits mycolic acid synthesis, which prevents cell wall synthesis in mycobacteria."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}}}}}, "2432": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "36383": {"category_aro_name": "reduced permeability to antibiotic", "category_aro_cvterm_id": "36383", "category_aro_accession": "3000244", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Reduction in permeability to antibiotic, generally through reduced production of porins, can provide resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "41445": {"category_aro_name": "General Bacterial Porin with reduced permeability to beta-lactams", "category_aro_cvterm_id": "41445", "category_aro_accession": "3004281", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These are GBPs that are associated with decreased susceptibility to beta-lactams either through mutations in the porin protein, absence of the porin protein, or expression of the porin protein."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40429": {"category_aro_name": "resistance by absence", "category_aro_cvterm_id": "40429", "category_aro_accession": "3003764", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mechanism of antibiotic resistance conferred by deletion of gene (usually a porin)"}}}}, "1848": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "168": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "169": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "164": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "39340": {"category_aro_name": "van ligase", "category_aro_cvterm_id": "39340", "category_aro_accession": "3002906", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "van ligases synthesize alternative substrates for peptidoglycan synthesis that reduce vancomycin binding affinity."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "165": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "166": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "167": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "160": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "161": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "162": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36198": {"category_aro_name": "KPC beta-lactamase", "category_aro_cvterm_id": "36198", "category_aro_accession": "3000059", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Klebsiella pneumoniae carbapenem resistant (KPC) beta-lactamases are notorious for their ability to efficiently hydrolyze carbapenems, unlike other Ambler Class A beta-lactamases. There are currently 9 variants reported worldwide. These enzymes were first isolated from Klebsiella pneumoniae strains in 2001 in the United States. Hospital outbreaks have since been reported in Greece and Israel and KPC carrying strains are now endemic to New York facilities. KPC-1 and KPC-2 have been shown to be identical and are now referred to as KPC-2."}}}}, "163": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "2518": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "2519": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "41437": {"category_aro_name": "Llm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "41437", "category_aro_accession": "3004273", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "A family of lincosamide resistant 23S rRNA methyltransferases. The only member of the family discovered so far was isolated from Paenibacillus sp. LC231, a strain found in Lechuguilla Cave, NM, USA."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}, "1980": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "2517": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "1841": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "2734": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36251": {"category_aro_name": "multidrug and toxic compound extrusion (MATE) transporter", "category_aro_cvterm_id": "36251", "category_aro_accession": "3000112", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Multidrug and toxic compound extrusion (MATE) transporters utilize the cationic gradient across the membrane as an energy source. Although there is a diverse substrate specificity, almost all MATE transporters recognize fluoroquinolones. Arciflavine, ethidium and aminoglycosides are also good substrates."}}}}}, "1840": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "2731": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}}}}}, "2732": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "2733": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}}}}}, "678": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36237": {"category_aro_name": "PDC beta-lactamase", "category_aro_cvterm_id": "36237", "category_aro_accession": "3000098", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PDC beta-lactamases are class C beta-lactamases that are found in Pseudomonas aeruginosa."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "679": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1814": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36267": {"category_aro_name": "APH(2'')", "category_aro_cvterm_id": "36267", "category_aro_accession": "3000128", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of 2-deoxystreptamine aminoglycosides on the hydroxyl group at position 2''"}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1815": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1816": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1817": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37716": {"category_aro_name": "pleuromutilin", "category_aro_cvterm_id": "37716", "category_aro_accession": "3001317", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pleuromutilin is a natural product antibiotic produced by Clitopilus passeckerianus. Related antibiotics of clinical significance, such as tiamulin and retapamulin, are semi-synthetic derivatives of this compound."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}}}}}, "1810": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "1811": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36230": {"category_aro_name": "CARB beta-lactamase", "category_aro_cvterm_id": "36230", "category_aro_accession": "3000091", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CARB beta-lactamases are class A lactamases that can hydrolyze carbenicillin. Many of the PSE beta-lactamases have been renamed as CARB-lactamases with the notable exception of PSE-2 which is now OXA-10."}}}}, "1812": {"$update": {"ARO_description": "KHM-1 is a plasmid-mediated metallo-beta-lactamase found in Citrobacter freundii that confers resistance to all broad-spectrum beta-lactams, execpt for monobactams.", "ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "41371": {"category_aro_name": "KHM beta-latamase", "category_aro_cvterm_id": "41371", "category_aro_accession": "3004207", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "KHM beta-lactmases are Class B beta-lactamases that can confer resistance to all classes of beta-lactams, except the monobactams."}}}}, "1813": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36222": {"category_aro_name": "MOX beta-lactamase", "category_aro_cvterm_id": "36222", "category_aro_accession": "3000083", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "MOX beta-lactamases are plasmid-mediated AmpC-type beta-lactamases."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1818": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36205": {"category_aro_name": "GES beta-lactamase", "category_aro_cvterm_id": "36205", "category_aro_accession": "3000066", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "GES beta-lactamases or Guiana extended-spectrum beta-lactamases are related to the other plasmid-located class A beta-lactamases"}}}}, "1819": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "670": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36199": {"category_aro_name": "IND beta-lactamase", "category_aro_cvterm_id": "36199", "category_aro_accession": "3000060", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "IND beta-lactamases are class B carbapenem-hydrolyzing beta-lactamases"}}}}, "671": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1609": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1608": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "1979": {"$update": {"ARO_category": {"35944": {"category_aro_name": "fosfomycin", "category_aro_cvterm_id": "35944", "category_aro_accession": "0000025", "category_aro_class_name": "Drug Class", "category_aro_description": "Fosfomycin (also known as phosphomycin and phosphonomycin) is a broad-spectrum antibiotic produced by certain Streptomyces species. It is effective on gram positive and negative bacteria as it targets the cell wall, an essential feature shared by both bacteria. Its specific target is MurA (MurZ in E.coli), which attaches phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine, a step of commitment to cell wall synthesis. In the active site of MurA, the active cysteine molecule is alkylated which stops the catalytic reaction."}, "36272": {"category_aro_name": "fosfomycin thiol transferase", "category_aro_cvterm_id": "36272", "category_aro_accession": "3000133", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Catalyzes the addition of a thiol group from a nucleophilic molecule to fosfomycin."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "1978": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1601": {"$update": {"ARO_category": {"41392": {"category_aro_name": "class A LRA beta-lactamase", "category_aro_cvterm_id": "41392", "category_aro_accession": "3004228", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Beta-lactamases that are part of the LRA gene family and are classified as Class A beta-lactamases."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "1976": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}}}}}, "1603": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1602": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1605": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36720": {"category_aro_name": "CphA beta-lactamase", "category_aro_cvterm_id": "36720", "category_aro_accession": "3000581", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CphA is an Ambler Class B MBL; subclass B2 originally isolated from Aeromonas hydrophilia. This enzyme has specific activity against carbapenems and is active as a mono-zinc protein."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "1604": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1607": {"$update": {"ARO_category": {"37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "36992": {"category_aro_name": "ceftibuten", "category_aro_cvterm_id": "36992", "category_aro_accession": "3000648", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftibuten is a semisynthetic cephalosporin active against Gram-negative bacilli. It is resistant against many plasmid-mediated beta-lactamases."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36993": {"category_aro_name": "cefditoren", "category_aro_cvterm_id": "36993", "category_aro_accession": "3000649", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefditoren is a semisynthetic cephalosporin active against staphylococci, streptococci, and and most enterobacteria. It is resistant to staphylococcal and most enterobacterial beta-lactamases, and is usually taken as the prodrug cefditoren pivoxil."}, "35995": {"category_aro_name": "piperacillin", "category_aro_cvterm_id": "35995", "category_aro_accession": "0000078", "category_aro_class_name": "Antibiotic", "category_aro_description": "Piperacillin is an acetylureidopenicillin and has an extended spectrum of targets relative to other beta-lactam antibiotics. It inhibits cell wall synthesis in bacteria, and is usually taken with the beta-lactamase inhibitor tazobactam to overcome penicillin-resistant bacteria."}, "36991": {"category_aro_name": "cefpodoxime", "category_aro_cvterm_id": "36991", "category_aro_accession": "3000647", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefpodoxime is a semisynthetic cephalosporin that acts similarly to cefotaxime with broad-spectrum activity. It is stable to many plasmid-mediated beta-lactamses. Cefpodoxime is consumed as the prodrug cefpodoxime proxetil."}, "36990": {"category_aro_name": "cefixime", "category_aro_cvterm_id": "36990", "category_aro_accession": "3000646", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefixime is a cephalosporin resistant to most beta-lactamases. It is active against many enterobacteria, but activity against staphylococci is poor."}, "36994": {"category_aro_name": "cefdinir", "category_aro_cvterm_id": "36994", "category_aro_accession": "3000650", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefdinir is similar to cefixime with a modified side-chain at its 7-amino position. It also shares similar activity with cefixime but is more active against staphylococci. It has also be shown to enhance phagocytosis."}, "35990": {"category_aro_name": "meropenem", "category_aro_cvterm_id": "35990", "category_aro_accession": "0000073", "category_aro_class_name": "Antibiotic", "category_aro_description": "Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36309": {"category_aro_name": "imipenem", "category_aro_cvterm_id": "36309", "category_aro_accession": "3000170", "category_aro_class_name": "Antibiotic", "category_aro_description": "Imipenem is a broad-spectrum antibiotic and is usually taken with cilastatin, which prevents hydrolysis of imipenem by renal dehydropeptidase-I. It is resistant to hydrolysis by most other beta-lactamases. Notable exceptions are the KPC beta-lactamases and Ambler Class B enzymes."}, "35927": {"category_aro_name": "cefoxitin", "category_aro_cvterm_id": "35927", "category_aro_accession": "0000008", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefoxitin is a cephamycin antibiotic often grouped with the second generation cephalosporins. Cefoxitin is bactericidal and acts by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. Cefoxitin's 7-alpha-methoxy group and 3' leaving group make it a poor substrate for most beta-lactamases."}, "36689": {"category_aro_name": "aztreonam", "category_aro_cvterm_id": "36689", "category_aro_accession": "3000550", "category_aro_class_name": "Antibiotic", "category_aro_description": "Aztreonam was the first monobactam discovered, and is greatly effective against Gram-negative bacteria while inactive against Gram-positive bacteria. Artreonam is a poor substrate for beta-lactamases, and may even act as an inhibitor. In Gram-negative bacteria, Aztreonam interferes with filamentation, inhibiting cell division and leading to cell death."}, "35980": {"category_aro_name": "cefuroxime", "category_aro_cvterm_id": "35980", "category_aro_accession": "0000063", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefuroxime is a second-generation cephalosporin antibiotic with increased stability with beta-lactamases than first-generation cephalosporins. Cefuroxime is active against Gram-positive organisms but less active against methicillin-resistant strains."}, "37085": {"category_aro_name": "isopenicillin N", "category_aro_cvterm_id": "37085", "category_aro_accession": "3000705", "category_aro_class_name": "Antibiotic", "category_aro_description": "Isopenicillin N is a natural penicillin derivative produced by Penicillium chrysogenum with activity similar to penicillin N."}, "35975": {"category_aro_name": "cefazolin", "category_aro_cvterm_id": "35975", "category_aro_accession": "0000058", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefazolin (INN), also known as cefazoline or cephazolin, is a first generation cephalosporin antibiotic. It is administered parenterally, and is active against a broad spectrum of bacteria."}, "37086": {"category_aro_name": "penicillin N", "category_aro_cvterm_id": "37086", "category_aro_accession": "3000706", "category_aro_class_name": "Antibiotic", "category_aro_description": "Penicillin N is a penicillin derivative produced by Cephalosporium acremonium."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35976": {"category_aro_name": "cefepime", "category_aro_cvterm_id": "35976", "category_aro_accession": "0000059", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefepime (INN) is a fourth-generation cephalosporin antibiotic developed in 1994. It contains an aminothiazolyl group that decreases its affinity with beta-lactamases. Cefepime shows high binding affinity with penicillin-binding proteins and has an extended spectrum of activity against Gram-positive and Gram-negative bacteria, with greater activity against both Gram-negative and Gram-positive organisms than third-generation agents."}, "35971": {"category_aro_name": "penicillin", "category_aro_cvterm_id": "35971", "category_aro_accession": "0000054", "category_aro_class_name": "Antibiotic", "category_aro_description": "Penicillin (sometimes abbreviated PCN) is a beta-lactam antibiotic used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms. It works by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35973": {"category_aro_name": "oxacillin", "category_aro_cvterm_id": "35973", "category_aro_accession": "0000056", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxacillin is a penicillinase-resistant beta-lactam. It is similar to methicillin, and has replaced methicillin in clinical use. Oxacillin, especially in combination with other antibiotics, is effective against many penicillinase-producing strains of Staphylococcus aureus and Staphylococcus epidermidis."}, "40928": {"category_aro_name": "cefmetazole", "category_aro_cvterm_id": "40928", "category_aro_accession": "3004001", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefmetazole is a semi-synthetic cephamycin antibiotic with broad spectrum antibiotic activity against both gram-positive and gram-negative bacteria, that disrupt cell wall synthesis through binding to PBPs causing cell lysis."}, "40944": {"category_aro_name": "moxalactam", "category_aro_cvterm_id": "40944", "category_aro_accession": "3004017", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxalactam (Latamoxef) is a broad spectrum cephalosporin (oxacephem) and beta-lactam antibiotic. Moxalactam binding to PBPs inhibits peptidoglycan cross-linkage in the cell wall, resulting in cell death. Moxalactam is proposed to be effective against meningitides as it passes the blood-brain barrier."}, "35930": {"category_aro_name": "cloxacillin", "category_aro_cvterm_id": "35930", "category_aro_accession": "0000011", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cloxacillin is a semisynthetic, isoxazolyl penicillin derivative in the beta-lactam class of antibiotics. It interferes with peptidogylcan synthesis and is commonly used for treating penicillin-resistant Staphylococcus aureus infections."}, "36995": {"category_aro_name": "ceftaroline", "category_aro_cvterm_id": "36995", "category_aro_accession": "3000651", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftaroline is a novel cephalosporin active against methicillin resistant Staphylococcus aureus. Like other cephalosporins it binds penicillin-binding proteins to inhibit cell wall synthesis. It strongly binds with PBP2a, associated with methicillin resistance. It is taken orally as the prodrug ceftaroline fosamil."}, "35979": {"category_aro_name": "ceftriaxone", "category_aro_cvterm_id": "35979", "category_aro_accession": "0000062", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftriaxone is a third-generation cephalosporin antibiotic. The presence of an aminothiazolyl sidechain increases ceftriazone's resistance to beta-lactamases. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria."}, "35934": {"category_aro_name": "methicillin", "category_aro_cvterm_id": "35934", "category_aro_accession": "0000015", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derived from penicillin to combat penicillin-resistance, methicillin is insensitive to beta-lactamases (also known as penicillinases) secreted by many penicillin-resistant bacteria. Methicillin is bactericidal, and acts by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40943": {"category_aro_name": "loracarbef", "category_aro_cvterm_id": "40943", "category_aro_accession": "3004016", "category_aro_class_name": "Antibiotic", "category_aro_description": "Loracarbef is a second-generation cephalosporin (carbacephem) and broad spectrum beta-lactam antibiotic. Loracarbef inhibits PBPs through binding, disrupting peptidoglycan cell wall cross-linkage and resulting in cell death."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36989": {"category_aro_name": "cefotaxime", "category_aro_cvterm_id": "36989", "category_aro_accession": "3000645", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefotaxime is a semisynthetic cephalosporin taken parenterally. It is resistant to most beta-lactamases and active against Gram-negative rods and cocci due to its aminothiazoyl and methoximino functional groups."}, "36988": {"category_aro_name": "cefaclor", "category_aro_cvterm_id": "36988", "category_aro_accession": "3000644", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefaclor is a semisynthetic cephalosporin derived from cephalexin. It has broad-spectrum antibiotic activity."}, "40661": {"category_aro_name": "Penicillin-binding protein mutations conferring resistance to beta-lactam antibiotics", "category_aro_cvterm_id": "40661", "category_aro_accession": "3003938", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Mutations in PBP transpeptidases that change the affinity for penicillin thereby conferring resistance to penicillin antibiotics"}, "40929": {"category_aro_name": "cefonicid", "category_aro_cvterm_id": "40929", "category_aro_accession": "3004002", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefonicid is a second-generation cephalosporin-class beta-lactam antibiotic with broad spectrum activity. Particularly used against urinary tract infections and lower respiratory infections. Causes cell lysis by inactivation of PBPs through binding, inhibiting peptidoglycan synthesis."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "36980": {"category_aro_name": "flucloxacillin", "category_aro_cvterm_id": "36980", "category_aro_accession": "3000636", "category_aro_class_name": "Antibiotic", "category_aro_description": "Flucloxacillin is similar to cloxacillin, with an extra additional fluorine atom."}, "36983": {"category_aro_name": "mezlocillin", "category_aro_cvterm_id": "36983", "category_aro_accession": "3000639", "category_aro_class_name": "Antibiotic", "category_aro_description": "Mezlocillin is a penicillin derivative taken parenterally."}, "36982": {"category_aro_name": "azlocillin", "category_aro_cvterm_id": "36982", "category_aro_accession": "3000638", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azlocillin is a semisynthetic derivative of penicillin that is notably active against Ps. aeruginosa and other Gram-negative bacteria."}, "36985": {"category_aro_name": "cefalexin", "category_aro_cvterm_id": "36985", "category_aro_accession": "3000641", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalexin is a cephalosporin antibiotic that causes filamentation. It is resistant to staphylococcal beta-lactamase, but degraded by enterobacterial beta-lactamases."}, "36984": {"category_aro_name": "doripenem", "category_aro_cvterm_id": "36984", "category_aro_accession": "3000640", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doripenem is a carbapenem with a broad range of activity against Gram-positive and Gram-negative bacteria, and along with meropenem, it is the most active beta-lactam antibiotic against Pseudomonas aeruginosa. It inhibits bacterial cell wall synthesis."}, "36987": {"category_aro_name": "cefotiam", "category_aro_cvterm_id": "36987", "category_aro_accession": "3000643", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefotiam is a cephalosporin antibiotic with similar activity to cefuroxime but more active against enterobacteria. It is consumed orally as the prodrug cefotiam hexetil."}, "36986": {"category_aro_name": "cefadroxil", "category_aro_cvterm_id": "36986", "category_aro_accession": "3000642", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefadroxil, or p-hydroxycephalexin, is an cephalosporin antibiotic similar to cefalexin."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "37141": {"category_aro_name": "mecillinam", "category_aro_cvterm_id": "37141", "category_aro_accession": "3000761", "category_aro_class_name": "Antibiotic", "category_aro_description": "Mecillinam is a broad-spectrum beta-lactam antibiotic that was semi-synthetically derived to have a different drug centre, being a 6-alpha-amidinopenicillanate instead of a 6-alpha-acylaminopenicillanate. Contrasting most beta-lactam drugs, mecillinam is most active against Gram-negative bacteria. It binds specifically to penicillin binding protein 2 (PBP2)."}, "36979": {"category_aro_name": "dicloxacillin", "category_aro_cvterm_id": "36979", "category_aro_accession": "3000635", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dicloxacillin is a penicillin derivative that has an extra chlorine atom in comparison to cloxacillin. While more active than cloxacillin, its high affinity for serum protein reduces its activity in human serum in vitro."}, "36978": {"category_aro_name": "propicillin", "category_aro_cvterm_id": "36978", "category_aro_accession": "3000634", "category_aro_class_name": "Antibiotic", "category_aro_description": "Propicillin is an orally taken penicillin derivative that has high absorption but poor activity."}, "35978": {"category_aro_name": "ceftobiprole", "category_aro_cvterm_id": "35978", "category_aro_accession": "0000061", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftobiprole (Zeftera/Zevtera) is a next generation (5th generation) cephalosporin antibiotic with activity against methicillin-resistant Staphylococcus aureus, penicillin-resistant Streptococcus pneumoniae, Pseudomonas aeruginosa, and Enterococci. Ceftobiprole inhibits transpeptidases essential to building cell walls, and is a poor substrate for most beta-lactamases."}, "36976": {"category_aro_name": "benzylpenicillin", "category_aro_cvterm_id": "36976", "category_aro_accession": "3000632", "category_aro_class_name": "Antibiotic", "category_aro_description": "Benzylpenicillin, commonly referred to as penicillin G, is effective against both Gram-positive and Gram-negative bacteria. It is unstable in acid."}, "36977": {"category_aro_name": "phenoxymethylpenicillin", "category_aro_cvterm_id": "36977", "category_aro_accession": "3000633", "category_aro_class_name": "Antibiotic", "category_aro_description": "Phenoxymethylpenicillin, or penicillin V, is a penicillin derivative that is acid stable but less active than benzylpenicillin (penicillin G)."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35961": {"category_aro_name": "carbenicillin", "category_aro_cvterm_id": "35961", "category_aro_accession": "0000043", "category_aro_class_name": "Antibiotic", "category_aro_description": "Carbenicillin is a semi-synthetic antibiotic belonging to the carboxypenicillin subgroup of the penicillins. It has gram-negative coverage which includes Pseudomonas aeruginosa but limited gram-positive coverage. The carboxypenicillins are susceptible to degradation by beta-lactamase enzymes. Carbenicillin antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40933": {"category_aro_name": "ceftiofur", "category_aro_cvterm_id": "40933", "category_aro_accession": "3004006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftiofur is a third-generation broad spectrum cephalosporin and beta-lactam antibiotic. It causes cell lysis by disrupting peptidoglycan cross-linkage and cell wall formation by binding to PBPs."}, "40932": {"category_aro_name": "cefprozil", "category_aro_cvterm_id": "40932", "category_aro_accession": "3004005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefprozil is a cephalosporin and beta-lactam antibiotic with bactericidal activity. It selectively binds to PBPs and inhibits peptidoglycan synthesis, a major cell wall component, resulting in cell lysis."}, "40935": {"category_aro_name": "cephapirin", "category_aro_cvterm_id": "40935", "category_aro_accession": "3004008", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cephapirin is a first-generation cephalosporin and broad spectrum beta-lactam antibiotic. Inactivation of penicillin-binding proteins through cephapirin binding disrupts peptidoglycan cross-linking, resulting in cell lysis."}, "40934": {"category_aro_name": "ceftizoxime", "category_aro_cvterm_id": "40934", "category_aro_accession": "3004007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftizoxime is a third-generation cephalosporin and broad spectrum beta-lactam antibiotic. Ceftizoxime causes bacterial cell lysis through peptidoglycan cross-linking inhibition by binding to PBPs."}, "35987": {"category_aro_name": "ertapenem", "category_aro_cvterm_id": "35987", "category_aro_accession": "0000070", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ertapenem is a carbapenem antibiotic and is highly resistant to beta-lactamases like other carbapenems. It inhibits bacterial cell wall synthesis."}, "40936": {"category_aro_name": "cefradine", "category_aro_cvterm_id": "40936", "category_aro_accession": "3004009", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefradine is a first-generation cephalosporin and broad spectrum beta-lactam antibiotic. Cefradine binding to penicillin-binding proteins disrupts cell wall peptidoglycan cross-linkage, resulting in cell lysis."}}}}, "1606": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "809": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36360": {"category_aro_name": "lincosamide nucleotidyltransferase (LNU)", "category_aro_cvterm_id": "36360", "category_aro_accession": "3000221", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Resistance to the lincosamide antibiotic by ATP-dependent modification of the 3' and/or 4'-hydroxyl groups of the methylthiolincosamide sugar."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}, "808": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "803": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36720": {"category_aro_name": "CphA beta-lactamase", "category_aro_cvterm_id": "36720", "category_aro_accession": "3000581", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CphA is an Ambler Class B MBL; subclass B2 originally isolated from Aeromonas hydrophilia. This enzyme has specific activity against carbapenems and is active as a mono-zinc protein."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "802": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "801": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "800": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "807": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38817": {"category_aro_name": "OKP beta-lactamase", "category_aro_cvterm_id": "38817", "category_aro_accession": "3002417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OKP beta-lactamases are chromosomal class A beta-lactamase that confer resistance to penicillins and early cephalosporins in Klebsiella pneumoniae. OKP beta-lactamases can be subdivided into two groups: OKP-A and OKP-B which diverge by about 4.2%"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "806": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "805": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "804": {"$update": {"ARO_category": {"36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35921": {"category_aro_name": "tetracycline-resistant ribosomal protection protein", "category_aro_cvterm_id": "35921", "category_aro_accession": "0000002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "A family of proteins known to bind to the 30S ribosomal subunit. This interaction prevents tetracycline and tetracycline derivatives from inhibiting ribosomal function. Thus, these proteins confer elevated resistance to tetracycline derivatives as a ribosomal protection protein."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}, "2840": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41404": {"category_aro_name": "NPS beta-lactamase", "category_aro_cvterm_id": "41404", "category_aro_accession": "3004240", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "NPS beta-lactamases are class D beta-lactamases that have partial hydrolyzing abilities against penicillins and cephalosporin."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1775": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1774": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1777": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1776": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1771": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1770": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1773": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "1772": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "41439": {"category_aro_name": "ANT(3'')", "category_aro_cvterm_id": "41439", "category_aro_accession": "3004275", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotidylylation of streptomycin at the hydroxyl group at position 3''"}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1779": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1778": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38817": {"category_aro_name": "OKP beta-lactamase", "category_aro_cvterm_id": "38817", "category_aro_accession": "3002417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OKP beta-lactamases are chromosomal class A beta-lactamase that confer resistance to penicillins and early cephalosporins in Klebsiella pneumoniae. OKP beta-lactamases can be subdivided into two groups: OKP-A and OKP-B which diverge by about 4.2%"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1159": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1158": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1155": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36211": {"category_aro_name": "ACT beta-lactamase", "category_aro_cvterm_id": "36211", "category_aro_accession": "3000072", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1154": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1157": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "39340": {"category_aro_name": "van ligase", "category_aro_cvterm_id": "39340", "category_aro_accession": "3002906", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "van ligases synthesize alternative substrates for peptidoglycan synthesis that reduce vancomycin binding affinity."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "1156": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "37247": {"category_aro_name": "oleandomycin", "category_aro_cvterm_id": "37247", "category_aro_accession": "3000867", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oleandomycin is a 14-membered macrolide produced by Streptomyces antibioticus. It is ssimilar to erythromycin, and contains a desosamine amino sugar and an oleandrose sugar. It targets the 50S ribosomal subunit to prevent protein synthesis."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35974": {"category_aro_name": "telithromycin", "category_aro_cvterm_id": "35974", "category_aro_accession": "0000057", "category_aro_class_name": "Antibiotic", "category_aro_description": "Telithromycin is a semi-synthetic derivative of erythromycin. It is a 14-membered macrolide and is the first ketolide antibiotic to be used in clinics. Telithromycin binds the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36284": {"category_aro_name": "tylosin", "category_aro_cvterm_id": "36284", "category_aro_accession": "3000145", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tylosin is a 16-membered macrolide, naturally produced by Streptomyces fradiae. It interacts with the bacterial ribosome 50S subunit to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36315": {"category_aro_name": "dirithromycin", "category_aro_cvterm_id": "36315", "category_aro_accession": "3000176", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dirithromycin is an oxazine derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome to inhibit bacterial protein synthesis."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "36699": {"category_aro_name": "Erm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36699", "category_aro_accession": "3000560", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Erm proteins are part of the RNA methyltransferase family and methylate A2058 (E. coli nomenclature) of the 23S ribosomal RNA conferring degrees of resistance to Macrolides, Lincosamides and Streptogramin b. This is called the MLSb phenotype."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35946": {"category_aro_name": "roxithromycin", "category_aro_cvterm_id": "35946", "category_aro_accession": "0000027", "category_aro_class_name": "Antibiotic", "category_aro_description": "Roxithromycin is a semi-synthetic, 14-carbon ring macrolide antibiotic derived from erythromycin. It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36295": {"category_aro_name": "spiramycin", "category_aro_cvterm_id": "36295", "category_aro_accession": "3000156", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spiramycin is a 16-membered macrolide and is natural product produced by Streptomyces ambofaciens. It binds to the 50S subunit of bacterial ribosomes and inhibits peptidyl transfer activity to disrupt protein synthesis."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}, "1151": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1150": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1153": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36198": {"category_aro_name": "KPC beta-lactamase", "category_aro_cvterm_id": "36198", "category_aro_accession": "3000059", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Klebsiella pneumoniae carbapenem resistant (KPC) beta-lactamases are notorious for their ability to efficiently hydrolyze carbapenems, unlike other Ambler Class A beta-lactamases. There are currently 9 variants reported worldwide. These enzymes were first isolated from Klebsiella pneumoniae strains in 2001 in the United States. Hospital outbreaks have since been reported in Greece and Israel and KPC carrying strains are now endemic to New York facilities. KPC-1 and KPC-2 have been shown to be identical and are now referred to as KPC-2."}}}}, "1152": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1552": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41143": {"category_aro_name": "MUS beta-lactamase", "category_aro_cvterm_id": "41143", "category_aro_accession": "3004067", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Subclass B1 (metallo-) beta-lactamases found in Myroides spp., which confer resistance to carbapenam class beta-lactamase antibiotics."}}, "ARO_name": "MUS-1"}}, "1555": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1554": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}}}}}, "1551": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1550": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}}, "1553": {"$update": {"ARO_category": {"36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35921": {"category_aro_name": "tetracycline-resistant ribosomal protection protein", "category_aro_cvterm_id": "35921", "category_aro_accession": "0000002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "A family of proteins known to bind to the 30S ribosomal subunit. This interaction prevents tetracycline and tetracycline derivatives from inhibiting ribosomal function. Thus, these proteins confer elevated resistance to tetracycline derivatives as a ribosomal protection protein."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}, "1101": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "59": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "58": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1557": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1556": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "55": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "54": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "57": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "56": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "51": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36461": {"category_aro_name": "AAC(3)", "category_aro_cvterm_id": "36461", "category_aro_accession": "3000322", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 3."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "50": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36194": {"category_aro_name": "SME beta-lactamase", "category_aro_cvterm_id": "36194", "category_aro_accession": "3000055", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SME beta-lactamases are chromosome-mediated class A beta-lactamases that hydrolyze carbapenems in Serratia marcescens."}}}}, "53": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36222": {"category_aro_name": "MOX beta-lactamase", "category_aro_cvterm_id": "36222", "category_aro_accession": "3000083", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "MOX beta-lactamases are plasmid-mediated AmpC-type beta-lactamases."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "52": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "38788": {"category_aro_name": "OXY beta-lactamase", "category_aro_cvterm_id": "38788", "category_aro_accession": "3002388", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXY beta-lactamases are chromosomal class A beta-lactamases that are found in Klebsiella oxytoca. At constitutive low levels, OXY beta-lactamases confer resistance to aminopenicillins and carboxypenicillins. At high induced levels, OXY beta-lactamases confer resistance to penicillins, cephalosporins and aztreonam."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "537": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "536": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "535": {"$update": {"ARO_category": {"37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}, "37244": {"category_aro_name": "fluoroquinolone resistant gyrB", "category_aro_cvterm_id": "37244", "category_aro_accession": "3000864", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in DNA gyrase subunit B (gyrB) observed in Mycobacterium tuberculosis can result in resistance to fluoroquinolones."}, "37009": {"category_aro_name": "grepafloxacin", "category_aro_cvterm_id": "37009", "category_aro_accession": "3000665", "category_aro_class_name": "Antibiotic", "category_aro_description": "Grepafloxacin is a broad-spectrum antibacterial quinoline. It is no longer taken due to its high toxicity."}, "37008": {"category_aro_name": "trovafloxacin", "category_aro_cvterm_id": "37008", "category_aro_accession": "3000664", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trovafloxacin is a trifluoroquinalone with a broad spectrum of activity that acts by inhibiting the uncoiling of supercoiled DNA. While potent against many Gram-positive and Gram-negative bacteria, it is less active against pseudomonads and Cl. difficile. It is usually taken as the prodrug trovafloxacin mesylate or alatrofloxacin mesylate for oral or intravenous administration, respectively."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "37004": {"category_aro_name": "lomefloxacin", "category_aro_cvterm_id": "37004", "category_aro_accession": "3000660", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lomefloxacin is a difluoropiperazinyl quinolone, sharing similar activities with other fluoroquinolones. It is used to treat urinary tract infections. Relative to other fluoroquinolones, it has a longer half life and has higher serum concentrations."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36289": {"category_aro_name": "coumermycin A1", "category_aro_cvterm_id": "36289", "category_aro_accession": "3000150", "category_aro_class_name": "Antibiotic", "category_aro_description": "Coumermycin A1 is an antibiotic produced by Streptomyces rishiriensis, and binds DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "40940": {"category_aro_name": "fleroxacin", "category_aro_cvterm_id": "40940", "category_aro_accession": "3004013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Fleroxacin is a broad spectrum fluoroquinolone antibiotic that inhibits the DNA supercoiling activity of bacterial DNA gyrase, resulting in double-stranded DNA breaks and subsequent cell death."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "36271": {"category_aro_name": "clorobiocin", "category_aro_cvterm_id": "36271", "category_aro_accession": "3000132", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clorobiocin is an aminocoumarin antibiotic produced by Streptomyces roseochromogenes, and binds DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "40939": {"category_aro_name": "Clofazimine", "category_aro_cvterm_id": "40939", "category_aro_accession": "3004012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clofazimine is a fluoroquinolone-class phenazine dye used for the treatment of leprosy. Clofazimine binds to DNA and disrupts bacterial DNA gyrase, thereby causing double-stranded DNA breaks, and subsequent cell death."}, "40938": {"category_aro_name": "clinafloxacin", "category_aro_cvterm_id": "40938", "category_aro_accession": "3004011", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clinafloxacin is a fluoroquinolone antibiotic and gyrase (DNA topoisomerase II) inhibitor. It binds to DNA gyrase and disrupts replication by causing double-stranded DNA breaks, resulting in cell death."}, "40937": {"category_aro_name": "cinoxacin", "category_aro_cvterm_id": "40937", "category_aro_accession": "3004010", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cinoxacin is a fluoroquinolone antibiotic primarily used for the treatment of urinary tract infections in adults. Cinoxacin binds to DNA gyrase, resulting in double-stranded DNA breaks and cell death."}, "37142": {"category_aro_name": "pefloxacin", "category_aro_cvterm_id": "37142", "category_aro_accession": "3000762", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pefloxacin is structurally and functionally similar to norfloxacin. It is poorly active against mycobacteria, while anaerobes are resistant."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35942": {"category_aro_name": "enoxacin", "category_aro_cvterm_id": "35942", "category_aro_accession": "0000023", "category_aro_class_name": "Antibiotic", "category_aro_description": "Enoxacin belongs to a group called fluoroquinolones. Its mode of action depends upon blocking bacterial DNA replication by binding itself to DNA gyrase and causing double-stranded breaks in the bacterial chromosome."}}}}, "534": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "39350": {"category_aro_name": "vanV", "category_aro_cvterm_id": "39350", "category_aro_accession": "3002916", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "vanV is an accessory protein of van operons, first identified in the vanB operon. It is not required for vancomycin resistance."}}}}, "533": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36230": {"category_aro_name": "CARB beta-lactamase", "category_aro_cvterm_id": "36230", "category_aro_accession": "3000091", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CARB beta-lactamases are class A lactamases that can hydrolyze carbenicillin. Many of the PSE beta-lactamases have been renamed as CARB-lactamases with the notable exception of PSE-2 which is now OXA-10."}}}}, "532": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "531": {"$update": {"ARO_category": {"37249": {"category_aro_name": "streptothricin acetyltransferase (SAT)", "category_aro_cvterm_id": "37249", "category_aro_accession": "3000869", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "AcetylCoA dependent acetyltransferase that acetylate streptothricins such as nourseothricin at position 16 (beta position of beta-lysine)."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}}}}, "530": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "539": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1558": {"$update": {"ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37243": {"category_aro_name": "defensin resistant mprF", "category_aro_cvterm_id": "37243", "category_aro_accession": "3000863", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "MprF is a integral membrane protein that modifies the negatively-charged phosphatidylglycerol on the membrane surface of both Gram-positive and Gram-negative bacteria. This confers resistance to cationic peptides that disrupt the cell membrane, including defensins."}, "37037": {"category_aro_name": "defensin", "category_aro_cvterm_id": "37037", "category_aro_accession": "3000693", "category_aro_class_name": "Antibiotic", "category_aro_description": "Defensins are natural cationic peptides that have antibiotic properties. It is part of the innate immune system of plants and animals."}}}}, "429": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "428": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "38788": {"category_aro_name": "OXY beta-lactamase", "category_aro_cvterm_id": "38788", "category_aro_accession": "3002388", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXY beta-lactamases are chromosomal class A beta-lactamases that are found in Klebsiella oxytoca. At constitutive low levels, OXY beta-lactamases confer resistance to aminopenicillins and carboxypenicillins. At high induced levels, OXY beta-lactamases confer resistance to penicillins, cephalosporins and aztreonam."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1399": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1398": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1397": {"$update": {"ARO_category": {"36476": {"category_aro_name": "iclaprim", "category_aro_cvterm_id": "36476", "category_aro_accession": "3000337", "category_aro_class_name": "Antibiotic", "category_aro_description": "Iclaprim is a bactericidal compound that inhibits dihydrofolate reductase. It is used against clinically important Gram-positive pathogens, including methicillin-sensitive Staphylococcus aureus and methicillin-resistant S. aureus."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36408": {"category_aro_name": "brodimoprim", "category_aro_cvterm_id": "36408", "category_aro_accession": "3000269", "category_aro_class_name": "Antibiotic", "category_aro_description": "Brodimoprim is a structural derivative of trimethoprim and an inhibitor of bacterial dihydrofolate reductase. The 4-methoxy group of trimethoprim is replaced with a bromine atom."}, "37617": {"category_aro_name": "trimethoprim resistant dihydrofolate reductase dfr", "category_aro_cvterm_id": "37617", "category_aro_accession": "3001218", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Alternative dihydropteroate synthase dfr present on plasmids produces alternate proteins that are less sensitive to trimethoprim from inhibiting its role in folate synthesis, thus conferring trimethoprim resistance."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36423": {"category_aro_name": "tetroxoprim", "category_aro_cvterm_id": "36423", "category_aro_accession": "3000284", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetroxoprim is a trimethoprim derivative that inhibits bacterial dihydrofolate reductase."}}}}, "420": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "423": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36207": {"category_aro_name": "DHA beta-lactamase", "category_aro_cvterm_id": "36207", "category_aro_accession": "3000068", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DHA beta-lactamases are plasmid-mediated AmpC \u03b2-lactamases that confer resistance to cephamycins and oxyimino-cephalosporins."}}}}, "422": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36206": {"category_aro_name": "FOX beta-lactamase", "category_aro_cvterm_id": "36206", "category_aro_accession": "3000067", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "FOX beta-lactamases are plasmid-encoded AmpC-type beta-lactamase which conferred resistance to broad-spectrum cephalosporins and cephamycins"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1393": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41378": {"category_aro_name": "THIN-B beta-lactamase", "category_aro_cvterm_id": "41378", "category_aro_accession": "3004214", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Beta-lactamases that are part of the THIN-B family, which is a subclass B3 beta-lactamase family and hydrolyze a broad spectrum of beta-lactams including penicillins, cephalosporins, and carbapenems."}}}}, "1392": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "41439": {"category_aro_name": "ANT(3'')", "category_aro_cvterm_id": "41439", "category_aro_accession": "3004275", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotidylylation of streptomycin at the hydroxyl group at position 3''"}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "427": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36233": {"category_aro_name": "OCH beta-lactamase", "category_aro_cvterm_id": "36233", "category_aro_accession": "3000094", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OCH beta-lactamases are Ambler class C chromosomal-encoded beta-lactamases in Ochrobactrum anthropi"}}}}, "1390": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}}}}}, "2183": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}, "model_param": {"$update": {"40297": {"$update": {"param_description": "The gene order model parameter describes the relative order of a set of genes or other genetic elements on a chromosome, a plasmid or within an operon. Antibiotic resistance is only conferred when the detected set of genes appears in the indicated order; otherwise, no resistance phenotype is produced. This parameter is part of the gene cluster meta-model, and may be attached to detection models with the following notation: [[cvterm_id 1],[cvterm_id 2],...,[cvterm_id n]], where the cvterm_id denotes a gene-associated AMR term and an attached model id. This parameter currently (August 2017) lacks an algorithm for detection."}}}}}}, "2182": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}, "model_param": {"$update": {"40297": {"$update": {"param_description": "The gene order model parameter describes the relative order of a set of genes or other genetic elements on a chromosome, a plasmid or within an operon. Antibiotic resistance is only conferred when the detected set of genes appears in the indicated order; otherwise, no resistance phenotype is produced. This parameter is part of the gene cluster meta-model, and may be attached to detection models with the following notation: [[cvterm_id 1],[cvterm_id 2],...,[cvterm_id n]], where the cvterm_id denotes a gene-associated AMR term and an attached model id. This parameter currently (August 2017) lacks an algorithm for detection."}}}}}}, "2181": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}, "model_param": {"$update": {"40297": {"$update": {"param_description": "The gene order model parameter describes the relative order of a set of genes or other genetic elements on a chromosome, a plasmid or within an operon. Antibiotic resistance is only conferred when the detected set of genes appears in the indicated order; otherwise, no resistance phenotype is produced. This parameter is part of the gene cluster meta-model, and may be attached to detection models with the following notation: [[cvterm_id 1],[cvterm_id 2],...,[cvterm_id n]], where the cvterm_id denotes a gene-associated AMR term and an attached model id. This parameter currently (August 2017) lacks an algorithm for detection."}}}}}}, "2180": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}, "model_param": {"$update": {"40297": {"$update": {"param_description": "The gene order model parameter describes the relative order of a set of genes or other genetic elements on a chromosome, a plasmid or within an operon. Antibiotic resistance is only conferred when the detected set of genes appears in the indicated order; otherwise, no resistance phenotype is produced. This parameter is part of the gene cluster meta-model, and may be attached to detection models with the following notation: [[cvterm_id 1],[cvterm_id 2],...,[cvterm_id n]], where the cvterm_id denotes a gene-associated AMR term and an attached model id. This parameter currently (August 2017) lacks an algorithm for detection."}}}}}}, "2186": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}, "model_param": {"$update": {"40297": {"$update": {"param_description": "The gene order model parameter describes the relative order of a set of genes or other genetic elements on a chromosome, a plasmid or within an operon. Antibiotic resistance is only conferred when the detected set of genes appears in the indicated order; otherwise, no resistance phenotype is produced. This parameter is part of the gene cluster meta-model, and may be attached to detection models with the following notation: [[cvterm_id 1],[cvterm_id 2],...,[cvterm_id n]], where the cvterm_id denotes a gene-associated AMR term and an attached model id. This parameter currently (August 2017) lacks an algorithm for detection."}}}}}}, "229": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36511": {"category_aro_name": "vanT", "category_aro_cvterm_id": "36511", "category_aro_accession": "3000372", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanT is a membrane bound serine racemase, converting L-serine to D-serine. It is associated with VanC, which incorporated D-serine into D-Ala-D-Ser terminal end of peptidoglycan subunits that have a decreased binding affinity with vancomycin. It was isolated from Enterococcus gallinarum."}}}}, "228": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "227": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38817": {"category_aro_name": "OKP beta-lactamase", "category_aro_cvterm_id": "38817", "category_aro_accession": "3002417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OKP beta-lactamases are chromosomal class A beta-lactamase that confer resistance to penicillins and early cephalosporins in Klebsiella pneumoniae. OKP beta-lactamases can be subdivided into two groups: OKP-A and OKP-B which diverge by about 4.2%"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "226": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "225": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "224": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36197": {"category_aro_name": "MIR beta-lactamase", "category_aro_cvterm_id": "36197", "category_aro_accession": "3000058", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "MIR beta-lactamases are plasmid-mediated beta-lactamases that confer resistance to oxyimino- and alpha-methoxy beta-lactams"}}}}, "223": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36205": {"category_aro_name": "GES beta-lactamase", "category_aro_cvterm_id": "36205", "category_aro_accession": "3000066", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "GES beta-lactamases or Guiana extended-spectrum beta-lactamases are related to the other plasmid-located class A beta-lactamases"}}}}, "222": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41366": {"category_aro_name": "JOHN beta-lactamase", "category_aro_cvterm_id": "41366", "category_aro_accession": "3004202", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "JOHN beta-lactamases hydrolyse penicillins, narrow- and expanded-spectrum cephalosporins, and carbapenems."}}}}, "221": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "220": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "2213": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"37626": {"category_aro_name": "kitasamycin", "category_aro_cvterm_id": "37626", "category_aro_accession": "3001227", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kitasamycin is a macrolide antibiotic and is produced by Streptoverticillium kitasatoense. The drug has antimicrobial activity against a wide spectrum of pathogens."}, "36309": {"category_aro_name": "imipenem", "category_aro_cvterm_id": "36309", "category_aro_accession": "3000170", "category_aro_class_name": "Antibiotic", "category_aro_description": "Imipenem is a broad-spectrum antibiotic and is usually taken with cilastatin, which prevents hydrolysis of imipenem by renal dehydropeptidase-I. It is resistant to hydrolysis by most other beta-lactamases. Notable exceptions are the KPC beta-lactamases and Ambler Class B enzymes."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "40353": {"category_aro_name": "rokitamycin", "category_aro_cvterm_id": "40353", "category_aro_accession": "3003701", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rokitamycin is a macrolide antibiotic. Synthesized from strains of Streptomyces kitasatoensis."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "2212": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"37626": {"category_aro_name": "kitasamycin", "category_aro_cvterm_id": "37626", "category_aro_accession": "3001227", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kitasamycin is a macrolide antibiotic and is produced by Streptoverticillium kitasatoense. The drug has antimicrobial activity against a wide spectrum of pathogens."}, "36309": {"category_aro_name": "imipenem", "category_aro_cvterm_id": "36309", "category_aro_accession": "3000170", "category_aro_class_name": "Antibiotic", "category_aro_description": "Imipenem is a broad-spectrum antibiotic and is usually taken with cilastatin, which prevents hydrolysis of imipenem by renal dehydropeptidase-I. It is resistant to hydrolysis by most other beta-lactamases. Notable exceptions are the KPC beta-lactamases and Ambler Class B enzymes."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "40353": {"category_aro_name": "rokitamycin", "category_aro_cvterm_id": "40353", "category_aro_accession": "3003701", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rokitamycin is a macrolide antibiotic. Synthesized from strains of Streptomyces kitasatoensis."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "2211": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"37626": {"category_aro_name": "kitasamycin", "category_aro_cvterm_id": "37626", "category_aro_accession": "3001227", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kitasamycin is a macrolide antibiotic and is produced by Streptoverticillium kitasatoense. The drug has antimicrobial activity against a wide spectrum of pathogens."}, "36309": {"category_aro_name": "imipenem", "category_aro_cvterm_id": "36309", "category_aro_accession": "3000170", "category_aro_class_name": "Antibiotic", "category_aro_description": "Imipenem is a broad-spectrum antibiotic and is usually taken with cilastatin, which prevents hydrolysis of imipenem by renal dehydropeptidase-I. It is resistant to hydrolysis by most other beta-lactamases. Notable exceptions are the KPC beta-lactamases and Ambler Class B enzymes."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "40353": {"category_aro_name": "rokitamycin", "category_aro_cvterm_id": "40353", "category_aro_accession": "3003701", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rokitamycin is a macrolide antibiotic. Synthesized from strains of Streptomyces kitasatoensis."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "2217": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "2216": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "2215": {"$update": {"ARO_category": {"40471": {"category_aro_name": "fluoroquinolone self resistant parC", "category_aro_cvterm_id": "40471", "category_aro_accession": "3003786", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Inherent parC resistance to fluoroquinolone from an antibiotic producer. The presence of these genes confers self-resistance to the antibiotic it produces."}, "40463": {"category_aro_name": "nybomycin", "category_aro_cvterm_id": "40463", "category_aro_accession": "3003780", "category_aro_class_name": "Drug Class", "category_aro_description": "A heterocyclic antibiotic that targets mutant gyrA (type II topoisomerase) containing an S84L substitution, counteracting acquired quinolone resistance. It is effective against quinolone-resistant Gram-positive bacteria including S. aureus and E. faecalis. Due to its ability to counteract quinolone resistance by targeting the mutant form of the gyrA protein, it is classified as a reverse antibiotic (RA)."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "39876": {"category_aro_name": "fluoroquinolone resistant gyrA", "category_aro_cvterm_id": "39876", "category_aro_accession": "3003292", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DNA gyrase is responsible for DNA supercoiling and consists of two alpha and two beta subunits. GyrA point mutations confer resistance by preventing fluoroquinolone antibiotics from binding the alpha-subunit."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "36913": {"category_aro_name": "fluoroquinolone resistant parC", "category_aro_cvterm_id": "36913", "category_aro_accession": "3000619", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ParC is a subunit of topoisomerase IV, which decatenates and relaxes DNA to allow access to genes for transcription or translation. Point mutations in ParC prevent fluoroquinolone antibiotics from inhibiting DNA synthesis, and confer low-level resistance. Higher-level resistance results from both gyrA and parC mutations."}, "37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37142": {"category_aro_name": "pefloxacin", "category_aro_cvterm_id": "37142", "category_aro_accession": "3000762", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pefloxacin is structurally and functionally similar to norfloxacin. It is poorly active against mycobacteria, while anaerobes are resistant."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "40338": {"category_aro_name": "sitafloxacin", "category_aro_cvterm_id": "40338", "category_aro_accession": "3003690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sitafloxacin is a fluoroquinolone active against multi-resistant Gram-positive and negative pathogens. Sitafloxacin shows inhibitory activity against DNA gyrase and topoisomerase IV, which blocks bacterial DNA replication, thereby causing double-stranded breaks in the bacterial chromosome."}}}}, "2219": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "151": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38817": {"category_aro_name": "OKP beta-lactamase", "category_aro_cvterm_id": "38817", "category_aro_accession": "3002417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OKP beta-lactamases are chromosomal class A beta-lactamase that confer resistance to penicillins and early cephalosporins in Klebsiella pneumoniae. OKP beta-lactamases can be subdivided into two groups: OKP-A and OKP-B which diverge by about 4.2%"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "150": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "36261": {"category_aro_name": "chloramphenicol acetyltransferase (CAT)", "category_aro_cvterm_id": "36261", "category_aro_accession": "3000122", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Inactivates chloramphenicol by addition of an acyl group. cat is used to describe many variants of the chloramphenicol acetyltransferase gene in a range of organisms including Acinetobacter calcoaceticus, Agrobacterium tumefaciens, Bacillus clausii, Bacillus subtilis, Campylobacter coli, Enterococcus faecalis, Enterococcus faecium, Lactococcus lactis, Listeria monocytogenes, Listonella anguillarum Morganella morganii, Photobacterium damselae subsp. piscicida, Proteus mirabilis, Salmonella typhi, Serratia marcescens, Shigella flexneri, Staphylococcus aureus, Staphylococcus haemolyticus, Staphylococcus intermedius, Streptococcus agalactiae, Streptococcus suis and Streptomyces acrimycini"}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "153": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "152": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}}}}}, "155": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "154": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}, "35985": {"category_aro_name": "daptomycin", "category_aro_cvterm_id": "35985", "category_aro_accession": "0000068", "category_aro_class_name": "Antibiotic", "category_aro_description": "Daptomycin is a novel lipopeptide antibiotic used in the treatment of certain infections caused by Gram-positive organisms. Daptomycin interferes with the bacterial cell membrane, reducing membrane potential and inhibiting cell wall synthesis."}, "36989": {"category_aro_name": "cefotaxime", "category_aro_cvterm_id": "36989", "category_aro_accession": "3000645", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefotaxime is a semisynthetic cephalosporin taken parenterally. It is resistant to most beta-lactamases and active against Gram-negative rods and cocci due to its aminothiazoyl and methoximino functional groups."}, "36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35934": {"category_aro_name": "methicillin", "category_aro_cvterm_id": "35934", "category_aro_accession": "0000015", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derived from penicillin to combat penicillin-resistance, methicillin is insensitive to beta-lactamases (also known as penicillinases) secreted by many penicillin-resistant bacteria. Methicillin is bactericidal, and acts by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "157": {"$update": {"ARO_category": {"36476": {"category_aro_name": "iclaprim", "category_aro_cvterm_id": "36476", "category_aro_accession": "3000337", "category_aro_class_name": "Antibiotic", "category_aro_description": "Iclaprim is a bactericidal compound that inhibits dihydrofolate reductase. It is used against clinically important Gram-positive pathogens, including methicillin-sensitive Staphylococcus aureus and methicillin-resistant S. aureus."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36408": {"category_aro_name": "brodimoprim", "category_aro_cvterm_id": "36408", "category_aro_accession": "3000269", "category_aro_class_name": "Antibiotic", "category_aro_description": "Brodimoprim is a structural derivative of trimethoprim and an inhibitor of bacterial dihydrofolate reductase. The 4-methoxy group of trimethoprim is replaced with a bromine atom."}, "37617": {"category_aro_name": "trimethoprim resistant dihydrofolate reductase dfr", "category_aro_cvterm_id": "37617", "category_aro_accession": "3001218", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Alternative dihydropteroate synthase dfr present on plasmids produces alternate proteins that are less sensitive to trimethoprim from inhibiting its role in folate synthesis, thus conferring trimethoprim resistance."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36423": {"category_aro_name": "tetroxoprim", "category_aro_cvterm_id": "36423", "category_aro_accession": "3000284", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetroxoprim is a trimethoprim derivative that inhibits bacterial dihydrofolate reductase."}}}}, "156": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "159": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37716": {"category_aro_name": "pleuromutilin", "category_aro_cvterm_id": "37716", "category_aro_accession": "3001317", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pleuromutilin is a natural product antibiotic produced by Clitopilus passeckerianus. Related antibiotics of clinical significance, such as tiamulin and retapamulin, are semi-synthetic derivatives of this compound."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}}}}}, "158": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37697": {"category_aro_name": "non-erm 23S ribosomal RNA methyltransferase (G748)", "category_aro_cvterm_id": "37697", "category_aro_accession": "3001298", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Non-erm 23S ribosomal RNA methyltransferases modify guanosine 748 (E. coli numbering) to confer resistance to some macrolides and lincosamides"}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}, "2431": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36251": {"category_aro_name": "multidrug and toxic compound extrusion (MATE) transporter", "category_aro_cvterm_id": "36251", "category_aro_accession": "3000112", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Multidrug and toxic compound extrusion (MATE) transporters utilize the cationic gradient across the membrane as an energy source. Although there is a diverse substrate specificity, almost all MATE transporters recognize fluoroquinolones. Arciflavine, ethidium and aminoglycosides are also good substrates."}}}}}, "2430": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"37033": {"category_aro_name": "metronidazole", "category_aro_cvterm_id": "37033", "category_aro_accession": "3000689", "category_aro_class_name": "Antibiotic", "category_aro_description": "Metronidazole is a nitroimidazole that is active against anaerobic bacteria and protozoa. It is not effective against aerobic bacteria. Nitroimidazoles act by oxidizing DNA causing strand breaks and cell death."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "41239": {"category_aro_name": "nitroimidazole antibiotic", "category_aro_cvterm_id": "41239", "category_aro_accession": "3004115", "category_aro_class_name": "Drug Class", "category_aro_description": "Nitroimidazoles are a group of drugs that have both antiprotozoal and antibacterial activity, classified with respect to the location of the nitro functional group."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "2436": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "39340": {"category_aro_name": "van ligase", "category_aro_cvterm_id": "39340", "category_aro_accession": "3002906", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "van ligases synthesize alternative substrates for peptidoglycan synthesis that reduce vancomycin binding affinity."}}}}, "2435": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}}, "2434": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "36383": {"category_aro_name": "reduced permeability to antibiotic", "category_aro_cvterm_id": "36383", "category_aro_accession": "3000244", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Reduction in permeability to antibiotic, generally through reduced production of porins, can provide resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "41445": {"category_aro_name": "General Bacterial Porin with reduced permeability to beta-lactams", "category_aro_cvterm_id": "41445", "category_aro_accession": "3004281", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These are GBPs that are associated with decreased susceptibility to beta-lactams either through mutations in the porin protein, absence of the porin protein, or expression of the porin protein."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40429": {"category_aro_name": "resistance by absence", "category_aro_cvterm_id": "40429", "category_aro_accession": "3003764", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mechanism of antibiotic resistance conferred by deletion of gene (usually a porin)"}}}}, "2724": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"37626": {"category_aro_name": "kitasamycin", "category_aro_cvterm_id": "37626", "category_aro_accession": "3001227", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kitasamycin is a macrolide antibiotic and is produced by Streptoverticillium kitasatoense. The drug has antimicrobial activity against a wide spectrum of pathogens."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "40353": {"category_aro_name": "rokitamycin", "category_aro_cvterm_id": "40353", "category_aro_accession": "3003701", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rokitamycin is a macrolide antibiotic. Synthesized from strains of Streptomyces kitasatoensis."}, "36689": {"category_aro_name": "aztreonam", "category_aro_cvterm_id": "36689", "category_aro_accession": "3000550", "category_aro_class_name": "Antibiotic", "category_aro_description": "Aztreonam was the first monobactam discovered, and is greatly effective against Gram-negative bacteria while inactive against Gram-positive bacteria. Artreonam is a poor substrate for beta-lactamases, and may even act as an inhibitor. In Gram-negative bacteria, Aztreonam interferes with filamentation, inhibiting cell division and leading to cell death."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "2720": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"37626": {"category_aro_name": "kitasamycin", "category_aro_cvterm_id": "37626", "category_aro_accession": "3001227", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kitasamycin is a macrolide antibiotic and is produced by Streptoverticillium kitasatoense. The drug has antimicrobial activity against a wide spectrum of pathogens."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "40353": {"category_aro_name": "rokitamycin", "category_aro_cvterm_id": "40353", "category_aro_accession": "3003701", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rokitamycin is a macrolide antibiotic. Synthesized from strains of Streptomyces kitasatoensis."}, "36689": {"category_aro_name": "aztreonam", "category_aro_cvterm_id": "36689", "category_aro_accession": "3000550", "category_aro_class_name": "Antibiotic", "category_aro_description": "Aztreonam was the first monobactam discovered, and is greatly effective against Gram-negative bacteria while inactive against Gram-positive bacteria. Artreonam is a poor substrate for beta-lactamases, and may even act as an inhibitor. In Gram-negative bacteria, Aztreonam interferes with filamentation, inhibiting cell division and leading to cell death."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "2729": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "1807": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1806": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1805": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1804": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1803": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1802": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1801": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1800": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1809": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1808": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "1524": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "36261": {"category_aro_name": "chloramphenicol acetyltransferase (CAT)", "category_aro_cvterm_id": "36261", "category_aro_accession": "3000122", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Inactivates chloramphenicol by addition of an acyl group. cat is used to describe many variants of the chloramphenicol acetyltransferase gene in a range of organisms including Acinetobacter calcoaceticus, Agrobacterium tumefaciens, Bacillus clausii, Bacillus subtilis, Campylobacter coli, Enterococcus faecalis, Enterococcus faecium, Lactococcus lactis, Listeria monocytogenes, Listonella anguillarum Morganella morganii, Photobacterium damselae subsp. piscicida, Proteus mirabilis, Salmonella typhi, Serratia marcescens, Shigella flexneri, Staphylococcus aureus, Staphylococcus haemolyticus, Staphylococcus intermedius, Streptococcus agalactiae, Streptococcus suis and Streptomyces acrimycini"}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "1948": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1949": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36720": {"category_aro_name": "CphA beta-lactamase", "category_aro_cvterm_id": "36720", "category_aro_accession": "3000581", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CphA is an Ambler Class B MBL; subclass B2 originally isolated from Aeromonas hydrophilia. This enzyme has specific activity against carbapenems and is active as a mono-zinc protein."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "1525": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1942": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41383": {"category_aro_name": "BJP beta-lactamase", "category_aro_cvterm_id": "41383", "category_aro_accession": "3004219", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "BJP beta-lactamases are a subclass B3 family."}}}}, "1943": {"$update": {"ARO_category": {"36659": {"category_aro_name": "isoniazid", "category_aro_cvterm_id": "36659", "category_aro_accession": "3000520", "category_aro_class_name": "Drug Class", "category_aro_description": "Isoniazid is an organic compound that is the first-line anti tuberculosis medication in prevention and treatment. As a prodrug, it is activated by mycobacterial catalase-peroxidases such as M. tuberculosis KatG. Isoniazid inhibits mycolic acid synthesis, which prevents cell wall synthesis in mycobacteria."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "40055": {"category_aro_name": "antibiotic resistant kasA", "category_aro_cvterm_id": "40055", "category_aro_accession": "3003462", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "kasA is a ketoacyl acyl carrier protein synthase that catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. It is involved in elongation of fatty acids intermediate in the biosynthetic pathway of mycolic acids."}}}}, "1940": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1941": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1946": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1947": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1944": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1945": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "818": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "819": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1527": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "810": {"$update": {"ARO_category": {"37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35980": {"category_aro_name": "cefuroxime", "category_aro_cvterm_id": "35980", "category_aro_accession": "0000063", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefuroxime is a second-generation cephalosporin antibiotic with increased stability with beta-lactamases than first-generation cephalosporins. Cefuroxime is active against Gram-positive organisms but less active against methicillin-resistant strains."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36992": {"category_aro_name": "ceftibuten", "category_aro_cvterm_id": "36992", "category_aro_accession": "3000648", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftibuten is a semisynthetic cephalosporin active against Gram-negative bacilli. It is resistant against many plasmid-mediated beta-lactamases."}, "36993": {"category_aro_name": "cefditoren", "category_aro_cvterm_id": "36993", "category_aro_accession": "3000649", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefditoren is a semisynthetic cephalosporin active against staphylococci, streptococci, and and most enterobacteria. It is resistant to staphylococcal and most enterobacterial beta-lactamases, and is usually taken as the prodrug cefditoren pivoxil."}, "35995": {"category_aro_name": "piperacillin", "category_aro_cvterm_id": "35995", "category_aro_accession": "0000078", "category_aro_class_name": "Antibiotic", "category_aro_description": "Piperacillin is an acetylureidopenicillin and has an extended spectrum of targets relative to other beta-lactam antibiotics. It inhibits cell wall synthesis in bacteria, and is usually taken with the beta-lactamase inhibitor tazobactam to overcome penicillin-resistant bacteria."}, "36991": {"category_aro_name": "cefpodoxime", "category_aro_cvterm_id": "36991", "category_aro_accession": "3000647", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefpodoxime is a semisynthetic cephalosporin that acts similarly to cefotaxime with broad-spectrum activity. It is stable to many plasmid-mediated beta-lactamses. Cefpodoxime is consumed as the prodrug cefpodoxime proxetil."}, "36990": {"category_aro_name": "cefixime", "category_aro_cvterm_id": "36990", "category_aro_accession": "3000646", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefixime is a cephalosporin resistant to most beta-lactamases. It is active against many enterobacteria, but activity against staphylococci is poor."}, "36994": {"category_aro_name": "cefdinir", "category_aro_cvterm_id": "36994", "category_aro_accession": "3000650", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefdinir is similar to cefixime with a modified side-chain at its 7-amino position. It also shares similar activity with cefixime but is more active against staphylococci. It has also be shown to enhance phagocytosis."}, "35990": {"category_aro_name": "meropenem", "category_aro_cvterm_id": "35990", "category_aro_accession": "0000073", "category_aro_class_name": "Antibiotic", "category_aro_description": "Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36309": {"category_aro_name": "imipenem", "category_aro_cvterm_id": "36309", "category_aro_accession": "3000170", "category_aro_class_name": "Antibiotic", "category_aro_description": "Imipenem is a broad-spectrum antibiotic and is usually taken with cilastatin, which prevents hydrolysis of imipenem by renal dehydropeptidase-I. It is resistant to hydrolysis by most other beta-lactamases. Notable exceptions are the KPC beta-lactamases and Ambler Class B enzymes."}, "35927": {"category_aro_name": "cefoxitin", "category_aro_cvterm_id": "35927", "category_aro_accession": "0000008", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefoxitin is a cephamycin antibiotic often grouped with the second generation cephalosporins. Cefoxitin is bactericidal and acts by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. Cefoxitin's 7-alpha-methoxy group and 3' leaving group make it a poor substrate for most beta-lactamases."}, "36689": {"category_aro_name": "aztreonam", "category_aro_cvterm_id": "36689", "category_aro_accession": "3000550", "category_aro_class_name": "Antibiotic", "category_aro_description": "Aztreonam was the first monobactam discovered, and is greatly effective against Gram-negative bacteria while inactive against Gram-positive bacteria. Artreonam is a poor substrate for beta-lactamases, and may even act as an inhibitor. In Gram-negative bacteria, Aztreonam interferes with filamentation, inhibiting cell division and leading to cell death."}, "37085": {"category_aro_name": "isopenicillin N", "category_aro_cvterm_id": "37085", "category_aro_accession": "3000705", "category_aro_class_name": "Antibiotic", "category_aro_description": "Isopenicillin N is a natural penicillin derivative produced by Penicillium chrysogenum with activity similar to penicillin N."}, "35975": {"category_aro_name": "cefazolin", "category_aro_cvterm_id": "35975", "category_aro_accession": "0000058", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefazolin (INN), also known as cefazoline or cephazolin, is a first generation cephalosporin antibiotic. It is administered parenterally, and is active against a broad spectrum of bacteria."}, "37086": {"category_aro_name": "penicillin N", "category_aro_cvterm_id": "37086", "category_aro_accession": "3000706", "category_aro_class_name": "Antibiotic", "category_aro_description": "Penicillin N is a penicillin derivative produced by Cephalosporium acremonium."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35976": {"category_aro_name": "cefepime", "category_aro_cvterm_id": "35976", "category_aro_accession": "0000059", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefepime (INN) is a fourth-generation cephalosporin antibiotic developed in 1994. It contains an aminothiazolyl group that decreases its affinity with beta-lactamases. Cefepime shows high binding affinity with penicillin-binding proteins and has an extended spectrum of activity against Gram-positive and Gram-negative bacteria, with greater activity against both Gram-negative and Gram-positive organisms than third-generation agents."}, "35971": {"category_aro_name": "penicillin", "category_aro_cvterm_id": "35971", "category_aro_accession": "0000054", "category_aro_class_name": "Antibiotic", "category_aro_description": "Penicillin (sometimes abbreviated PCN) is a beta-lactam antibiotic used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms. It works by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35973": {"category_aro_name": "oxacillin", "category_aro_cvterm_id": "35973", "category_aro_accession": "0000056", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxacillin is a penicillinase-resistant beta-lactam. It is similar to methicillin, and has replaced methicillin in clinical use. Oxacillin, especially in combination with other antibiotics, is effective against many penicillinase-producing strains of Staphylococcus aureus and Staphylococcus epidermidis."}, "40928": {"category_aro_name": "cefmetazole", "category_aro_cvterm_id": "40928", "category_aro_accession": "3004001", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefmetazole is a semi-synthetic cephamycin antibiotic with broad spectrum antibiotic activity against both gram-positive and gram-negative bacteria, that disrupt cell wall synthesis through binding to PBPs causing cell lysis."}, "40944": {"category_aro_name": "moxalactam", "category_aro_cvterm_id": "40944", "category_aro_accession": "3004017", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxalactam (Latamoxef) is a broad spectrum cephalosporin (oxacephem) and beta-lactam antibiotic. Moxalactam binding to PBPs inhibits peptidoglycan cross-linkage in the cell wall, resulting in cell death. Moxalactam is proposed to be effective against meningitides as it passes the blood-brain barrier."}, "35930": {"category_aro_name": "cloxacillin", "category_aro_cvterm_id": "35930", "category_aro_accession": "0000011", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cloxacillin is a semisynthetic, isoxazolyl penicillin derivative in the beta-lactam class of antibiotics. It interferes with peptidogylcan synthesis and is commonly used for treating penicillin-resistant Staphylococcus aureus infections."}, "36995": {"category_aro_name": "ceftaroline", "category_aro_cvterm_id": "36995", "category_aro_accession": "3000651", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftaroline is a novel cephalosporin active against methicillin resistant Staphylococcus aureus. Like other cephalosporins it binds penicillin-binding proteins to inhibit cell wall synthesis. It strongly binds with PBP2a, associated with methicillin resistance. It is taken orally as the prodrug ceftaroline fosamil."}, "35979": {"category_aro_name": "ceftriaxone", "category_aro_cvterm_id": "35979", "category_aro_accession": "0000062", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftriaxone is a third-generation cephalosporin antibiotic. The presence of an aminothiazolyl sidechain increases ceftriazone's resistance to beta-lactamases. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria."}, "35934": {"category_aro_name": "methicillin", "category_aro_cvterm_id": "35934", "category_aro_accession": "0000015", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derived from penicillin to combat penicillin-resistance, methicillin is insensitive to beta-lactamases (also known as penicillinases) secreted by many penicillin-resistant bacteria. Methicillin is bactericidal, and acts by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40943": {"category_aro_name": "loracarbef", "category_aro_cvterm_id": "40943", "category_aro_accession": "3004016", "category_aro_class_name": "Antibiotic", "category_aro_description": "Loracarbef is a second-generation cephalosporin (carbacephem) and broad spectrum beta-lactam antibiotic. Loracarbef inhibits PBPs through binding, disrupting peptidoglycan cell wall cross-linkage and resulting in cell death."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36989": {"category_aro_name": "cefotaxime", "category_aro_cvterm_id": "36989", "category_aro_accession": "3000645", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefotaxime is a semisynthetic cephalosporin taken parenterally. It is resistant to most beta-lactamases and active against Gram-negative rods and cocci due to its aminothiazoyl and methoximino functional groups."}, "36988": {"category_aro_name": "cefaclor", "category_aro_cvterm_id": "36988", "category_aro_accession": "3000644", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefaclor is a semisynthetic cephalosporin derived from cephalexin. It has broad-spectrum antibiotic activity."}, "37589": {"category_aro_name": "methicillin resistant PBP2", "category_aro_cvterm_id": "37589", "category_aro_accession": "3001208", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "In methicillin sensitive S. aureus (MSSA), beta-lactams bind to native penicillin-binding proteins (PBPs) and disrupt synthesis of the cell membrane's peptidoglycan layer. In methicillin resistant S. aureus (MRSA), foreign PBP2a acquired by lateral gene transfer is able to perform peptidoglycan synthesis in the presence of beta-lactams."}, "40929": {"category_aro_name": "cefonicid", "category_aro_cvterm_id": "40929", "category_aro_accession": "3004002", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefonicid is a second-generation cephalosporin-class beta-lactam antibiotic with broad spectrum activity. Particularly used against urinary tract infections and lower respiratory infections. Causes cell lysis by inactivation of PBPs through binding, inhibiting peptidoglycan synthesis."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "36980": {"category_aro_name": "flucloxacillin", "category_aro_cvterm_id": "36980", "category_aro_accession": "3000636", "category_aro_class_name": "Antibiotic", "category_aro_description": "Flucloxacillin is similar to cloxacillin, with an extra additional fluorine atom."}, "36983": {"category_aro_name": "mezlocillin", "category_aro_cvterm_id": "36983", "category_aro_accession": "3000639", "category_aro_class_name": "Antibiotic", "category_aro_description": "Mezlocillin is a penicillin derivative taken parenterally."}, "36982": {"category_aro_name": "azlocillin", "category_aro_cvterm_id": "36982", "category_aro_accession": "3000638", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azlocillin is a semisynthetic derivative of penicillin that is notably active against Ps. aeruginosa and other Gram-negative bacteria."}, "36985": {"category_aro_name": "cefalexin", "category_aro_cvterm_id": "36985", "category_aro_accession": "3000641", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalexin is a cephalosporin antibiotic that causes filamentation. It is resistant to staphylococcal beta-lactamase, but degraded by enterobacterial beta-lactamases."}, "36984": {"category_aro_name": "doripenem", "category_aro_cvterm_id": "36984", "category_aro_accession": "3000640", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doripenem is a carbapenem with a broad range of activity against Gram-positive and Gram-negative bacteria, and along with meropenem, it is the most active beta-lactam antibiotic against Pseudomonas aeruginosa. It inhibits bacterial cell wall synthesis."}, "36987": {"category_aro_name": "cefotiam", "category_aro_cvterm_id": "36987", "category_aro_accession": "3000643", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefotiam is a cephalosporin antibiotic with similar activity to cefuroxime but more active against enterobacteria. It is consumed orally as the prodrug cefotiam hexetil."}, "36986": {"category_aro_name": "cefadroxil", "category_aro_cvterm_id": "36986", "category_aro_accession": "3000642", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefadroxil, or p-hydroxycephalexin, is an cephalosporin antibiotic similar to cefalexin."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "37141": {"category_aro_name": "mecillinam", "category_aro_cvterm_id": "37141", "category_aro_accession": "3000761", "category_aro_class_name": "Antibiotic", "category_aro_description": "Mecillinam is a broad-spectrum beta-lactam antibiotic that was semi-synthetically derived to have a different drug centre, being a 6-alpha-amidinopenicillanate instead of a 6-alpha-acylaminopenicillanate. Contrasting most beta-lactam drugs, mecillinam is most active against Gram-negative bacteria. It binds specifically to penicillin binding protein 2 (PBP2)."}, "36979": {"category_aro_name": "dicloxacillin", "category_aro_cvterm_id": "36979", "category_aro_accession": "3000635", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dicloxacillin is a penicillin derivative that has an extra chlorine atom in comparison to cloxacillin. While more active than cloxacillin, its high affinity for serum protein reduces its activity in human serum in vitro."}, "36978": {"category_aro_name": "propicillin", "category_aro_cvterm_id": "36978", "category_aro_accession": "3000634", "category_aro_class_name": "Antibiotic", "category_aro_description": "Propicillin is an orally taken penicillin derivative that has high absorption but poor activity."}, "35978": {"category_aro_name": "ceftobiprole", "category_aro_cvterm_id": "35978", "category_aro_accession": "0000061", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftobiprole (Zeftera/Zevtera) is a next generation (5th generation) cephalosporin antibiotic with activity against methicillin-resistant Staphylococcus aureus, penicillin-resistant Streptococcus pneumoniae, Pseudomonas aeruginosa, and Enterococci. Ceftobiprole inhibits transpeptidases essential to building cell walls, and is a poor substrate for most beta-lactamases."}, "36976": {"category_aro_name": "benzylpenicillin", "category_aro_cvterm_id": "36976", "category_aro_accession": "3000632", "category_aro_class_name": "Antibiotic", "category_aro_description": "Benzylpenicillin, commonly referred to as penicillin G, is effective against both Gram-positive and Gram-negative bacteria. It is unstable in acid."}, "36977": {"category_aro_name": "phenoxymethylpenicillin", "category_aro_cvterm_id": "36977", "category_aro_accession": "3000633", "category_aro_class_name": "Antibiotic", "category_aro_description": "Phenoxymethylpenicillin, or penicillin V, is a penicillin derivative that is acid stable but less active than benzylpenicillin (penicillin G)."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35961": {"category_aro_name": "carbenicillin", "category_aro_cvterm_id": "35961", "category_aro_accession": "0000043", "category_aro_class_name": "Antibiotic", "category_aro_description": "Carbenicillin is a semi-synthetic antibiotic belonging to the carboxypenicillin subgroup of the penicillins. It has gram-negative coverage which includes Pseudomonas aeruginosa but limited gram-positive coverage. The carboxypenicillins are susceptible to degradation by beta-lactamase enzymes. Carbenicillin antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40933": {"category_aro_name": "ceftiofur", "category_aro_cvterm_id": "40933", "category_aro_accession": "3004006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftiofur is a third-generation broad spectrum cephalosporin and beta-lactam antibiotic. It causes cell lysis by disrupting peptidoglycan cross-linkage and cell wall formation by binding to PBPs."}, "40932": {"category_aro_name": "cefprozil", "category_aro_cvterm_id": "40932", "category_aro_accession": "3004005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefprozil is a cephalosporin and beta-lactam antibiotic with bactericidal activity. It selectively binds to PBPs and inhibits peptidoglycan synthesis, a major cell wall component, resulting in cell lysis."}, "40935": {"category_aro_name": "cephapirin", "category_aro_cvterm_id": "40935", "category_aro_accession": "3004008", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cephapirin is a first-generation cephalosporin and broad spectrum beta-lactam antibiotic. Inactivation of penicillin-binding proteins through cephapirin binding disrupts peptidoglycan cross-linking, resulting in cell lysis."}, "40934": {"category_aro_name": "ceftizoxime", "category_aro_cvterm_id": "40934", "category_aro_accession": "3004007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftizoxime is a third-generation cephalosporin and broad spectrum beta-lactam antibiotic. Ceftizoxime causes bacterial cell lysis through peptidoglycan cross-linking inhibition by binding to PBPs."}, "35987": {"category_aro_name": "ertapenem", "category_aro_cvterm_id": "35987", "category_aro_accession": "0000070", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ertapenem is a carbapenem antibiotic and is highly resistant to beta-lactamases like other carbapenems. It inhibits bacterial cell wall synthesis."}, "40936": {"category_aro_name": "cefradine", "category_aro_cvterm_id": "40936", "category_aro_accession": "3004009", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefradine is a first-generation cephalosporin and broad spectrum beta-lactam antibiotic. Cefradine binding to penicillin-binding proteins disrupts cell wall peptidoglycan cross-linkage, resulting in cell lysis."}}}}, "811": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "812": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "813": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "814": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "815": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "41376": {"category_aro_name": "GOB beta-lactamase", "category_aro_cvterm_id": "41376", "category_aro_accession": "3004212", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The GOB family of beta-lactamases have been discovered in the Elizabethkingia meningoseptica and are classified as subclass B3 beta-lactamase. They confer resistance to cephalosporins, penicillins, and carbapenems."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "816": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "817": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1991": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "1522": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1990": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1523": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "1993": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1490": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "421": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1492": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36222": {"category_aro_name": "MOX beta-lactamase", "category_aro_cvterm_id": "36222", "category_aro_accession": "3000083", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "MOX beta-lactamases are plasmid-mediated AmpC-type beta-lactamases."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1493": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36195": {"category_aro_name": "PER beta-lactamase", "category_aro_cvterm_id": "36195", "category_aro_accession": "3000056", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PER beta-lactamases are plasmid-mediated extended spectrum beta-lactamases found in the Enterobacteriaceae family."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1494": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1495": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36211": {"category_aro_name": "ACT beta-lactamase", "category_aro_cvterm_id": "36211", "category_aro_accession": "3000072", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1496": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1497": {"$update": {"ARO_category": {"36476": {"category_aro_name": "iclaprim", "category_aro_cvterm_id": "36476", "category_aro_accession": "3000337", "category_aro_class_name": "Antibiotic", "category_aro_description": "Iclaprim is a bactericidal compound that inhibits dihydrofolate reductase. It is used against clinically important Gram-positive pathogens, including methicillin-sensitive Staphylococcus aureus and methicillin-resistant S. aureus."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36408": {"category_aro_name": "brodimoprim", "category_aro_cvterm_id": "36408", "category_aro_accession": "3000269", "category_aro_class_name": "Antibiotic", "category_aro_description": "Brodimoprim is a structural derivative of trimethoprim and an inhibitor of bacterial dihydrofolate reductase. The 4-methoxy group of trimethoprim is replaced with a bromine atom."}, "37617": {"category_aro_name": "trimethoprim resistant dihydrofolate reductase dfr", "category_aro_cvterm_id": "37617", "category_aro_accession": "3001218", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Alternative dihydropteroate synthase dfr present on plasmids produces alternate proteins that are less sensitive to trimethoprim from inhibiting its role in folate synthesis, thus conferring trimethoprim resistance."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36423": {"category_aro_name": "tetroxoprim", "category_aro_cvterm_id": "36423", "category_aro_accession": "3000284", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetroxoprim is a trimethoprim derivative that inhibits bacterial dihydrofolate reductase."}}}}, "1498": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36720": {"category_aro_name": "CphA beta-lactamase", "category_aro_cvterm_id": "36720", "category_aro_accession": "3000581", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CphA is an Ambler Class B MBL; subclass B2 originally isolated from Aeromonas hydrophilia. This enzyme has specific activity against carbapenems and is active as a mono-zinc protein."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "1499": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36182": {"category_aro_name": "VEB beta-lactamase", "category_aro_cvterm_id": "36182", "category_aro_accession": "3000043", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VEB beta-lactamases or Vietnamese extended-spectrum beta-lactamases are class A beta-lactamases that confer high-level resistance to oxyimino cephalosporins and to aztreonam"}}}}, "1395": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "36383": {"category_aro_name": "reduced permeability to antibiotic", "category_aro_cvterm_id": "36383", "category_aro_accession": "3000244", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Reduction in permeability to antibiotic, generally through reduced production of porins, can provide resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "41445": {"category_aro_name": "General Bacterial Porin with reduced permeability to beta-lactams", "category_aro_cvterm_id": "41445", "category_aro_accession": "3004281", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These are GBPs that are associated with decreased susceptibility to beta-lactams either through mutations in the porin protein, absence of the porin protein, or expression of the porin protein."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}, "ARO_name": "Neisseria gonorrhoeae porin PIB (por)"}}, "1994": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "37631": {"category_aro_name": "methymycin", "category_aro_cvterm_id": "37631", "category_aro_accession": "3001232", "category_aro_class_name": "Antibiotic", "category_aro_description": "Produced by Streptomyces venezuelae ATCC 15439."}, "37247": {"category_aro_name": "oleandomycin", "category_aro_cvterm_id": "37247", "category_aro_accession": "3000867", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oleandomycin is a 14-membered macrolide produced by Streptomyces antibioticus. It is ssimilar to erythromycin, and contains a desosamine amino sugar and an oleandrose sugar. It targets the 50S ribosomal subunit to prevent protein synthesis."}, "37621": {"category_aro_name": "chalcomycin", "category_aro_cvterm_id": "37621", "category_aro_accession": "3001222", "category_aro_class_name": "Antibiotic", "category_aro_description": "Produced by Streptomyces bikiniensis"}, "41400": {"category_aro_name": "gimA family macrolide glycosyltransferase", "category_aro_cvterm_id": "41400", "category_aro_accession": "3004236", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "This family of macrolide glycosyltransferases derive from gimA, which was discovered in Streptomyces ambofaciens."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36284": {"category_aro_name": "tylosin", "category_aro_cvterm_id": "36284", "category_aro_accession": "3000145", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tylosin is a 16-membered macrolide, naturally produced by Streptomyces fradiae. It interacts with the bacterial ribosome 50S subunit to inhibit protein synthesis."}}}}, "1700": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36211": {"category_aro_name": "ACT beta-lactamase", "category_aro_cvterm_id": "36211", "category_aro_accession": "3000072", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1701": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "37247": {"category_aro_name": "oleandomycin", "category_aro_cvterm_id": "37247", "category_aro_accession": "3000867", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oleandomycin is a 14-membered macrolide produced by Streptomyces antibioticus. It is ssimilar to erythromycin, and contains a desosamine amino sugar and an oleandrose sugar. It targets the 50S ribosomal subunit to prevent protein synthesis."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35974": {"category_aro_name": "telithromycin", "category_aro_cvterm_id": "35974", "category_aro_accession": "0000057", "category_aro_class_name": "Antibiotic", "category_aro_description": "Telithromycin is a semi-synthetic derivative of erythromycin. It is a 14-membered macrolide and is the first ketolide antibiotic to be used in clinics. Telithromycin binds the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36284": {"category_aro_name": "tylosin", "category_aro_cvterm_id": "36284", "category_aro_accession": "3000145", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tylosin is a 16-membered macrolide, naturally produced by Streptomyces fradiae. It interacts with the bacterial ribosome 50S subunit to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36315": {"category_aro_name": "dirithromycin", "category_aro_cvterm_id": "36315", "category_aro_accession": "3000176", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dirithromycin is an oxazine derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome to inhibit bacterial protein synthesis."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "36699": {"category_aro_name": "Erm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36699", "category_aro_accession": "3000560", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Erm proteins are part of the RNA methyltransferase family and methylate A2058 (E. coli nomenclature) of the 23S ribosomal RNA conferring degrees of resistance to Macrolides, Lincosamides and Streptogramin b. This is called the MLSb phenotype."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35946": {"category_aro_name": "roxithromycin", "category_aro_cvterm_id": "35946", "category_aro_accession": "0000027", "category_aro_class_name": "Antibiotic", "category_aro_description": "Roxithromycin is a semi-synthetic, 14-carbon ring macrolide antibiotic derived from erythromycin. It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36295": {"category_aro_name": "spiramycin", "category_aro_cvterm_id": "36295", "category_aro_accession": "3000156", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spiramycin is a 16-membered macrolide and is natural product produced by Streptomyces ambofaciens. It binds to the 50S subunit of bacterial ribosomes and inhibits peptidyl transfer activity to disrupt protein synthesis."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}, "1702": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36197": {"category_aro_name": "MIR beta-lactamase", "category_aro_cvterm_id": "36197", "category_aro_accession": "3000058", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "MIR beta-lactamases are plasmid-mediated beta-lactamases that confer resistance to oxyimino- and alpha-methoxy beta-lactams"}}}}, "1703": {"$update": {"ARO_category": {"35944": {"category_aro_name": "fosfomycin", "category_aro_cvterm_id": "35944", "category_aro_accession": "0000025", "category_aro_class_name": "Drug Class", "category_aro_description": "Fosfomycin (also known as phosphomycin and phosphonomycin) is a broad-spectrum antibiotic produced by certain Streptomyces species. It is effective on gram positive and negative bacteria as it targets the cell wall, an essential feature shared by both bacteria. Its specific target is MurA (MurZ in E.coli), which attaches phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine, a step of commitment to cell wall synthesis. In the active site of MurA, the active cysteine molecule is alkylated which stops the catalytic reaction."}, "36272": {"category_aro_name": "fosfomycin thiol transferase", "category_aro_cvterm_id": "36272", "category_aro_accession": "3000133", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Catalyzes the addition of a thiol group from a nucleophilic molecule to fosfomycin."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "1704": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1705": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1706": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1707": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1708": {"$update": {"ARO_category": {"36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35921": {"category_aro_name": "tetracycline-resistant ribosomal protection protein", "category_aro_cvterm_id": "35921", "category_aro_accession": "0000002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "A family of proteins known to bind to the 30S ribosomal subunit. This interaction prevents tetracycline and tetracycline derivatives from inhibiting ribosomal function. Thus, these proteins confer elevated resistance to tetracycline derivatives as a ribosomal protection protein."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}, "1709": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1996": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "36020": {"category_aro_name": "vanX", "category_aro_cvterm_id": "36020", "category_aro_accession": "3000011", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanX is a D,D-dipeptidase that cleaves D-Ala-D-Ala but not D-Ala-D-Lac, ensuring that the latter dipeptide that has reduced binding affinity with vancomycin is used to synthesize peptidoglycan substrate."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "424": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1391": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "426": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36364": {"category_aro_name": "ANT(6)", "category_aro_cvterm_id": "36364", "category_aro_accession": "3000225", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucelotidylylation of streptomycin at the hydroxyl group at position 6"}}}}, "1128": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1129": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1120": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36027": {"category_aro_name": "IMI beta-lactamase", "category_aro_cvterm_id": "36027", "category_aro_accession": "3000018", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "IMI beta-lactamases are a group of TEM-1-like beta-lactamase that are known to hydrolyze imipenem. IMI beta-lactamases are inhibited by clavulanic acid and tazobactam."}}}}, "1121": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36265": {"category_aro_name": "APH(3')", "category_aro_cvterm_id": "36265", "category_aro_accession": "3000126", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of 2-deoxystreptamine aminoglycosides on the hydroxyl group at position 3'"}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1122": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1123": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36206": {"category_aro_name": "FOX beta-lactamase", "category_aro_cvterm_id": "36206", "category_aro_accession": "3000067", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "FOX beta-lactamases are plasmid-encoded AmpC-type beta-lactamase which conferred resistance to broad-spectrum cephalosporins and cephamycins"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1124": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1125": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38817": {"category_aro_name": "OKP beta-lactamase", "category_aro_cvterm_id": "38817", "category_aro_accession": "3002417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OKP beta-lactamases are chromosomal class A beta-lactamase that confer resistance to penicillins and early cephalosporins in Klebsiella pneumoniae. OKP beta-lactamases can be subdivided into two groups: OKP-A and OKP-B which diverge by about 4.2%"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1126": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1127": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "524": {"$update": {"ARO_category": {"36476": {"category_aro_name": "iclaprim", "category_aro_cvterm_id": "36476", "category_aro_accession": "3000337", "category_aro_class_name": "Antibiotic", "category_aro_description": "Iclaprim is a bactericidal compound that inhibits dihydrofolate reductase. It is used against clinically important Gram-positive pathogens, including methicillin-sensitive Staphylococcus aureus and methicillin-resistant S. aureus."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36408": {"category_aro_name": "brodimoprim", "category_aro_cvterm_id": "36408", "category_aro_accession": "3000269", "category_aro_class_name": "Antibiotic", "category_aro_description": "Brodimoprim is a structural derivative of trimethoprim and an inhibitor of bacterial dihydrofolate reductase. The 4-methoxy group of trimethoprim is replaced with a bromine atom."}, "37617": {"category_aro_name": "trimethoprim resistant dihydrofolate reductase dfr", "category_aro_cvterm_id": "37617", "category_aro_accession": "3001218", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Alternative dihydropteroate synthase dfr present on plasmids produces alternate proteins that are less sensitive to trimethoprim from inhibiting its role in folate synthesis, thus conferring trimethoprim resistance."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36423": {"category_aro_name": "tetroxoprim", "category_aro_cvterm_id": "36423", "category_aro_accession": "3000284", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetroxoprim is a trimethoprim derivative that inhibits bacterial dihydrofolate reductase."}}}}, "525": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "526": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36211": {"category_aro_name": "ACT beta-lactamase", "category_aro_cvterm_id": "36211", "category_aro_accession": "3000072", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "527": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1018": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36265": {"category_aro_name": "APH(3')", "category_aro_cvterm_id": "36265", "category_aro_accession": "3000126", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of 2-deoxystreptamine aminoglycosides on the hydroxyl group at position 3'"}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "521": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "522": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36600": {"category_aro_name": "florfenicol", "category_aro_cvterm_id": "36600", "category_aro_accession": "3000461", "category_aro_class_name": "Antibiotic", "category_aro_description": "Florfenicol is a fluorine derivative of chloramphenicol, where the nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3) and the hydroxyl group (-OH), by a fluorine group (-F). The action mechanism is the same as chloramphenicol's, where the antibiotic binds to the 23S RNA of the 50S subunit of bacterial ribosomes to inhibit protein synthesis."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "523": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1014": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1015": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35973": {"category_aro_name": "oxacillin", "category_aro_cvterm_id": "35973", "category_aro_accession": "0000056", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxacillin is a penicillinase-resistant beta-lactam. It is similar to methicillin, and has replaced methicillin in clinical use. Oxacillin, especially in combination with other antibiotics, is effective against many penicillinase-producing strains of Staphylococcus aureus and Staphylococcus epidermidis."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35930": {"category_aro_name": "cloxacillin", "category_aro_cvterm_id": "35930", "category_aro_accession": "0000011", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cloxacillin is a semisynthetic, isoxazolyl penicillin derivative in the beta-lactam class of antibiotics. It interferes with peptidogylcan synthesis and is commonly used for treating penicillin-resistant Staphylococcus aureus infections."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "1016": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1017": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "528": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36233": {"category_aro_name": "OCH beta-lactamase", "category_aro_cvterm_id": "36233", "category_aro_accession": "3000094", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OCH beta-lactamases are Ambler class C chromosomal-encoded beta-lactamases in Ochrobactrum anthropi"}}}}, "529": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1012": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36198": {"category_aro_name": "KPC beta-lactamase", "category_aro_cvterm_id": "36198", "category_aro_accession": "3000059", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Klebsiella pneumoniae carbapenem resistant (KPC) beta-lactamases are notorious for their ability to efficiently hydrolyze carbapenems, unlike other Ambler Class A beta-lactamases. There are currently 9 variants reported worldwide. These enzymes were first isolated from Klebsiella pneumoniae strains in 2001 in the United States. Hospital outbreaks have since been reported in Greece and Israel and KPC carrying strains are now endemic to New York facilities. KPC-1 and KPC-2 have been shown to be identical and are now referred to as KPC-2."}}}}, "1013": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36267": {"category_aro_name": "APH(2'')", "category_aro_cvterm_id": "36267", "category_aro_accession": "3000128", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of 2-deoxystreptamine aminoglycosides on the hydroxyl group at position 2''"}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1234": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36197": {"category_aro_name": "MIR beta-lactamase", "category_aro_cvterm_id": "36197", "category_aro_accession": "3000058", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "MIR beta-lactamases are plasmid-mediated beta-lactamases that confer resistance to oxyimino- and alpha-methoxy beta-lactams"}}}}, "1235": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1236": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1237": {"$update": {"ARO_category": {"36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36673": {"category_aro_name": "rifapentine", "category_aro_cvterm_id": "36673", "category_aro_accession": "3000534", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifapentine is a semisynthetic rifamycin that inhibits DNA-dependent RNA synthesis. It is often used in the treatment of tuberculosis and leprosy."}, "36669": {"category_aro_name": "rifabutin", "category_aro_cvterm_id": "36669", "category_aro_accession": "3000530", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifabutin is a semisynthetic rifamycin used in tuberculosis therapy. It inhibits DNA-dependent RNA synthesis."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36349": {"category_aro_name": "rifamycin-resistant beta-subunit of RNA polymerase (rpoB)", "category_aro_cvterm_id": "36349", "category_aro_accession": "3000210", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Rifampin resistant RNA polymerases include amino acids substitutions which disrupt the affinity of rifampin for its binding site. These mutations are frequently concentrated in the rif I region of the beta-subunit and most often involve amino acids which make direct interactions with rifampin. However, mutations which also confer resistance can occur outside this region and may involve amino acids which do not directly make contact with rifampin."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36656": {"category_aro_name": "rifaximin", "category_aro_cvterm_id": "36656", "category_aro_accession": "3000517", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifaximin is a semi-synthetic rifamycin used to treat traveller's diarrhea. Rifaximin inhibits RNA synthesis by binding to the beta subunit of bacterial RNA polymerase."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}}, "model_sequences": {"$update": {"sequence": {"4199": {"dna_sequence": {"fmax": "763325", "fmin": "759806", "accession": "AL123456.3", "strand": "+", "sequence": "TTGGCAGATTCCCGCCAGAGCAAAACAGCCGCTAGTCCTAGTCCGAGTCGCCCGCAAAGTTCCTCGAATAACTCCGTACCCGGAGCGCCAAACCGGGTCTCCTTCGCTAAGCTGCGCGAACCACTTGAGGTTCCGGGACTCCTTGACGTCCAGACCGATTCGTTCGAGTGGCTGATCGGTTCGCCGCGCTGGCGCGAATCCGCCGCCGAGCGGGGTGATGTCAACCCAGTGGGTGGCCTGGAAGAGGTGCTCTACGAGCTGTCTCCGATCGAGGACTTCTCCGGGTCGATGTCGTTGTCGTTCTCTGACCCTCGTTTCGACGATGTCAAGGCACCCGTCGACGAGTGCAAAGACAAGGACATGACGTACGCGGCTCCACTGTTCGTCACCGCCGAGTTCATCAACAACAACACCGGTGAGATCAAGAGTCAGACGGTGTTCATGGGTGACTTCCCGATGATGACCGAGAAGGGCACGTTCATCATCAACGGGACCGAGCGTGTGGTGGTCAGCCAGCTGGTGCGGTCGCCCGGGGTGTACTTCGACGAGACCATTGACAAGTCCACCGACAAGACGCTGCACAGCGTCAAGGTGATCCCGAGCCGCGGCGCGTGGCTCGAGTTTGACGTCGACAAGCGCGACACCGTCGGCGTGCGCATCGACCGCAAACGCCGGCAACCGGTCACCGTGCTGCTCAAGGCGCTGGGCTGGACCAGCGAGCAGATTGTCGAGCGGTTCGGGTTCTCCGAGATCATGCGATCGACGCTGGAGAAGGACAACACCGTCGGCACCGACGAGGCGCTGTTGGACATCTACCGCAAGCTGCGTCCGGGCGAGCCCCCGACCAAAGAGTCAGCGCAGACGCTGTTGGAAAACTTGTTCTTCAAGGAGAAGCGCTACGACCTGGCCCGCGTCGGTCGCTATAAGGTCAACAAGAAGCTCGGGCTGCATGTCGGCGAGCCCATCACGTCGTCGACGCTGACCGAAGAAGACGTCGTGGCCACCATCGAATATCTGGTCCGCTTGCACGAGGGTCAGACCACGATGACCGTTCCGGGCGGCGTCGAGGTGCCGGTGGAAACCGACGACATCGACCACTTCGGCAACCGCCGCCTGCGTACGGTCGGCGAGCTGATCCAAAACCAGATCCGGGTCGGCATGTCGCGGATGGAGCGGGTGGTCCGGGAGCGGATGACCACCCAGGACGTGGAGGCGATCACACCGCAGACGTTGATCAACATCCGGCCGGTGGTCGCCGCGATCAAGGAGTTCTTCGGCACCAGCCAGCTGAGCCAATTCATGGACCAGAACAACCCGCTGTCGGGGTTGACCCACAAGCGCCGACTGTCGGCGCTGGGGCCCGGCGGTCTGTCACGTGAGCGTGCCGGGCTGGAGGTCCGCGACGTGCACCCGTCGCACTACGGCCGGATGTGCCCGATCGAAACCCCTGAGGGGCCCAACATCGGTCTGATCGGCTCGCTGTCGGTGTACGCGCGGGTCAACCCGTTCGGGTTCATCGAAACGCCGTACCGCAAGGTGGTCGACGGCGTGGTTAGCGACGAGATCGTGTACCTGACCGCCGACGAGGAGGACCGCCACGTGGTGGCACAGGCCAATTCGCCGATCGATGCGGACGGTCGCTTCGTCGAGCCGCGCGTGCTGGTCCGCCGCAAGGCGGGCGAGGTGGAGTACGTGCCCTCGTCTGAGGTGGACTACATGGACGTCTCGCCCCGCCAGATGGTGTCGGTGGCCACCGCGATGATTCCCTTCCTGGAGCACGACGACGCCAACCGTGCCCTCATGGGGGCAAACATGCAGCGCCAGGCGGTGCCGCTGGTCCGTAGCGAGGCCCCGCTGGTGGGCACCGGGATGGAGCTGCGCGCGGCGATCGACGCCGGCGACGTCGTCGTCGCCGAAGAAAGCGGCGTCATCGAGGAGGTGTCGGCCGACTACATCACTGTGATGCACGACAACGGCACCCGGCGTACCTACCGGATGCGCAAGTTTGCCCGGTCCAACCACGGCACTTGCGCCAACCAGTGCCCCATCGTGGACGCGGGCGACCGAGTCGAGGCCGGTCAGGTGATCGCCGACGGTCCCTGTACTGACGACGGCGAGATGGCGCTGGGCAAGAACCTGCTGGTGGCCATCATGCCGTGGGAGGGCCACAACTACGAGGACGCGATCATCCTGTCCAACCGCCTGGTCGAAGAGGACGTGCTCACCTCGATCCACATCGAGGAGCATGAGATCGATGCTCGCGACACCAAGCTGGGTGCGGAGGAGATCACCCGCGACATCCCGAACATCTCCGACGAGGTGCTCGCCGACCTGGATGAGCGGGGCATCGTGCGCATCGGTGCCGAGGTTCGCGACGGGGACATCCTGGTCGGCAAGGTCACCCCGAAGGGTGAGACCGAGCTGACGCCGGAGGAGCGGCTGCTGCGTGCCATCTTCGGTGAGAAGGCCCGCGAGGTGCGCGACACTTCGCTGAAGGTGCCGCACGGCGAATCCGGCAAGGTGATCGGCATTCGGGTGTTTTCCCGCGAGGACGAGGACGAGTTGCCGGCCGGTGTCAACGAGCTGGTGCGTGTGTATGTGGCTCAGAAACGCAAGATCTCCGACGGTGACAAGCTGGCCGGCCGGCACGGCAACAAGGGCGTGATCGGCAAGATCCTGCCGGTTGAGGACATGCCGTTCCTTGCCGACGGCACCCCGGTGGACATTATTTTGAACACCCACGGCGTGCCGCGACGGATGAACATCGGCCAGATTTTGGAGACCCACCTGGGTTGGTGTGCCCACAGCGGCTGGAAGGTCGACGCCGCCAAGGGGGTTCCGGACTGGGCCGCCAGGCTGCCCGACGAACTGCTCGAGGCGCAGCCGAACGCCATTGTGTCGACGCCGGTGTTCGACGGCGCCCAGGAGGCCGAGCTGCAGGGCCTGTTGTCGTGCACGCTGCCCAACCGCGACGGTGACGTGCTGGTCGACGCCGACGGCAAGGCCATGCTCTTCGACGGGCGCAGCGGCGAGCCGTTCCCGTACCCGGTCACGGTTGGCTACATGTACATCATGAAGCTGCACCACCTGGTGGACGACAAGATCCACGCCCGCTCCACCGGGCCGTACTCGATGATCACCCAGCAGCCGCTGGGCGGTAAGGCGCAGTTCGGTGGCCAGCGGTTCGGGGAGATGGAGTGCTGGGCCATGCAGGCCTACGGTGCTGCCTACACCCTGCAGGAGCTGTTGACCATCAAGTCCGATGACACCGTCGGCCGCGTCAAGGTGTACGAGGCGATCGTCAAGGGTGAGAACATCCCGGAGCCGGGCATCCCCGAGTCGTTCAAGGTGCTGCTCAAAGAACTGCAGTCGCTGTGCCTCAACGTCGAGGTGCTATCGAGTGACGGTGCGGCGATCGAACTGCGCGAAGGTGAGGACGAGGACCTGGAGCGGGCCGCGGCCAACCTGGGAATCAATCTGTCCCGCAACGAATCCGCAAGTGTCGAGGATCTTGCGTAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Mycobacterium tuberculosis H37Rv", "NCBI_taxonomy_id": "83332", "NCBI_taxonomy_cvterm_id": "39507"}, "protein_sequence": {"accession": "CCP43410.1", "sequence": "MADSRQSKTAASPSPSRPQSSSNNSVPGAPNRVSFAKLREPLEVPGLLDVQTDSFEWLIGSPRWRESAAERGDVNPVGGLEEVLYELSPIEDFSGSMSLSFSDPRFDDVKAPVDECKDKDMTYAAPLFVTAEFINNNTGEIKSQTVFMGDFPMMTEKGTFIINGTERVVVSQLVRSPGVYFDETIDKSTDKTLHSVKVIPSRGAWLEFDVDKRDTVGVRIDRKRRQPVTVLLKALGWTSEQIVERFGFSEIMRSTLEKDNTVGTDEALLDIYRKLRPGEPPTKESAQTLLENLFFKEKRYDLARVGRYKVNKKLGLHVGEPITSSTLTEEDVVATIEYLVRLHEGQTTMTVPGGVEVPVETDDIDHFGNRRLRTVGELIQNQIRVGMSRMERVVRERMTTQDVEAITPQTLINIRPVVAAIKEFFGTSQLSQFMDQNNPLSGLTHKRRLSALGPGGLSRERAGLEVRDVHPSHYGRMCPIETPEGPNIGLIGSLSVYARVNPFGFIETPYRKVVDGVVSDEIVYLTADEEDRHVVAQANSPIDADGRFVEPRVLVRRKAGEVEYVPSSEVDYMDVSPRQMVSVATAMIPFLEHDDANRALMGANMQRQAVPLVRSEAPLVGTGMELRAAIDAGDVVVAEESGVIEEVSADYITVMHDNGTRRTYRMRKFARSNHGTCANQCPIVDAGDRVEAGQVIADGPCTDDGEMALGKNLLVAIMPWEGHNYEDAIILSNRLVEEDVLTSIHIEEHEIDARDTKLGAEEITRDIPNISDEVLADLDERGIVRIGAEVRDGDILVGKVTPKGETELTPEERLLRAIFGEKAREVRDTSLKVPHGESGKVIGIRVFSREDEDELPAGVNELVRVYVAQKRKISDGDKLAGRHGNKGVIGKILPVEDMPFLADGTPVDIILNTHGVPRRMNIGQILETHLGWCAHSGWKVDAAKGVPDWAARLPDELLEAQPNAIVSTPVFDGAQEAELQGLLSCTLPNRDGDVLVDADGKAMLFDGRSGEPFPYPVTVGYMYIMKLHHLVDDKIHARSTGPYSMITQQPLGGKAQFGGQRFGEMECWAMQAYGAAYTLQELLTIKSDDTVGRVKVYEAIVKGENIPEPGIPESFKVLLKELQSLCLNVEVLSSDGAAIELREGEDEDLERAAANLGINLSRNESASVEDLA"}}}}}, "model_param": {"$update": {"snp": {"$update": {"param_value": {"$insert": {"8229": "T508N", "8230": "S512N", "8237": "P520T"}}, "clinical": {"$insert": {"8229": "T508N", "8230": "S512N", "8237": "P520T"}}}}, "41342": {"$update": {"param_value": {"$insert": {"8233": "-M515", "8232": "-F514", "8231": "-Q513", "8235": "-N518", "8234": "-D516", "8238": "-H526"}}}}}}}}, "1230": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1231": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35974": {"category_aro_name": "telithromycin", "category_aro_cvterm_id": "35974", "category_aro_accession": "0000057", "category_aro_class_name": "Antibiotic", "category_aro_description": "Telithromycin is a semi-synthetic derivative of erythromycin. It is a 14-membered macrolide and is the first ketolide antibiotic to be used in clinics. Telithromycin binds the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "1232": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36989": {"category_aro_name": "cefotaxime", "category_aro_cvterm_id": "36989", "category_aro_accession": "3000645", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefotaxime is a semisynthetic cephalosporin taken parenterally. It is resistant to most beta-lactamases and active against Gram-negative rods and cocci due to its aminothiazoyl and methoximino functional groups."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37139": {"category_aro_name": "fusidic acid", "category_aro_cvterm_id": "37139", "category_aro_accession": "3000759", "category_aro_class_name": "Drug Class", "category_aro_description": "Fusidic acid is the only commercially available fusidane, a group of steroid-like antibiotics. It is most active against Gram-positive bacteria, and acts by inhibiting elongation factor G to block protein synthesis."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "1233": {"$update": {"ARO_category": {"36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35921": {"category_aro_name": "tetracycline-resistant ribosomal protection protein", "category_aro_cvterm_id": "35921", "category_aro_accession": "0000002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "A family of proteins known to bind to the 30S ribosomal subunit. This interaction prevents tetracycline and tetracycline derivatives from inhibiting ribosomal function. Thus, these proteins confer elevated resistance to tetracycline derivatives as a ribosomal protection protein."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}, "1238": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1239": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "_version": "2.0.0", "438": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "439": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "436": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "38788": {"category_aro_name": "OXY beta-lactamase", "category_aro_cvterm_id": "38788", "category_aro_accession": "3002388", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXY beta-lactamases are chromosomal class A beta-lactamases that are found in Klebsiella oxytoca. At constitutive low levels, OXY beta-lactamases confer resistance to aminopenicillins and carboxypenicillins. At high induced levels, OXY beta-lactamases confer resistance to penicillins, cephalosporins and aztreonam."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "437": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "434": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36236": {"category_aro_name": "LEN beta-lactamase", "category_aro_cvterm_id": "36236", "category_aro_accession": "3000097", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "LEN beta-lactamases are chromosomal class A beta-lactamases that confer resistance to ampicillin, amoxicillin, carbenicillin, and ticarcillin but not to extended-spectrum beta-lactams."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}}}}, "435": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38817": {"category_aro_name": "OKP beta-lactamase", "category_aro_cvterm_id": "38817", "category_aro_accession": "3002417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OKP beta-lactamases are chromosomal class A beta-lactamase that confer resistance to penicillins and early cephalosporins in Klebsiella pneumoniae. OKP beta-lactamases can be subdivided into two groups: OKP-A and OKP-B which diverge by about 4.2%"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "432": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}}}}}, "433": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36211": {"category_aro_name": "ACT beta-lactamase", "category_aro_cvterm_id": "36211", "category_aro_accession": "3000072", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "430": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "431": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$delete": ["35950"], "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "1967": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1961": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "238": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "239": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "234": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "235": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}, "35996": {"category_aro_name": "clavulanate", "category_aro_cvterm_id": "35996", "category_aro_accession": "0000079", "category_aro_class_name": "Adjuvant", "category_aro_description": "Clavulanic acid is a beta-lactamase inhibitor (marketed by GlaxoSmithKline, formerly Beecham) combined with penicillin group antibiotics to overcome certain types of antibiotic resistance. It is used to overcome resistance in bacteria that secrete beta-lactamase, which otherwise inactivates most penicillins."}, "35995": {"category_aro_name": "piperacillin", "category_aro_cvterm_id": "35995", "category_aro_accession": "0000078", "category_aro_class_name": "Antibiotic", "category_aro_description": "Piperacillin is an acetylureidopenicillin and has an extended spectrum of targets relative to other beta-lactam antibiotics. It inhibits cell wall synthesis in bacteria, and is usually taken with the beta-lactamase inhibitor tazobactam to overcome penicillin-resistant bacteria."}, "35994": {"category_aro_name": "tazobactam", "category_aro_cvterm_id": "35994", "category_aro_accession": "0000077", "category_aro_class_name": "Adjuvant", "category_aro_description": "Tazobactam is a compound which inhibits the action of bacterial beta-lactamases."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "236": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36211": {"category_aro_name": "ACT beta-lactamase", "category_aro_cvterm_id": "36211", "category_aro_accession": "3000072", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "237": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41365": {"category_aro_name": "BlaB beta-lactamase", "category_aro_cvterm_id": "41365", "category_aro_accession": "3004201", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "BlaB beta-lactamases are class B beta-lactamases that are found in a variety of species and have the ability to hydrolyze penams and carbapenems."}}}}, "230": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "231": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "232": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36720": {"category_aro_name": "CphA beta-lactamase", "category_aro_cvterm_id": "36720", "category_aro_accession": "3000581", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CphA is an Ambler Class B MBL; subclass B2 originally isolated from Aeromonas hydrophilia. This enzyme has specific activity against carbapenems and is active as a mono-zinc protein."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "233": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36236": {"category_aro_name": "LEN beta-lactamase", "category_aro_cvterm_id": "36236", "category_aro_accession": "3000097", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "LEN beta-lactamases are chromosomal class A beta-lactamases that confer resistance to ampicillin, amoxicillin, carbenicillin, and ticarcillin but not to extended-spectrum beta-lactams."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}}}}, "2462": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "40463": {"category_aro_name": "nybomycin", "category_aro_cvterm_id": "40463", "category_aro_accession": "3003780", "category_aro_class_name": "Drug Class", "category_aro_description": "A heterocyclic antibiotic that targets mutant gyrA (type II topoisomerase) containing an S84L substitution, counteracting acquired quinolone resistance. It is effective against quinolone-resistant Gram-positive bacteria including S. aureus and E. faecalis. Due to its ability to counteract quinolone resistance by targeting the mutant form of the gyrA protein, it is classified as a reverse antibiotic (RA)."}, "39876": {"category_aro_name": "fluoroquinolone resistant gyrA", "category_aro_cvterm_id": "39876", "category_aro_accession": "3003292", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DNA gyrase is responsible for DNA supercoiling and consists of two alpha and two beta subunits. GyrA point mutations confer resistance by preventing fluoroquinolone antibiotics from binding the alpha-subunit."}}}}, "2228": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41384": {"category_aro_name": "subclass B3 PEDO beta-lactamase", "category_aro_cvterm_id": "41384", "category_aro_accession": "3004220", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PEDO family enzymes that are classified under subclass B3 (metallo-) beta-lactamases."}}}}, "2229": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41384": {"category_aro_name": "subclass B3 PEDO beta-lactamase", "category_aro_cvterm_id": "41384", "category_aro_accession": "3004220", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PEDO family enzymes that are classified under subclass B3 (metallo-) beta-lactamases."}}}}, "2227": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "41360": {"category_aro_name": "VCC beta-lactamase", "category_aro_cvterm_id": "41360", "category_aro_accession": "3004196", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VCC beta-lactamases are Class A beta-lactamases."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}}}}, "2224": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "41442": {"category_aro_name": "Outer Membrane Porin (Opr)", "category_aro_cvterm_id": "41442", "category_aro_accession": "3004278", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Opr family consists of porins in Pseudomonas species, and other Gram-negative bacteria, that exhibit a variety of substrate selectivities."}, "36309": {"category_aro_name": "imipenem", "category_aro_cvterm_id": "36309", "category_aro_accession": "3000170", "category_aro_class_name": "Antibiotic", "category_aro_description": "Imipenem is a broad-spectrum antibiotic and is usually taken with cilastatin, which prevents hydrolysis of imipenem by renal dehydropeptidase-I. It is resistant to hydrolysis by most other beta-lactamases. Notable exceptions are the KPC beta-lactamases and Ambler Class B enzymes."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "36383": {"category_aro_name": "reduced permeability to antibiotic", "category_aro_cvterm_id": "36383", "category_aro_accession": "3000244", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Reduction in permeability to antibiotic, generally through reduced production of porins, can provide resistance."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "2222": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36182": {"category_aro_name": "VEB beta-lactamase", "category_aro_cvterm_id": "36182", "category_aro_accession": "3000043", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VEB beta-lactamases or Vietnamese extended-spectrum beta-lactamases are class A beta-lactamases that confer high-level resistance to oxyimino cephalosporins and to aztreonam"}}}}, "2223": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35990": {"category_aro_name": "meropenem", "category_aro_cvterm_id": "35990", "category_aro_accession": "0000073", "category_aro_class_name": "Antibiotic", "category_aro_description": "Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}}, "2221": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36182": {"category_aro_name": "VEB beta-lactamase", "category_aro_cvterm_id": "36182", "category_aro_accession": "3000043", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VEB beta-lactamases or Vietnamese extended-spectrum beta-lactamases are class A beta-lactamases that confer high-level resistance to oxyimino cephalosporins and to aztreonam"}}}}, "1": {"$update": {"ARO_category": {"36237": {"category_aro_name": "PDC beta-lactamase", "category_aro_cvterm_id": "36237", "category_aro_accession": "3000098", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PDC beta-lactamases are class C beta-lactamases that are found in Pseudomonas aeruginosa."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "146": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "147": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "144": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "145": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "142": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "143": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36720": {"category_aro_name": "CphA beta-lactamase", "category_aro_cvterm_id": "36720", "category_aro_accession": "3000581", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CphA is an Ambler Class B MBL; subclass B2 originally isolated from Aeromonas hydrophilia. This enzyme has specific activity against carbapenems and is active as a mono-zinc protein."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "140": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "141": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36713": {"category_aro_name": "vanR", "category_aro_cvterm_id": "36713", "category_aro_accession": "3000574", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanR is a OmpR-family transcriptional activator in the VanSR regulatory system. When activated by VanS, it promotes cotranscription of VanA, VanH, and VanX."}, "35947": {"category_aro_name": "vancomycin", "category_aro_cvterm_id": "35947", "category_aro_accession": "0000028", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vancomycin is a glycopeptide antibiotic used in the prophylaxis and treatment of infections caused by Gram-positive bacteria. Vancomycin inhibits the synthesis of peptidoglycan, the major component of the cell wall of gram-positive bacteria. Its mechanism of action is unusual in that it acts by binding precursors of peptidoglycan, rather than by interacting with an enzyme."}}}}, "148": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "149": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "41439": {"category_aro_name": "ANT(3'')", "category_aro_cvterm_id": "41439", "category_aro_accession": "3004275", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotidylylation of streptomycin at the hydroxyl group at position 3''"}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2088": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2083": {"$update": {"ARO_category": {"40471": {"category_aro_name": "fluoroquinolone self resistant parC", "category_aro_cvterm_id": "40471", "category_aro_accession": "3003786", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Inherent parC resistance to fluoroquinolone from an antibiotic producer. The presence of these genes confers self-resistance to the antibiotic it produces."}, "37009": {"category_aro_name": "grepafloxacin", "category_aro_cvterm_id": "37009", "category_aro_accession": "3000665", "category_aro_class_name": "Antibiotic", "category_aro_description": "Grepafloxacin is a broad-spectrum antibacterial quinoline. It is no longer taken due to its high toxicity."}, "37008": {"category_aro_name": "trovafloxacin", "category_aro_cvterm_id": "37008", "category_aro_accession": "3000664", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trovafloxacin is a trifluoroquinalone with a broad spectrum of activity that acts by inhibiting the uncoiling of supercoiled DNA. While potent against many Gram-positive and Gram-negative bacteria, it is less active against pseudomonads and Cl. difficile. It is usually taken as the prodrug trovafloxacin mesylate or alatrofloxacin mesylate for oral or intravenous administration, respectively."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "37004": {"category_aro_name": "lomefloxacin", "category_aro_cvterm_id": "37004", "category_aro_accession": "3000660", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lomefloxacin is a difluoropiperazinyl quinolone, sharing similar activities with other fluoroquinolones. It is used to treat urinary tract infections. Relative to other fluoroquinolones, it has a longer half life and has higher serum concentrations."}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37142": {"category_aro_name": "pefloxacin", "category_aro_cvterm_id": "37142", "category_aro_accession": "3000762", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pefloxacin is structurally and functionally similar to norfloxacin. It is poorly active against mycobacteria, while anaerobes are resistant."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36913": {"category_aro_name": "fluoroquinolone resistant parC", "category_aro_cvterm_id": "36913", "category_aro_accession": "3000619", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ParC is a subunit of topoisomerase IV, which decatenates and relaxes DNA to allow access to genes for transcription or translation. Point mutations in ParC prevent fluoroquinolone antibiotics from inhibiting DNA synthesis, and confer low-level resistance. Higher-level resistance results from both gyrA and parC mutations."}, "35942": {"category_aro_name": "enoxacin", "category_aro_cvterm_id": "35942", "category_aro_accession": "0000023", "category_aro_class_name": "Antibiotic", "category_aro_description": "Enoxacin belongs to a group called fluoroquinolones. Its mode of action depends upon blocking bacterial DNA replication by binding itself to DNA gyrase and causing double-stranded breaks in the bacterial chromosome."}}}}, "2080": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2081": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}}}}}, "2086": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "40280": {"category_aro_name": "16S rRNA with mutation conferring resistance to tetracycline derivatives", "category_aro_cvterm_id": "40280", "category_aro_accession": "3003669", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the bacterial 16S rRNA region shown clinically to confer resistance to tetracycline and tetracycline derivatives (polyketide antibiotics)."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2087": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "41439": {"category_aro_name": "ANT(3'')", "category_aro_cvterm_id": "41439", "category_aro_accession": "3004275", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotidylylation of streptomycin at the hydroxyl group at position 3''"}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2084": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2085": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2712": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "35990": {"category_aro_name": "meropenem", "category_aro_cvterm_id": "35990", "category_aro_accession": "0000073", "category_aro_class_name": "Antibiotic", "category_aro_description": "Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "2713": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35990": {"category_aro_name": "meropenem", "category_aro_cvterm_id": "35990", "category_aro_accession": "0000073", "category_aro_class_name": "Antibiotic", "category_aro_description": "Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}}, "2711": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35990": {"category_aro_name": "meropenem", "category_aro_cvterm_id": "35990", "category_aro_accession": "0000073", "category_aro_class_name": "Antibiotic", "category_aro_description": "Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}}, "2716": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"37626": {"category_aro_name": "kitasamycin", "category_aro_cvterm_id": "37626", "category_aro_accession": "3001227", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kitasamycin is a macrolide antibiotic and is produced by Streptoverticillium kitasatoense. The drug has antimicrobial activity against a wide spectrum of pathogens."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "40353": {"category_aro_name": "rokitamycin", "category_aro_cvterm_id": "40353", "category_aro_accession": "3003701", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rokitamycin is a macrolide antibiotic. Synthesized from strains of Streptomyces kitasatoensis."}, "36689": {"category_aro_name": "aztreonam", "category_aro_cvterm_id": "36689", "category_aro_accession": "3000550", "category_aro_class_name": "Antibiotic", "category_aro_description": "Aztreonam was the first monobactam discovered, and is greatly effective against Gram-negative bacteria while inactive against Gram-positive bacteria. Artreonam is a poor substrate for beta-lactamases, and may even act as an inhibitor. In Gram-negative bacteria, Aztreonam interferes with filamentation, inhibiting cell division and leading to cell death."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "2717": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"37626": {"category_aro_name": "kitasamycin", "category_aro_cvterm_id": "37626", "category_aro_accession": "3001227", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kitasamycin is a macrolide antibiotic and is produced by Streptoverticillium kitasatoense. The drug has antimicrobial activity against a wide spectrum of pathogens."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "40353": {"category_aro_name": "rokitamycin", "category_aro_cvterm_id": "40353", "category_aro_accession": "3003701", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rokitamycin is a macrolide antibiotic. Synthesized from strains of Streptomyces kitasatoensis."}, "36689": {"category_aro_name": "aztreonam", "category_aro_cvterm_id": "36689", "category_aro_accession": "3000550", "category_aro_class_name": "Antibiotic", "category_aro_description": "Aztreonam was the first monobactam discovered, and is greatly effective against Gram-negative bacteria while inactive against Gram-positive bacteria. Artreonam is a poor substrate for beta-lactamases, and may even act as an inhibitor. In Gram-negative bacteria, Aztreonam interferes with filamentation, inhibiting cell division and leading to cell death."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "2718": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"37626": {"category_aro_name": "kitasamycin", "category_aro_cvterm_id": "37626", "category_aro_accession": "3001227", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kitasamycin is a macrolide antibiotic and is produced by Streptoverticillium kitasatoense. The drug has antimicrobial activity against a wide spectrum of pathogens."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "40353": {"category_aro_name": "rokitamycin", "category_aro_cvterm_id": "40353", "category_aro_accession": "3003701", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rokitamycin is a macrolide antibiotic. Synthesized from strains of Streptomyces kitasatoensis."}, "36689": {"category_aro_name": "aztreonam", "category_aro_cvterm_id": "36689", "category_aro_accession": "3000550", "category_aro_class_name": "Antibiotic", "category_aro_description": "Aztreonam was the first monobactam discovered, and is greatly effective against Gram-negative bacteria while inactive against Gram-positive bacteria. Artreonam is a poor substrate for beta-lactamases, and may even act as an inhibitor. In Gram-negative bacteria, Aztreonam interferes with filamentation, inhibiting cell division and leading to cell death."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "1832": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1833": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1830": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36266": {"category_aro_name": "APH(3'')", "category_aro_cvterm_id": "36266", "category_aro_accession": "3000127", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of streptomycin on the hydroxyl group at position 3''"}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1831": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1836": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1837": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1834": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1835": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "1838": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36211": {"category_aro_name": "ACT beta-lactamase", "category_aro_cvterm_id": "36211", "category_aro_accession": "3000072", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1839": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "41439": {"category_aro_name": "ANT(3'')", "category_aro_cvterm_id": "41439", "category_aro_accession": "3004275", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotidylylation of streptomycin at the hydroxyl group at position 3''"}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2406": {"$update": {"ARO_category": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35921": {"category_aro_name": "tetracycline-resistant ribosomal protection protein", "category_aro_cvterm_id": "35921", "category_aro_accession": "0000002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "A family of proteins known to bind to the 30S ribosomal subunit. This interaction prevents tetracycline and tetracycline derivatives from inhibiting ribosomal function. Thus, these proteins confer elevated resistance to tetracycline derivatives as a ribosomal protection protein."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}}}}, "2155": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "40280": {"category_aro_name": "16S rRNA with mutation conferring resistance to tetracycline derivatives", "category_aro_cvterm_id": "40280", "category_aro_accession": "3003669", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the bacterial 16S rRNA region shown clinically to confer resistance to tetracycline and tetracycline derivatives (polyketide antibiotics)."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2156": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36196": {"category_aro_name": "NDM beta-lactamase", "category_aro_cvterm_id": "36196", "category_aro_accession": "3000057", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "NDM beta-lactamases or New Delhi metallo-beta-lactamases are class B beta-lactamases that confer resistance to a broad range of antibiotics including carbapenems, cephalosporins and penicillins."}}}}, "2157": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2402": {"$update": {"ARO_category": {"37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "36913": {"category_aro_name": "fluoroquinolone resistant parC", "category_aro_cvterm_id": "36913", "category_aro_accession": "3000619", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ParC is a subunit of topoisomerase IV, which decatenates and relaxes DNA to allow access to genes for transcription or translation. Point mutations in ParC prevent fluoroquinolone antibiotics from inhibiting DNA synthesis, and confer low-level resistance. Higher-level resistance results from both gyrA and parC mutations."}, "37142": {"category_aro_name": "pefloxacin", "category_aro_cvterm_id": "37142", "category_aro_accession": "3000762", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pefloxacin is structurally and functionally similar to norfloxacin. It is poorly active against mycobacteria, while anaerobes are resistant."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}}}}, "2403": {"$update": {"ARO_category": {"40463": {"category_aro_name": "nybomycin", "category_aro_cvterm_id": "40463", "category_aro_accession": "3003780", "category_aro_class_name": "Drug Class", "category_aro_description": "A heterocyclic antibiotic that targets mutant gyrA (type II topoisomerase) containing an S84L substitution, counteracting acquired quinolone resistance. It is effective against quinolone-resistant Gram-positive bacteria including S. aureus and E. faecalis. Due to its ability to counteract quinolone resistance by targeting the mutant form of the gyrA protein, it is classified as a reverse antibiotic (RA)."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "39876": {"category_aro_name": "fluoroquinolone resistant gyrA", "category_aro_cvterm_id": "39876", "category_aro_accession": "3003292", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DNA gyrase is responsible for DNA supercoiling and consists of two alpha and two beta subunits. GyrA point mutations confer resistance by preventing fluoroquinolone antibiotics from binding the alpha-subunit."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}}}}, "2152": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2401": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "40463": {"category_aro_name": "nybomycin", "category_aro_cvterm_id": "40463", "category_aro_accession": "3003780", "category_aro_class_name": "Drug Class", "category_aro_description": "A heterocyclic antibiotic that targets mutant gyrA (type II topoisomerase) containing an S84L substitution, counteracting acquired quinolone resistance. It is effective against quinolone-resistant Gram-positive bacteria including S. aureus and E. faecalis. Due to its ability to counteract quinolone resistance by targeting the mutant form of the gyrA protein, it is classified as a reverse antibiotic (RA)."}, "39876": {"category_aro_name": "fluoroquinolone resistant gyrA", "category_aro_cvterm_id": "39876", "category_aro_accession": "3003292", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DNA gyrase is responsible for DNA supercoiling and consists of two alpha and two beta subunits. GyrA point mutations confer resistance by preventing fluoroquinolone antibiotics from binding the alpha-subunit."}}}}, "933": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38817": {"category_aro_name": "OKP beta-lactamase", "category_aro_cvterm_id": "38817", "category_aro_accession": "3002417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OKP beta-lactamases are chromosomal class A beta-lactamase that confer resistance to penicillins and early cephalosporins in Klebsiella pneumoniae. OKP beta-lactamases can be subdivided into two groups: OKP-A and OKP-B which diverge by about 4.2%"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "932": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36205": {"category_aro_name": "GES beta-lactamase", "category_aro_cvterm_id": "36205", "category_aro_accession": "3000066", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "GES beta-lactamases or Guiana extended-spectrum beta-lactamases are related to the other plasmid-located class A beta-lactamases"}}}}, "931": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "937": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "936": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38817": {"category_aro_name": "OKP beta-lactamase", "category_aro_cvterm_id": "38817", "category_aro_accession": "3002417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OKP beta-lactamases are chromosomal class A beta-lactamase that confer resistance to penicillins and early cephalosporins in Klebsiella pneumoniae. OKP beta-lactamases can be subdivided into two groups: OKP-A and OKP-B which diverge by about 4.2%"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "935": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "2409": {"$update": {"ARO_category": {"37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "36992": {"category_aro_name": "ceftibuten", "category_aro_cvterm_id": "36992", "category_aro_accession": "3000648", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftibuten is a semisynthetic cephalosporin active against Gram-negative bacilli. It is resistant against many plasmid-mediated beta-lactamases."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36993": {"category_aro_name": "cefditoren", "category_aro_cvterm_id": "36993", "category_aro_accession": "3000649", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefditoren is a semisynthetic cephalosporin active against staphylococci, streptococci, and and most enterobacteria. It is resistant to staphylococcal and most enterobacterial beta-lactamases, and is usually taken as the prodrug cefditoren pivoxil."}, "35995": {"category_aro_name": "piperacillin", "category_aro_cvterm_id": "35995", "category_aro_accession": "0000078", "category_aro_class_name": "Antibiotic", "category_aro_description": "Piperacillin is an acetylureidopenicillin and has an extended spectrum of targets relative to other beta-lactam antibiotics. It inhibits cell wall synthesis in bacteria, and is usually taken with the beta-lactamase inhibitor tazobactam to overcome penicillin-resistant bacteria."}, "36991": {"category_aro_name": "cefpodoxime", "category_aro_cvterm_id": "36991", "category_aro_accession": "3000647", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefpodoxime is a semisynthetic cephalosporin that acts similarly to cefotaxime with broad-spectrum activity. It is stable to many plasmid-mediated beta-lactamses. Cefpodoxime is consumed as the prodrug cefpodoxime proxetil."}, "36990": {"category_aro_name": "cefixime", "category_aro_cvterm_id": "36990", "category_aro_accession": "3000646", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefixime is a cephalosporin resistant to most beta-lactamases. It is active against many enterobacteria, but activity against staphylococci is poor."}, "36994": {"category_aro_name": "cefdinir", "category_aro_cvterm_id": "36994", "category_aro_accession": "3000650", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefdinir is similar to cefixime with a modified side-chain at its 7-amino position. It also shares similar activity with cefixime but is more active against staphylococci. It has also be shown to enhance phagocytosis."}, "35990": {"category_aro_name": "meropenem", "category_aro_cvterm_id": "35990", "category_aro_accession": "0000073", "category_aro_class_name": "Antibiotic", "category_aro_description": "Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36309": {"category_aro_name": "imipenem", "category_aro_cvterm_id": "36309", "category_aro_accession": "3000170", "category_aro_class_name": "Antibiotic", "category_aro_description": "Imipenem is a broad-spectrum antibiotic and is usually taken with cilastatin, which prevents hydrolysis of imipenem by renal dehydropeptidase-I. It is resistant to hydrolysis by most other beta-lactamases. Notable exceptions are the KPC beta-lactamases and Ambler Class B enzymes."}, "35927": {"category_aro_name": "cefoxitin", "category_aro_cvterm_id": "35927", "category_aro_accession": "0000008", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefoxitin is a cephamycin antibiotic often grouped with the second generation cephalosporins. Cefoxitin is bactericidal and acts by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. Cefoxitin's 7-alpha-methoxy group and 3' leaving group make it a poor substrate for most beta-lactamases."}, "36689": {"category_aro_name": "aztreonam", "category_aro_cvterm_id": "36689", "category_aro_accession": "3000550", "category_aro_class_name": "Antibiotic", "category_aro_description": "Aztreonam was the first monobactam discovered, and is greatly effective against Gram-negative bacteria while inactive against Gram-positive bacteria. Artreonam is a poor substrate for beta-lactamases, and may even act as an inhibitor. In Gram-negative bacteria, Aztreonam interferes with filamentation, inhibiting cell division and leading to cell death."}, "35980": {"category_aro_name": "cefuroxime", "category_aro_cvterm_id": "35980", "category_aro_accession": "0000063", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefuroxime is a second-generation cephalosporin antibiotic with increased stability with beta-lactamases than first-generation cephalosporins. Cefuroxime is active against Gram-positive organisms but less active against methicillin-resistant strains."}, "37085": {"category_aro_name": "isopenicillin N", "category_aro_cvterm_id": "37085", "category_aro_accession": "3000705", "category_aro_class_name": "Antibiotic", "category_aro_description": "Isopenicillin N is a natural penicillin derivative produced by Penicillium chrysogenum with activity similar to penicillin N."}, "35975": {"category_aro_name": "cefazolin", "category_aro_cvterm_id": "35975", "category_aro_accession": "0000058", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefazolin (INN), also known as cefazoline or cephazolin, is a first generation cephalosporin antibiotic. It is administered parenterally, and is active against a broad spectrum of bacteria."}, "37086": {"category_aro_name": "penicillin N", "category_aro_cvterm_id": "37086", "category_aro_accession": "3000706", "category_aro_class_name": "Antibiotic", "category_aro_description": "Penicillin N is a penicillin derivative produced by Cephalosporium acremonium."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35976": {"category_aro_name": "cefepime", "category_aro_cvterm_id": "35976", "category_aro_accession": "0000059", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefepime (INN) is a fourth-generation cephalosporin antibiotic developed in 1994. It contains an aminothiazolyl group that decreases its affinity with beta-lactamases. Cefepime shows high binding affinity with penicillin-binding proteins and has an extended spectrum of activity against Gram-positive and Gram-negative bacteria, with greater activity against both Gram-negative and Gram-positive organisms than third-generation agents."}, "35971": {"category_aro_name": "penicillin", "category_aro_cvterm_id": "35971", "category_aro_accession": "0000054", "category_aro_class_name": "Antibiotic", "category_aro_description": "Penicillin (sometimes abbreviated PCN) is a beta-lactam antibiotic used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms. It works by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35973": {"category_aro_name": "oxacillin", "category_aro_cvterm_id": "35973", "category_aro_accession": "0000056", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxacillin is a penicillinase-resistant beta-lactam. It is similar to methicillin, and has replaced methicillin in clinical use. Oxacillin, especially in combination with other antibiotics, is effective against many penicillinase-producing strains of Staphylococcus aureus and Staphylococcus epidermidis."}, "40928": {"category_aro_name": "cefmetazole", "category_aro_cvterm_id": "40928", "category_aro_accession": "3004001", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefmetazole is a semi-synthetic cephamycin antibiotic with broad spectrum antibiotic activity against both gram-positive and gram-negative bacteria, that disrupt cell wall synthesis through binding to PBPs causing cell lysis."}, "40944": {"category_aro_name": "moxalactam", "category_aro_cvterm_id": "40944", "category_aro_accession": "3004017", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxalactam (Latamoxef) is a broad spectrum cephalosporin (oxacephem) and beta-lactam antibiotic. Moxalactam binding to PBPs inhibits peptidoglycan cross-linkage in the cell wall, resulting in cell death. Moxalactam is proposed to be effective against meningitides as it passes the blood-brain barrier."}, "35930": {"category_aro_name": "cloxacillin", "category_aro_cvterm_id": "35930", "category_aro_accession": "0000011", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cloxacillin is a semisynthetic, isoxazolyl penicillin derivative in the beta-lactam class of antibiotics. It interferes with peptidogylcan synthesis and is commonly used for treating penicillin-resistant Staphylococcus aureus infections."}, "36995": {"category_aro_name": "ceftaroline", "category_aro_cvterm_id": "36995", "category_aro_accession": "3000651", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftaroline is a novel cephalosporin active against methicillin resistant Staphylococcus aureus. Like other cephalosporins it binds penicillin-binding proteins to inhibit cell wall synthesis. It strongly binds with PBP2a, associated with methicillin resistance. It is taken orally as the prodrug ceftaroline fosamil."}, "35979": {"category_aro_name": "ceftriaxone", "category_aro_cvterm_id": "35979", "category_aro_accession": "0000062", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftriaxone is a third-generation cephalosporin antibiotic. The presence of an aminothiazolyl sidechain increases ceftriazone's resistance to beta-lactamases. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria."}, "35934": {"category_aro_name": "methicillin", "category_aro_cvterm_id": "35934", "category_aro_accession": "0000015", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derived from penicillin to combat penicillin-resistance, methicillin is insensitive to beta-lactamases (also known as penicillinases) secreted by many penicillin-resistant bacteria. Methicillin is bactericidal, and acts by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40943": {"category_aro_name": "loracarbef", "category_aro_cvterm_id": "40943", "category_aro_accession": "3004016", "category_aro_class_name": "Antibiotic", "category_aro_description": "Loracarbef is a second-generation cephalosporin (carbacephem) and broad spectrum beta-lactam antibiotic. Loracarbef inhibits PBPs through binding, disrupting peptidoglycan cell wall cross-linkage and resulting in cell death."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36989": {"category_aro_name": "cefotaxime", "category_aro_cvterm_id": "36989", "category_aro_accession": "3000645", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefotaxime is a semisynthetic cephalosporin taken parenterally. It is resistant to most beta-lactamases and active against Gram-negative rods and cocci due to its aminothiazoyl and methoximino functional groups."}, "36988": {"category_aro_name": "cefaclor", "category_aro_cvterm_id": "36988", "category_aro_accession": "3000644", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefaclor is a semisynthetic cephalosporin derived from cephalexin. It has broad-spectrum antibiotic activity."}, "40661": {"category_aro_name": "Penicillin-binding protein mutations conferring resistance to beta-lactam antibiotics", "category_aro_cvterm_id": "40661", "category_aro_accession": "3003938", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Mutations in PBP transpeptidases that change the affinity for penicillin thereby conferring resistance to penicillin antibiotics"}, "40929": {"category_aro_name": "cefonicid", "category_aro_cvterm_id": "40929", "category_aro_accession": "3004002", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefonicid is a second-generation cephalosporin-class beta-lactam antibiotic with broad spectrum activity. Particularly used against urinary tract infections and lower respiratory infections. Causes cell lysis by inactivation of PBPs through binding, inhibiting peptidoglycan synthesis."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "36980": {"category_aro_name": "flucloxacillin", "category_aro_cvterm_id": "36980", "category_aro_accession": "3000636", "category_aro_class_name": "Antibiotic", "category_aro_description": "Flucloxacillin is similar to cloxacillin, with an extra additional fluorine atom."}, "36983": {"category_aro_name": "mezlocillin", "category_aro_cvterm_id": "36983", "category_aro_accession": "3000639", "category_aro_class_name": "Antibiotic", "category_aro_description": "Mezlocillin is a penicillin derivative taken parenterally."}, "36982": {"category_aro_name": "azlocillin", "category_aro_cvterm_id": "36982", "category_aro_accession": "3000638", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azlocillin is a semisynthetic derivative of penicillin that is notably active against Ps. aeruginosa and other Gram-negative bacteria."}, "36985": {"category_aro_name": "cefalexin", "category_aro_cvterm_id": "36985", "category_aro_accession": "3000641", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalexin is a cephalosporin antibiotic that causes filamentation. It is resistant to staphylococcal beta-lactamase, but degraded by enterobacterial beta-lactamases."}, "36984": {"category_aro_name": "doripenem", "category_aro_cvterm_id": "36984", "category_aro_accession": "3000640", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doripenem is a carbapenem with a broad range of activity against Gram-positive and Gram-negative bacteria, and along with meropenem, it is the most active beta-lactam antibiotic against Pseudomonas aeruginosa. It inhibits bacterial cell wall synthesis."}, "36987": {"category_aro_name": "cefotiam", "category_aro_cvterm_id": "36987", "category_aro_accession": "3000643", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefotiam is a cephalosporin antibiotic with similar activity to cefuroxime but more active against enterobacteria. It is consumed orally as the prodrug cefotiam hexetil."}, "36986": {"category_aro_name": "cefadroxil", "category_aro_cvterm_id": "36986", "category_aro_accession": "3000642", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefadroxil, or p-hydroxycephalexin, is an cephalosporin antibiotic similar to cefalexin."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "37141": {"category_aro_name": "mecillinam", "category_aro_cvterm_id": "37141", "category_aro_accession": "3000761", "category_aro_class_name": "Antibiotic", "category_aro_description": "Mecillinam is a broad-spectrum beta-lactam antibiotic that was semi-synthetically derived to have a different drug centre, being a 6-alpha-amidinopenicillanate instead of a 6-alpha-acylaminopenicillanate. Contrasting most beta-lactam drugs, mecillinam is most active against Gram-negative bacteria. It binds specifically to penicillin binding protein 2 (PBP2)."}, "36979": {"category_aro_name": "dicloxacillin", "category_aro_cvterm_id": "36979", "category_aro_accession": "3000635", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dicloxacillin is a penicillin derivative that has an extra chlorine atom in comparison to cloxacillin. While more active than cloxacillin, its high affinity for serum protein reduces its activity in human serum in vitro."}, "36978": {"category_aro_name": "propicillin", "category_aro_cvterm_id": "36978", "category_aro_accession": "3000634", "category_aro_class_name": "Antibiotic", "category_aro_description": "Propicillin is an orally taken penicillin derivative that has high absorption but poor activity."}, "35978": {"category_aro_name": "ceftobiprole", "category_aro_cvterm_id": "35978", "category_aro_accession": "0000061", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftobiprole (Zeftera/Zevtera) is a next generation (5th generation) cephalosporin antibiotic with activity against methicillin-resistant Staphylococcus aureus, penicillin-resistant Streptococcus pneumoniae, Pseudomonas aeruginosa, and Enterococci. Ceftobiprole inhibits transpeptidases essential to building cell walls, and is a poor substrate for most beta-lactamases."}, "36976": {"category_aro_name": "benzylpenicillin", "category_aro_cvterm_id": "36976", "category_aro_accession": "3000632", "category_aro_class_name": "Antibiotic", "category_aro_description": "Benzylpenicillin, commonly referred to as penicillin G, is effective against both Gram-positive and Gram-negative bacteria. It is unstable in acid."}, "36977": {"category_aro_name": "phenoxymethylpenicillin", "category_aro_cvterm_id": "36977", "category_aro_accession": "3000633", "category_aro_class_name": "Antibiotic", "category_aro_description": "Phenoxymethylpenicillin, or penicillin V, is a penicillin derivative that is acid stable but less active than benzylpenicillin (penicillin G)."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35961": {"category_aro_name": "carbenicillin", "category_aro_cvterm_id": "35961", "category_aro_accession": "0000043", "category_aro_class_name": "Antibiotic", "category_aro_description": "Carbenicillin is a semi-synthetic antibiotic belonging to the carboxypenicillin subgroup of the penicillins. It has gram-negative coverage which includes Pseudomonas aeruginosa but limited gram-positive coverage. The carboxypenicillins are susceptible to degradation by beta-lactamase enzymes. Carbenicillin antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40933": {"category_aro_name": "ceftiofur", "category_aro_cvterm_id": "40933", "category_aro_accession": "3004006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftiofur is a third-generation broad spectrum cephalosporin and beta-lactam antibiotic. It causes cell lysis by disrupting peptidoglycan cross-linkage and cell wall formation by binding to PBPs."}, "40932": {"category_aro_name": "cefprozil", "category_aro_cvterm_id": "40932", "category_aro_accession": "3004005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefprozil is a cephalosporin and beta-lactam antibiotic with bactericidal activity. It selectively binds to PBPs and inhibits peptidoglycan synthesis, a major cell wall component, resulting in cell lysis."}, "40935": {"category_aro_name": "cephapirin", "category_aro_cvterm_id": "40935", "category_aro_accession": "3004008", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cephapirin is a first-generation cephalosporin and broad spectrum beta-lactam antibiotic. Inactivation of penicillin-binding proteins through cephapirin binding disrupts peptidoglycan cross-linking, resulting in cell lysis."}, "40934": {"category_aro_name": "ceftizoxime", "category_aro_cvterm_id": "40934", "category_aro_accession": "3004007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftizoxime is a third-generation cephalosporin and broad spectrum beta-lactam antibiotic. Ceftizoxime causes bacterial cell lysis through peptidoglycan cross-linking inhibition by binding to PBPs."}, "35987": {"category_aro_name": "ertapenem", "category_aro_cvterm_id": "35987", "category_aro_accession": "0000070", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ertapenem is a carbapenem antibiotic and is highly resistant to beta-lactamases like other carbapenems. It inhibits bacterial cell wall synthesis."}, "40936": {"category_aro_name": "cefradine", "category_aro_cvterm_id": "40936", "category_aro_accession": "3004009", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefradine is a first-generation cephalosporin and broad spectrum beta-lactam antibiotic. Cefradine binding to penicillin-binding proteins disrupts cell wall peptidoglycan cross-linkage, resulting in cell lysis."}}}}, "1955": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1954": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1957": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "1956": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36027": {"category_aro_name": "IMI beta-lactamase", "category_aro_cvterm_id": "36027", "category_aro_accession": "3000018", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "IMI beta-lactamases are a group of TEM-1-like beta-lactamase that are known to hydrolyze imipenem. IMI beta-lactamases are inhibited by clavulanic acid and tazobactam."}}}}, "1951": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1950": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36673": {"category_aro_name": "rifapentine", "category_aro_cvterm_id": "36673", "category_aro_accession": "3000534", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifapentine is a semisynthetic rifamycin that inhibits DNA-dependent RNA synthesis. It is often used in the treatment of tuberculosis and leprosy."}, "36669": {"category_aro_name": "rifabutin", "category_aro_cvterm_id": "36669", "category_aro_accession": "3000530", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifabutin is a semisynthetic rifamycin used in tuberculosis therapy. It inhibits DNA-dependent RNA synthesis."}, "36529": {"category_aro_name": "rifampin ADP-ribosyltransferase (Arr)", "category_aro_cvterm_id": "36529", "category_aro_accession": "3000390", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Enzyme responsible for the ADP-ribosylative inactivation of rifampin at the 23-OH position using NAD+."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "36656": {"category_aro_name": "rifaximin", "category_aro_cvterm_id": "36656", "category_aro_accession": "3000517", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifaximin is a semi-synthetic rifamycin used to treat traveller's diarrhea. Rifaximin inhibits RNA synthesis by binding to the beta subunit of bacterial RNA polymerase."}}}}, "1953": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1952": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}, "35995": {"category_aro_name": "piperacillin", "category_aro_cvterm_id": "35995", "category_aro_accession": "0000078", "category_aro_class_name": "Antibiotic", "category_aro_description": "Piperacillin is an acetylureidopenicillin and has an extended spectrum of targets relative to other beta-lactam antibiotics. It inhibits cell wall synthesis in bacteria, and is usually taken with the beta-lactamase inhibitor tazobactam to overcome penicillin-resistant bacteria."}, "35994": {"category_aro_name": "tazobactam", "category_aro_cvterm_id": "35994", "category_aro_accession": "0000077", "category_aro_class_name": "Adjuvant", "category_aro_description": "Tazobactam is a compound which inhibits the action of bacterial beta-lactamases."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1959": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36211": {"category_aro_name": "ACT beta-lactamase", "category_aro_cvterm_id": "36211", "category_aro_accession": "3000072", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1958": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "829": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36207": {"category_aro_name": "DHA beta-lactamase", "category_aro_cvterm_id": "36207", "category_aro_accession": "3000068", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DHA beta-lactamases are plasmid-mediated AmpC \u03b2-lactamases that confer resistance to cephamycins and oxyimino-cephalosporins."}}}}, "828": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "825": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "824": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "39340": {"category_aro_name": "van ligase", "category_aro_cvterm_id": "39340", "category_aro_accession": "3002906", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "van ligases synthesize alternative substrates for peptidoglycan synthesis that reduce vancomycin binding affinity."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "827": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "826": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35973": {"category_aro_name": "oxacillin", "category_aro_cvterm_id": "35973", "category_aro_accession": "0000056", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxacillin is a penicillinase-resistant beta-lactam. It is similar to methicillin, and has replaced methicillin in clinical use. Oxacillin, especially in combination with other antibiotics, is effective against many penicillinase-producing strains of Staphylococcus aureus and Staphylococcus epidermidis."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35930": {"category_aro_name": "cloxacillin", "category_aro_cvterm_id": "35930", "category_aro_accession": "0000011", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cloxacillin is a semisynthetic, isoxazolyl penicillin derivative in the beta-lactam class of antibiotics. It interferes with peptidogylcan synthesis and is commonly used for treating penicillin-resistant Staphylococcus aureus infections."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "821": {"$update": {"ARO_category": {"36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36666": {"category_aro_name": "polyamine antibiotic", "category_aro_cvterm_id": "36666", "category_aro_accession": "3000527", "category_aro_class_name": "Drug Class", "category_aro_description": "Polyamine antibiotics are organic compounds having two or more primary amino groups."}, "40057": {"category_aro_name": "rifamycin-resistant arabinosyltransferase", "category_aro_cvterm_id": "40057", "category_aro_accession": "3003464", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Arabinosyl transferases allow for the polymerization of arabinose to form arabinan. Arabanan is required for formation of mycobacterial cell walls and arabinosyltransferases are targets of the drug ethambutol. Mutations in these genes can confer resistance to rifampicin."}, "36636": {"category_aro_name": "ethambutol", "category_aro_cvterm_id": "36636", "category_aro_accession": "3000497", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ethambutol is an antimycobacterial drug prescribed to treat tuberculosis. It is usually given in combination with other tuberculosis drugs, such as isoniazid, rifampicin, and pyrazinamide. Ethambutol inhibits arabinosyl biosynthesis, disrupting mycobacterial cell wall formation."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}}}}, "820": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}}}}}, "823": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "36261": {"category_aro_name": "chloramphenicol acetyltransferase (CAT)", "category_aro_cvterm_id": "36261", "category_aro_accession": "3000122", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Inactivates chloramphenicol by addition of an acyl group. cat is used to describe many variants of the chloramphenicol acetyltransferase gene in a range of organisms including Acinetobacter calcoaceticus, Agrobacterium tumefaciens, Bacillus clausii, Bacillus subtilis, Campylobacter coli, Enterococcus faecalis, Enterococcus faecium, Lactococcus lactis, Listeria monocytogenes, Listonella anguillarum Morganella morganii, Photobacterium damselae subsp. piscicida, Proteus mirabilis, Salmonella typhi, Serratia marcescens, Shigella flexneri, Staphylococcus aureus, Staphylococcus haemolyticus, Staphylococcus intermedius, Streptococcus agalactiae, Streptococcus suis and Streptomyces acrimycini"}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "822": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1483": {"$update": {"ARO_category": {"35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36461": {"category_aro_name": "AAC(3)", "category_aro_cvterm_id": "36461", "category_aro_accession": "3000322", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 3."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1482": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36194": {"category_aro_name": "SME beta-lactamase", "category_aro_cvterm_id": "36194", "category_aro_accession": "3000055", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SME beta-lactamases are chromosome-mediated class A beta-lactamases that hydrolyze carbapenems in Serratia marcescens."}}}}, "1481": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "38788": {"category_aro_name": "OXY beta-lactamase", "category_aro_cvterm_id": "38788", "category_aro_accession": "3002388", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXY beta-lactamases are chromosomal class A beta-lactamases that are found in Klebsiella oxytoca. At constitutive low levels, OXY beta-lactamases confer resistance to aminopenicillins and carboxypenicillins. At high induced levels, OXY beta-lactamases confer resistance to penicillins, cephalosporins and aztreonam."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1480": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41398": {"category_aro_name": "EXO beta-lactamase", "category_aro_cvterm_id": "41398", "category_aro_accession": "3004234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Beta-lactamases part of this family discovered in Streptomyces albus G."}}}}, "1487": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1486": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36230": {"category_aro_name": "CARB beta-lactamase", "category_aro_cvterm_id": "36230", "category_aro_accession": "3000091", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CARB beta-lactamases are class A lactamases that can hydrolyze carbenicillin. Many of the PSE beta-lactamases have been renamed as CARB-lactamases with the notable exception of PSE-2 which is now OXA-10."}}}}, "1485": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36222": {"category_aro_name": "MOX beta-lactamase", "category_aro_cvterm_id": "36222", "category_aro_accession": "3000083", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "MOX beta-lactamases are plasmid-mediated AmpC-type beta-lactamases."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1484": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36211": {"category_aro_name": "ACT beta-lactamase", "category_aro_cvterm_id": "36211", "category_aro_accession": "3000072", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1489": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1488": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "797": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "2411": {"$update": {"ARO_category": {"40463": {"category_aro_name": "nybomycin", "category_aro_cvterm_id": "40463", "category_aro_accession": "3003780", "category_aro_class_name": "Drug Class", "category_aro_description": "A heterocyclic antibiotic that targets mutant gyrA (type II topoisomerase) containing an S84L substitution, counteracting acquired quinolone resistance. It is effective against quinolone-resistant Gram-positive bacteria including S. aureus and E. faecalis. Due to its ability to counteract quinolone resistance by targeting the mutant form of the gyrA protein, it is classified as a reverse antibiotic (RA)."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "39876": {"category_aro_name": "fluoroquinolone resistant gyrA", "category_aro_cvterm_id": "39876", "category_aro_accession": "3003292", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DNA gyrase is responsible for DNA supercoiling and consists of two alpha and two beta subunits. GyrA point mutations confer resistance by preventing fluoroquinolone antibiotics from binding the alpha-subunit."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}}}}, "795": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "794": {"$update": {"ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "39874": {"category_aro_name": "daptomycin resistant beta prime subunit of RNA polymerase (rpoC)", "category_aro_cvterm_id": "39874", "category_aro_accession": "3003290", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Daptomycin resistant RNA polymerases include amino acids substitutions which alter the binding affinity of daptomycin to the protein, resulting in antibiotic resistance."}, "35985": {"category_aro_name": "daptomycin", "category_aro_cvterm_id": "35985", "category_aro_accession": "0000068", "category_aro_class_name": "Antibiotic", "category_aro_description": "Daptomycin is a novel lipopeptide antibiotic used in the treatment of certain infections caused by Gram-positive organisms. Daptomycin interferes with the bacterial cell membrane, reducing membrane potential and inhibiting cell wall synthesis."}}}}, "793": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "792": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "38788": {"category_aro_name": "OXY beta-lactamase", "category_aro_cvterm_id": "38788", "category_aro_accession": "3002388", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXY beta-lactamases are chromosomal class A beta-lactamases that are found in Klebsiella oxytoca. At constitutive low levels, OXY beta-lactamases confer resistance to aminopenicillins and carboxypenicillins. At high induced levels, OXY beta-lactamases confer resistance to penicillins, cephalosporins and aztreonam."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "791": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "929": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36205": {"category_aro_name": "GES beta-lactamase", "category_aro_cvterm_id": "36205", "category_aro_accession": "3000066", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "GES beta-lactamases or Guiana extended-spectrum beta-lactamases are related to the other plasmid-located class A beta-lactamases"}}}}, "1719": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}}}}}, "1718": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "41372": {"category_aro_name": "DIM beta-lactamase", "category_aro_cvterm_id": "41372", "category_aro_accession": "3004208", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DIM type beta-lactamases were first identified from a carbapenem-resistant Pseudomonas stutzeri strain isolated from a Dutch patient. Encoded in mobile elements, these MBLs significantly hydrolyze broad-spectrum cephalosporins and carbapenems."}}}}, "799": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "798": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36989": {"category_aro_name": "cefotaxime", "category_aro_cvterm_id": "36989", "category_aro_accession": "3000645", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefotaxime is a semisynthetic cephalosporin taken parenterally. It is resistant to most beta-lactamases and active against Gram-negative rods and cocci due to its aminothiazoyl and methoximino functional groups."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37139": {"category_aro_name": "fusidic acid", "category_aro_cvterm_id": "37139", "category_aro_accession": "3000759", "category_aro_class_name": "Drug Class", "category_aro_description": "Fusidic acid is the only commercially available fusidane, a group of steroid-like antibiotics. It is most active against Gram-positive bacteria, and acts by inhibiting elongation factor G to block protein synthesis."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "1270": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "2412": {"$update": {"ARO_category": {"37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "36913": {"category_aro_name": "fluoroquinolone resistant parC", "category_aro_cvterm_id": "36913", "category_aro_accession": "3000619", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ParC is a subunit of topoisomerase IV, which decatenates and relaxes DNA to allow access to genes for transcription or translation. Point mutations in ParC prevent fluoroquinolone antibiotics from inhibiting DNA synthesis, and confer low-level resistance. Higher-level resistance results from both gyrA and parC mutations."}, "37142": {"category_aro_name": "pefloxacin", "category_aro_cvterm_id": "37142", "category_aro_accession": "3000762", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pefloxacin is structurally and functionally similar to norfloxacin. It is poorly active against mycobacteria, while anaerobes are resistant."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}}}}, "613": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36182": {"category_aro_name": "VEB beta-lactamase", "category_aro_cvterm_id": "36182", "category_aro_accession": "3000043", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VEB beta-lactamases or Vietnamese extended-spectrum beta-lactamases are class A beta-lactamases that confer high-level resistance to oxyimino cephalosporins and to aztreonam"}}}}, "1272": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1139": {"$update": {"ARO_category": {"36476": {"category_aro_name": "iclaprim", "category_aro_cvterm_id": "36476", "category_aro_accession": "3000337", "category_aro_class_name": "Antibiotic", "category_aro_description": "Iclaprim is a bactericidal compound that inhibits dihydrofolate reductase. It is used against clinically important Gram-positive pathogens, including methicillin-sensitive Staphylococcus aureus and methicillin-resistant S. aureus."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36408": {"category_aro_name": "brodimoprim", "category_aro_cvterm_id": "36408", "category_aro_accession": "3000269", "category_aro_class_name": "Antibiotic", "category_aro_description": "Brodimoprim is a structural derivative of trimethoprim and an inhibitor of bacterial dihydrofolate reductase. The 4-methoxy group of trimethoprim is replaced with a bromine atom."}, "37617": {"category_aro_name": "trimethoprim resistant dihydrofolate reductase dfr", "category_aro_cvterm_id": "37617", "category_aro_accession": "3001218", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Alternative dihydropteroate synthase dfr present on plasmids produces alternate proteins that are less sensitive to trimethoprim from inhibiting its role in folate synthesis, thus conferring trimethoprim resistance."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36423": {"category_aro_name": "tetroxoprim", "category_aro_cvterm_id": "36423", "category_aro_accession": "3000284", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetroxoprim is a trimethoprim derivative that inhibits bacterial dihydrofolate reductase."}}}}, "1138": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "1133": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "616": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36196": {"category_aro_name": "NDM beta-lactamase", "category_aro_cvterm_id": "36196", "category_aro_accession": "3000057", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "NDM beta-lactamases or New Delhi metallo-beta-lactamases are class B beta-lactamases that confer resistance to a broad range of antibiotics including carbapenems, cephalosporins and penicillins."}}}}, "1131": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36461": {"category_aro_name": "AAC(3)", "category_aro_cvterm_id": "36461", "category_aro_accession": "3000322", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 3."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1130": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36237": {"category_aro_name": "PDC beta-lactamase", "category_aro_cvterm_id": "36237", "category_aro_accession": "3000098", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PDC beta-lactamases are class C beta-lactamases that are found in Pseudomonas aeruginosa."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1137": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1136": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36197": {"category_aro_name": "MIR beta-lactamase", "category_aro_cvterm_id": "36197", "category_aro_accession": "3000058", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "MIR beta-lactamases are plasmid-mediated beta-lactamases that confer resistance to oxyimino- and alpha-methoxy beta-lactams"}}}}, "1135": {"$update": {"ARO_category": {"36596": {"category_aro_name": "aminocoumarin resistant parE", "category_aro_cvterm_id": "36596", "category_aro_accession": "3000457", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ParE is a subunit of topoisomerase IV, which decatenates and relaxes DNA to allow access to genes for transcription or translation. Point mutations in ParE prevent anticoumarin antibiotics from inhibiting DNA synthesis, thus conferring resistance."}, "36271": {"category_aro_name": "clorobiocin", "category_aro_cvterm_id": "36271", "category_aro_accession": "3000132", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clorobiocin is an aminocoumarin antibiotic produced by Streptomyces roseochromogenes, and binds DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "36289": {"category_aro_name": "coumermycin A1", "category_aro_cvterm_id": "36289", "category_aro_accession": "3000150", "category_aro_class_name": "Antibiotic", "category_aro_description": "Coumermycin A1 is an antibiotic produced by Streptomyces rishiriensis, and binds DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "1275": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "37247": {"category_aro_name": "oleandomycin", "category_aro_cvterm_id": "37247", "category_aro_accession": "3000867", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oleandomycin is a 14-membered macrolide produced by Streptomyces antibioticus. It is ssimilar to erythromycin, and contains a desosamine amino sugar and an oleandrose sugar. It targets the 50S ribosomal subunit to prevent protein synthesis."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35974": {"category_aro_name": "telithromycin", "category_aro_cvterm_id": "35974", "category_aro_accession": "0000057", "category_aro_class_name": "Antibiotic", "category_aro_description": "Telithromycin is a semi-synthetic derivative of erythromycin. It is a 14-membered macrolide and is the first ketolide antibiotic to be used in clinics. Telithromycin binds the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36284": {"category_aro_name": "tylosin", "category_aro_cvterm_id": "36284", "category_aro_accession": "3000145", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tylosin is a 16-membered macrolide, naturally produced by Streptomyces fradiae. It interacts with the bacterial ribosome 50S subunit to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36315": {"category_aro_name": "dirithromycin", "category_aro_cvterm_id": "36315", "category_aro_accession": "3000176", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dirithromycin is an oxazine derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome to inhibit bacterial protein synthesis."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "36699": {"category_aro_name": "Erm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36699", "category_aro_accession": "3000560", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Erm proteins are part of the RNA methyltransferase family and methylate A2058 (E. coli nomenclature) of the 23S ribosomal RNA conferring degrees of resistance to Macrolides, Lincosamides and Streptogramin b. This is called the MLSb phenotype."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35946": {"category_aro_name": "roxithromycin", "category_aro_cvterm_id": "35946", "category_aro_accession": "0000027", "category_aro_class_name": "Antibiotic", "category_aro_description": "Roxithromycin is a semi-synthetic, 14-carbon ring macrolide antibiotic derived from erythromycin. It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36295": {"category_aro_name": "spiramycin", "category_aro_cvterm_id": "36295", "category_aro_accession": "3000156", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spiramycin is a 16-membered macrolide and is natural product produced by Streptomyces ambofaciens. It binds to the 50S subunit of bacterial ribosomes and inhibits peptidyl transfer activity to disrupt protein synthesis."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}, "2792": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36600": {"category_aro_name": "florfenicol", "category_aro_cvterm_id": "36600", "category_aro_accession": "3000461", "category_aro_class_name": "Antibiotic", "category_aro_description": "Florfenicol is a fluorine derivative of chloramphenicol, where the nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3) and the hydroxyl group (-OH), by a fluorine group (-F). The action mechanism is the same as chloramphenicol's, where the antibiotic binds to the 23S RNA of the 50S subunit of bacterial ribosomes to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "41251": {"category_aro_name": "23S rRNA with mutation conferring resistance to macrolide antibiotics", "category_aro_cvterm_id": "41251", "category_aro_accession": "3004125", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotide point mutations in the 23S rRNA subunit may confer resistance to macrolide antibiotics."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "1276": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "2793": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36600": {"category_aro_name": "florfenicol", "category_aro_cvterm_id": "36600", "category_aro_accession": "3000461", "category_aro_class_name": "Antibiotic", "category_aro_description": "Florfenicol is a fluorine derivative of chloramphenicol, where the nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3) and the hydroxyl group (-OH), by a fluorine group (-F). The action mechanism is the same as chloramphenicol's, where the antibiotic binds to the 23S RNA of the 50S subunit of bacterial ribosomes to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "41251": {"category_aro_name": "23S rRNA with mutation conferring resistance to macrolide antibiotics", "category_aro_cvterm_id": "41251", "category_aro_accession": "3004125", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotide point mutations in the 23S rRNA subunit may confer resistance to macrolide antibiotics."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "476": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}}}}}, "1277": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36205": {"category_aro_name": "GES beta-lactamase", "category_aro_cvterm_id": "36205", "category_aro_accession": "3000066", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "GES beta-lactamases or Guiana extended-spectrum beta-lactamases are related to the other plasmid-located class A beta-lactamases"}}}}, "2790": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36383": {"category_aro_name": "reduced permeability to antibiotic", "category_aro_cvterm_id": "36383", "category_aro_accession": "3000244", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Reduction in permeability to antibiotic, generally through reduced production of porins, can provide resistance."}, "40944": {"category_aro_name": "moxalactam", "category_aro_cvterm_id": "40944", "category_aro_accession": "3004017", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxalactam (Latamoxef) is a broad spectrum cephalosporin (oxacephem) and beta-lactam antibiotic. Moxalactam binding to PBPs inhibits peptidoglycan cross-linkage in the cell wall, resulting in cell death. Moxalactam is proposed to be effective against meningitides as it passes the blood-brain barrier."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35927": {"category_aro_name": "cefoxitin", "category_aro_cvterm_id": "35927", "category_aro_accession": "0000008", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefoxitin is a cephamycin antibiotic often grouped with the second generation cephalosporins. Cefoxitin is bactericidal and acts by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. Cefoxitin's 7-alpha-methoxy group and 3' leaving group make it a poor substrate for most beta-lactamases."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "41445": {"category_aro_name": "General Bacterial Porin with reduced permeability to beta-lactams", "category_aro_cvterm_id": "41445", "category_aro_accession": "3004281", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These are GBPs that are associated with decreased susceptibility to beta-lactams either through mutations in the porin protein, absence of the porin protein, or expression of the porin protein."}, "36989": {"category_aro_name": "cefotaxime", "category_aro_cvterm_id": "36989", "category_aro_accession": "3000645", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefotaxime is a semisynthetic cephalosporin taken parenterally. It is resistant to most beta-lactamases and active against Gram-negative rods and cocci due to its aminothiazoyl and methoximino functional groups."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40429": {"category_aro_name": "resistance by absence", "category_aro_cvterm_id": "40429", "category_aro_accession": "3003764", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mechanism of antibiotic resistance conferred by deletion of gene (usually a porin)"}, "35979": {"category_aro_name": "ceftriaxone", "category_aro_cvterm_id": "35979", "category_aro_accession": "0000062", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftriaxone is a third-generation cephalosporin antibiotic. The presence of an aminothiazolyl sidechain increases ceftriazone's resistance to beta-lactamases. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "2791": {"$update": {"ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "41204": {"category_aro_name": "daptomycin resistant CdsA", "category_aro_cvterm_id": "41204", "category_aro_accession": "3004096", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Mutations to the CdsA phosphatidate cytidylyltransferase conferring resistance to daptomycin."}, "35985": {"category_aro_name": "daptomycin", "category_aro_cvterm_id": "35985", "category_aro_accession": "0000068", "category_aro_class_name": "Antibiotic", "category_aro_description": "Daptomycin is a novel lipopeptide antibiotic used in the treatment of certain infections caused by Gram-positive organisms. Daptomycin interferes with the bacterial cell membrane, reducing membrane potential and inhibiting cell wall synthesis."}}}}, "2796": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35976": {"category_aro_name": "cefepime", "category_aro_cvterm_id": "35976", "category_aro_accession": "0000059", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefepime (INN) is a fourth-generation cephalosporin antibiotic developed in 1994. It contains an aminothiazolyl group that decreases its affinity with beta-lactamases. Cefepime shows high binding affinity with penicillin-binding proteins and has an extended spectrum of activity against Gram-positive and Gram-negative bacteria, with greater activity against both Gram-negative and Gram-positive organisms than third-generation agents."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "2797": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35976": {"category_aro_name": "cefepime", "category_aro_cvterm_id": "35976", "category_aro_accession": "0000059", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefepime (INN) is a fourth-generation cephalosporin antibiotic developed in 1994. It contains an aminothiazolyl group that decreases its affinity with beta-lactamases. Cefepime shows high binding affinity with penicillin-binding proteins and has an extended spectrum of activity against Gram-positive and Gram-negative bacteria, with greater activity against both Gram-negative and Gram-positive organisms than third-generation agents."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "519": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "518": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36635": {"category_aro_name": "vanXY", "category_aro_cvterm_id": "36635", "category_aro_accession": "3000496", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanXY is a protein with both D,D-carboxypeptidase and D,D-dipeptidase activity, found in Enterococcus gallinarum. It cleaves and removes the terminal D-Ala of peptidoglycan subunits for the incorporation of D-Ser by VanC. D-Ala-D-Ser has low binding affinity with vancomycin."}}}}, "926": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36198": {"category_aro_name": "KPC beta-lactamase", "category_aro_cvterm_id": "36198", "category_aro_accession": "3000059", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Klebsiella pneumoniae carbapenem resistant (KPC) beta-lactamases are notorious for their ability to efficiently hydrolyze carbapenems, unlike other Ambler Class A beta-lactamases. There are currently 9 variants reported worldwide. These enzymes were first isolated from Klebsiella pneumoniae strains in 2001 in the United States. Hospital outbreaks have since been reported in Greece and Israel and KPC carrying strains are now endemic to New York facilities. KPC-1 and KPC-2 have been shown to be identical and are now referred to as KPC-2."}}}}, "1009": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36199": {"category_aro_name": "IND beta-lactamase", "category_aro_cvterm_id": "36199", "category_aro_accession": "3000060", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "IND beta-lactamases are class B carbapenem-hydrolyzing beta-lactamases"}}}}, "1008": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38784": {"category_aro_name": "BEL beta-lactamase", "category_aro_cvterm_id": "38784", "category_aro_accession": "3002384", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "BEL beta-lactamases are class A expanded-spectrum beta-lactamases that are inhibited by clavulanic acid. They are chromosomally encoded and hydrolyze most cephalosporins and aztreonam."}}}}, "1007": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38817": {"category_aro_name": "OKP beta-lactamase", "category_aro_cvterm_id": "38817", "category_aro_accession": "3002417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OKP beta-lactamases are chromosomal class A beta-lactamase that confer resistance to penicillins and early cephalosporins in Klebsiella pneumoniae. OKP beta-lactamases can be subdivided into two groups: OKP-A and OKP-B which diverge by about 4.2%"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1006": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "513": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36230": {"category_aro_name": "CARB beta-lactamase", "category_aro_cvterm_id": "36230", "category_aro_accession": "3000091", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CARB beta-lactamases are class A lactamases that can hydrolyze carbenicillin. Many of the PSE beta-lactamases have been renamed as CARB-lactamases with the notable exception of PSE-2 which is now OXA-10."}}}}, "1004": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36713": {"category_aro_name": "vanR", "category_aro_cvterm_id": "36713", "category_aro_accession": "3000574", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanR is a OmpR-family transcriptional activator in the VanSR regulatory system. When activated by VanS, it promotes cotranscription of VanA, VanH, and VanX."}, "35947": {"category_aro_name": "vancomycin", "category_aro_cvterm_id": "35947", "category_aro_accession": "0000028", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vancomycin is a glycopeptide antibiotic used in the prophylaxis and treatment of infections caused by Gram-positive bacteria. Vancomycin inhibits the synthesis of peptidoglycan, the major component of the cell wall of gram-positive bacteria. Its mechanism of action is unusual in that it acts by binding precursors of peptidoglycan, rather than by interacting with an enzyme."}}}}, "515": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "37631": {"category_aro_name": "methymycin", "category_aro_cvterm_id": "37631", "category_aro_accession": "3001232", "category_aro_class_name": "Antibiotic", "category_aro_description": "Produced by Streptomyces venezuelae ATCC 15439."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "41401": {"category_aro_name": "mgt macrolide glycotransferase", "category_aro_cvterm_id": "41401", "category_aro_accession": "3004237", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The mgt family encompasses macrolide glycotransferases of the Streptomyces genus."}, "36284": {"category_aro_name": "tylosin", "category_aro_cvterm_id": "36284", "category_aro_accession": "3000145", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tylosin is a 16-membered macrolide, naturally produced by Streptomyces fradiae. It interacts with the bacterial ribosome 50S subunit to inhibit protein synthesis."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}, "1002": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1001": {"$update": {"ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35985": {"category_aro_name": "daptomycin", "category_aro_cvterm_id": "35985", "category_aro_accession": "0000068", "category_aro_class_name": "Antibiotic", "category_aro_description": "Daptomycin is a novel lipopeptide antibiotic used in the treatment of certain infections caused by Gram-positive organisms. Daptomycin interferes with the bacterial cell membrane, reducing membrane potential and inhibiting cell wall synthesis."}, "39638": {"category_aro_name": "daptomycin resistant mprF", "category_aro_cvterm_id": "39638", "category_aro_accession": "3003091", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "MprF is a integral membrane protein that modifies the negatively-charged phosphatidylglycerol on the membrane surface of both Gram-positive and Gram-negative bacteria. This confers resistance to cationic peptides that disrupt the cell membrane, including defensins. Mutations in mprF can additionally confer resistance to daptomycin in S. aureus."}}}}, "1000": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "623": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "622": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36207": {"category_aro_name": "DHA beta-lactamase", "category_aro_cvterm_id": "36207", "category_aro_accession": "3000068", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DHA beta-lactamases are plasmid-mediated AmpC \u03b2-lactamases that confer resistance to cephamycins and oxyimino-cephalosporins."}}}}, "1225": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "620": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1223": {"$update": {"ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "41425": {"category_aro_name": "viomycin phosphotransferase", "category_aro_cvterm_id": "41425", "category_aro_accession": "3004261", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Viomycin family of phosphotransferases confer resistance to viomycin antibiotics."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36629": {"category_aro_name": "tuberactinomycin", "category_aro_cvterm_id": "36629", "category_aro_accession": "3000490", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tuberactinomycins are a family of cyclic peptide antibiotics that are important in the treatment of tuberculosis. Tuberactinomycins contain nonproteinogenic amino acids and inhibit group I self-splicing RNA to disrupt prokaryotic protein synthesis."}, "35937": {"category_aro_name": "viomycin", "category_aro_cvterm_id": "35937", "category_aro_accession": "0000018", "category_aro_class_name": "Antibiotic", "category_aro_description": "Viomycin sulfate (Viocin) is an polypeptide antibiotic used in the treatment of tuberculosis. It is produced by the actinomycete Streptomyces puniceus and binds to the bacterial ribosome, inhibiting prokaryotic protein synthesis and certain forms of RNA splicing."}}}}, "626": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "36015": {"category_aro_name": "vanH", "category_aro_cvterm_id": "36015", "category_aro_accession": "3000006", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanH is a D-specific alpha-ketoacid dehydrogenase that synthesizes D-lactate. D-lactate is incorporated into the end of the peptidoglycan subunits, decreasing vancomycin binding affinity."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "625": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1220": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36233": {"category_aro_name": "OCH beta-lactamase", "category_aro_cvterm_id": "36233", "category_aro_accession": "3000094", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OCH beta-lactamases are Ambler class C chromosomal-encoded beta-lactamases in Ochrobactrum anthropi"}}}}, "629": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "628": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "36261": {"category_aro_name": "chloramphenicol acetyltransferase (CAT)", "category_aro_cvterm_id": "36261", "category_aro_accession": "3000122", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Inactivates chloramphenicol by addition of an acyl group. cat is used to describe many variants of the chloramphenicol acetyltransferase gene in a range of organisms including Acinetobacter calcoaceticus, Agrobacterium tumefaciens, Bacillus clausii, Bacillus subtilis, Campylobacter coli, Enterococcus faecalis, Enterococcus faecium, Lactococcus lactis, Listeria monocytogenes, Listonella anguillarum Morganella morganii, Photobacterium damselae subsp. piscicida, Proteus mirabilis, Salmonella typhi, Serratia marcescens, Shigella flexneri, Staphylococcus aureus, Staphylococcus haemolyticus, Staphylococcus intermedius, Streptococcus agalactiae, Streptococcus suis and Streptomyces acrimycini"}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "1229": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1228": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1535": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "2": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "39432": {"category_aro_name": "CblA beta-lactamase", "category_aro_cvterm_id": "39432", "category_aro_accession": "3002998", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CblA beta-lactamases are class A beta-lactamases that confer resistance to cephalosporins."}, "41256": {"category_aro_name": "cephaloridine", "category_aro_cvterm_id": "41256", "category_aro_accession": "3004129", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cephaloridine is a semisynthetic, broad-spectrum, first-generation cephalosporin with antibacterial activity. Cephaloridine binds to and inactivates penicillin-binding proteins (PBPs) located on the inner membrane of the bacterial cell wall. PBPs are enzymes involved in the terminal stages of assembling the bacterial cell wall and in reshaping the cell wall during growth and division. Inactivation of PBPs interferes with the cross-linkage of peptidoglycan chains necessary for bacterial cell wall strength and rigidity. This results in the weakening of the bacterial cell wall and causes cell lysis."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1561": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36511": {"category_aro_name": "vanT", "category_aro_cvterm_id": "36511", "category_aro_accession": "3000372", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanT is a membrane bound serine racemase, converting L-serine to D-serine. It is associated with VanC, which incorporated D-serine into D-Ala-D-Ser terminal end of peptidoglycan subunits that have a decreased binding affinity with vancomycin. It was isolated from Enterococcus gallinarum."}}}}, "1286": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "11": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "37247": {"category_aro_name": "oleandomycin", "category_aro_cvterm_id": "37247", "category_aro_accession": "3000867", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oleandomycin is a 14-membered macrolide produced by Streptomyces antibioticus. It is ssimilar to erythromycin, and contains a desosamine amino sugar and an oleandrose sugar. It targets the 50S ribosomal subunit to prevent protein synthesis."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35974": {"category_aro_name": "telithromycin", "category_aro_cvterm_id": "35974", "category_aro_accession": "0000057", "category_aro_class_name": "Antibiotic", "category_aro_description": "Telithromycin is a semi-synthetic derivative of erythromycin. It is a 14-membered macrolide and is the first ketolide antibiotic to be used in clinics. Telithromycin binds the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36284": {"category_aro_name": "tylosin", "category_aro_cvterm_id": "36284", "category_aro_accession": "3000145", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tylosin is a 16-membered macrolide, naturally produced by Streptomyces fradiae. It interacts with the bacterial ribosome 50S subunit to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36315": {"category_aro_name": "dirithromycin", "category_aro_cvterm_id": "36315", "category_aro_accession": "3000176", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dirithromycin is an oxazine derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome to inhibit bacterial protein synthesis."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "36699": {"category_aro_name": "Erm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36699", "category_aro_accession": "3000560", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Erm proteins are part of the RNA methyltransferase family and methylate A2058 (E. coli nomenclature) of the 23S ribosomal RNA conferring degrees of resistance to Macrolides, Lincosamides and Streptogramin b. This is called the MLSb phenotype."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35946": {"category_aro_name": "roxithromycin", "category_aro_cvterm_id": "35946", "category_aro_accession": "0000027", "category_aro_class_name": "Antibiotic", "category_aro_description": "Roxithromycin is a semi-synthetic, 14-carbon ring macrolide antibiotic derived from erythromycin. It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36295": {"category_aro_name": "spiramycin", "category_aro_cvterm_id": "36295", "category_aro_accession": "3000156", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spiramycin is a 16-membered macrolide and is natural product produced by Streptomyces ambofaciens. It binds to the 50S subunit of bacterial ribosomes and inhibits peptidyl transfer activity to disrupt protein synthesis."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}, "10": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36230": {"category_aro_name": "CARB beta-lactamase", "category_aro_cvterm_id": "36230", "category_aro_accession": "3000091", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CARB beta-lactamases are class A lactamases that can hydrolyze carbenicillin. Many of the PSE beta-lactamases have been renamed as CARB-lactamases with the notable exception of PSE-2 which is now OXA-10."}}}}, "13": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41390": {"category_aro_name": "subclass B3 LRA beta-lactamase", "category_aro_cvterm_id": "41390", "category_aro_accession": "3004226", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Beta-lactamases that are part of the LRA gene family and are classified as B3 (metallo-) beta-lactamases."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "12": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "15": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "14": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "17": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "16": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36198": {"category_aro_name": "KPC beta-lactamase", "category_aro_cvterm_id": "36198", "category_aro_accession": "3000059", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Klebsiella pneumoniae carbapenem resistant (KPC) beta-lactamases are notorious for their ability to efficiently hydrolyze carbapenems, unlike other Ambler Class A beta-lactamases. There are currently 9 variants reported worldwide. These enzymes were first isolated from Klebsiella pneumoniae strains in 2001 in the United States. Hospital outbreaks have since been reported in Greece and Israel and KPC carrying strains are now endemic to New York facilities. KPC-1 and KPC-2 have been shown to be identical and are now referred to as KPC-2."}}}}, "19": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "18": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "928": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}}}}}, "1534": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36195": {"category_aro_name": "PER beta-lactamase", "category_aro_cvterm_id": "36195", "category_aro_accession": "3000056", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PER beta-lactamases are plasmid-mediated extended spectrum beta-lactamases found in the Enterobacteriaceae family."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "201": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36233": {"category_aro_name": "OCH beta-lactamase", "category_aro_cvterm_id": "36233", "category_aro_accession": "3000094", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OCH beta-lactamases are Ambler class C chromosomal-encoded beta-lactamases in Ochrobactrum anthropi"}}}}, "200": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36236": {"category_aro_name": "LEN beta-lactamase", "category_aro_cvterm_id": "36236", "category_aro_accession": "3000097", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "LEN beta-lactamases are chromosomal class A beta-lactamases that confer resistance to ampicillin, amoxicillin, carbenicillin, and ticarcillin but not to extended-spectrum beta-lactams."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}}}}, "203": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "38788": {"category_aro_name": "OXY beta-lactamase", "category_aro_cvterm_id": "38788", "category_aro_accession": "3002388", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXY beta-lactamases are chromosomal class A beta-lactamases that are found in Klebsiella oxytoca. At constitutive low levels, OXY beta-lactamases confer resistance to aminopenicillins and carboxypenicillins. At high induced levels, OXY beta-lactamases confer resistance to penicillins, cephalosporins and aztreonam."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "202": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "205": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36294": {"category_aro_name": "APH(4)", "category_aro_cvterm_id": "36294", "category_aro_accession": "3000155", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of hygromycin on the hydroxyl group at position 4"}}}}, "204": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "207": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36205": {"category_aro_name": "GES beta-lactamase", "category_aro_cvterm_id": "36205", "category_aro_accession": "3000066", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "GES beta-lactamases or Guiana extended-spectrum beta-lactamases are related to the other plasmid-located class A beta-lactamases"}}}}, "206": {"$update": {"ARO_category": {"35944": {"category_aro_name": "fosfomycin", "category_aro_cvterm_id": "35944", "category_aro_accession": "0000025", "category_aro_class_name": "Drug Class", "category_aro_description": "Fosfomycin (also known as phosphomycin and phosphonomycin) is a broad-spectrum antibiotic produced by certain Streptomyces species. It is effective on gram positive and negative bacteria as it targets the cell wall, an essential feature shared by both bacteria. Its specific target is MurA (MurZ in E.coli), which attaches phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine, a step of commitment to cell wall synthesis. In the active site of MurA, the active cysteine molecule is alkylated which stops the catalytic reaction."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41410": {"category_aro_name": "Fom phosphotransferase family", "category_aro_cvterm_id": "41410", "category_aro_accession": "3004246", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Two members of the Fom family have been identified, FomA and FomB. FomB must interact with FomA confer resistance to fosfomycin, however FomA is capable of conferring resistance alone."}}}}, "209": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36461": {"category_aro_name": "AAC(3)", "category_aro_cvterm_id": "36461", "category_aro_accession": "3000322", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 3."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "208": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1573": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1572": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1571": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36210": {"category_aro_name": "vanS", "category_aro_cvterm_id": "36210", "category_aro_accession": "3000071", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanS is similar to histidine protein kinases like EnvZ and acts as a response regulator by activating VanR. VanS is required for high level transcription of other van glycopeptide resistance genes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35947": {"category_aro_name": "vancomycin", "category_aro_cvterm_id": "35947", "category_aro_accession": "0000028", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vancomycin is a glycopeptide antibiotic used in the prophylaxis and treatment of infections caused by Gram-positive bacteria. Vancomycin inhibits the synthesis of peptidoglycan, the major component of the cell wall of gram-positive bacteria. Its mechanism of action is unusual in that it acts by binding precursors of peptidoglycan, rather than by interacting with an enzyme."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}}}}, "1570": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "35990": {"category_aro_name": "meropenem", "category_aro_cvterm_id": "35990", "category_aro_accession": "0000073", "category_aro_class_name": "Antibiotic", "category_aro_description": "Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "2231": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41385": {"category_aro_name": "CPS beta-lactamase", "category_aro_cvterm_id": "41385", "category_aro_accession": "3004221", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CPS beta-lactamases are a subclass B3 family."}}}}, "2230": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41391": {"category_aro_name": "subclass B1 PEDO beta-lactamase", "category_aro_cvterm_id": "41391", "category_aro_accession": "3004227", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Beta-lactamases that are part of the PEDO gene family and are classified as subclass B1 (metallo-) beta-lactamases."}}}}, "2233": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41387": {"category_aro_name": "MSI beta-lactamase", "category_aro_cvterm_id": "41387", "category_aro_accession": "3004223", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "MSI beta-lactamases are a family of subclass B3 (metallo-) beta-lactamases."}}}}, "2232": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41386": {"category_aro_name": "ESP beta-lactamase", "category_aro_cvterm_id": "41386", "category_aro_accession": "3004222", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ESP family beta-lactamases are subclass B3 (metallo-) beta-lactamases."}}}}, "2235": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "41388": {"category_aro_name": "SPG beta-lacatamase", "category_aro_cvterm_id": "41388", "category_aro_accession": "3004224", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SPG beta-lactamases are a family of subclass B3 (metallo-) beta-lactamases."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "2234": {"$update": {"ARO_category": {"41406": {"category_aro_name": "MSI-OXA family beta-lactamase", "category_aro_cvterm_id": "41406", "category_aro_accession": "3004242", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Members of the MSI-OXA family are class D beta-lactamases that encompass hybrids of MSI-1 and putative OXA homologues."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "1576": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1575": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1574": {"$update": {"ARO_category": {"40001": {"category_aro_name": "antibiotic resistant inhA", "category_aro_cvterm_id": "40001", "category_aro_accession": "3003417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "inhA is a enoyl-acyl carrier reductase used in lipid metabolism and fatty acid biosynthesis. It is inhibited by isoniazid. Mutations in the promoter region or multiple copies of the inhA shows marked resistance to isoniazid mediated inhibition of mycolic acid biosynthesis."}, "36659": {"category_aro_name": "isoniazid", "category_aro_cvterm_id": "36659", "category_aro_accession": "3000520", "category_aro_class_name": "Drug Class", "category_aro_description": "Isoniazid is an organic compound that is the first-line anti tuberculosis medication in prevention and treatment. As a prodrug, it is activated by mycobacterial catalase-peroxidases such as M. tuberculosis KatG. Isoniazid inhibits mycolic acid synthesis, which prevents cell wall synthesis in mycobacteria."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "2185": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}, "model_param": {"$update": {"40297": {"$update": {"param_description": "The gene order model parameter describes the relative order of a set of genes or other genetic elements on a chromosome, a plasmid or within an operon. Antibiotic resistance is only conferred when the detected set of genes appears in the indicated order; otherwise, no resistance phenotype is produced. This parameter is part of the gene cluster meta-model, and may be attached to detection models with the following notation: [[cvterm_id 1],[cvterm_id 2],...,[cvterm_id n]], where the cvterm_id denotes a gene-associated AMR term and an attached model id. This parameter currently (August 2017) lacks an algorithm for detection."}}}}}}, "2184": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}, "model_param": {"$update": {"40297": {"$update": {"param_description": "The gene order model parameter describes the relative order of a set of genes or other genetic elements on a chromosome, a plasmid or within an operon. Antibiotic resistance is only conferred when the detected set of genes appears in the indicated order; otherwise, no resistance phenotype is produced. This parameter is part of the gene cluster meta-model, and may be attached to detection models with the following notation: [[cvterm_id 1],[cvterm_id 2],...,[cvterm_id n]], where the cvterm_id denotes a gene-associated AMR term and an attached model id. This parameter currently (August 2017) lacks an algorithm for detection."}}}}}}, "2097": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2096": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "37695": {"category_aro_name": "kasugamycin", "category_aro_cvterm_id": "37695", "category_aro_accession": "3001296", "category_aro_class_name": "Antibiotic", "category_aro_description": "An unusual aminoglycoside because the cyclitol ring is not amino substituted; it was discovered as a fermentation product of Streptomyces kasugaensis."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2091": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2090": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2093": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2092": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$delete": ["35950"], "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "2099": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2098": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35937": {"category_aro_name": "viomycin", "category_aro_cvterm_id": "35937", "category_aro_accession": "0000018", "category_aro_class_name": "Antibiotic", "category_aro_description": "Viomycin sulfate (Viocin) is an polypeptide antibiotic used in the treatment of tuberculosis. It is produced by the actinomycete Streptomyces puniceus and binds to the bacterial ribosome, inhibiting prokaryotic protein synthesis and certain forms of RNA splicing."}, "36629": {"category_aro_name": "tuberactinomycin", "category_aro_cvterm_id": "36629", "category_aro_accession": "3000490", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tuberactinomycins are a family of cyclic peptide antibiotics that are important in the treatment of tuberculosis. Tuberactinomycins contain nonproteinogenic amino acids and inhibit group I self-splicing RNA to disrupt prokaryotic protein synthesis."}, "40278": {"category_aro_name": "16s rRNA with mutation conferring resistance to peptide antibiotics", "category_aro_cvterm_id": "40278", "category_aro_accession": "3003667", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to peptide antibiotics."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2525": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2524": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36480": {"category_aro_name": "AAC(2')", "category_aro_cvterm_id": "36480", "category_aro_accession": "3000341", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 2'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "37695": {"category_aro_name": "kasugamycin", "category_aro_cvterm_id": "37695", "category_aro_accession": "3001296", "category_aro_class_name": "Antibiotic", "category_aro_description": "An unusual aminoglycoside because the cyclitol ring is not amino substituted; it was discovered as a fermentation product of Streptomyces kasugaensis."}}}}, "2527": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36472": {"category_aro_name": "macrolide phosphotransferase (MPH)", "category_aro_cvterm_id": "36472", "category_aro_accession": "3000333", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Macrolide phosphotransferases (MPH) are enzymes encoded by macrolide phosphotransferase genes (mph genes). These enzymes phosphorylate macrolides in GTP dependent manner at 2'-OH of desosamine sugar thereby inactivating them. Characterized MPH's are differentiated based on their substrate specificity."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}}}}, "2526": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36515": {"category_aro_name": "streptogramin vgb lyase", "category_aro_cvterm_id": "36515", "category_aro_accession": "3000376", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "vgb (Virginiamycin B) lyase inactivates type B streptogramin antibiotics by linearizing the streptogramin lactone ring at the ester linkage through an elimination mechanism, thus conferring resistance to these compounds."}}}}, "2521": {"$update": {"ARO_category": {"41424": {"category_aro_name": "Bah amidohydrolase", "category_aro_cvterm_id": "41424", "category_aro_accession": "3004260", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Bah amidohydrolases are membrane proteins that inactivate bacitracin."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "2520": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "36261": {"category_aro_name": "chloramphenicol acetyltransferase (CAT)", "category_aro_cvterm_id": "36261", "category_aro_accession": "3000122", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Inactivates chloramphenicol by addition of an acyl group. cat is used to describe many variants of the chloramphenicol acetyltransferase gene in a range of organisms including Acinetobacter calcoaceticus, Agrobacterium tumefaciens, Bacillus clausii, Bacillus subtilis, Campylobacter coli, Enterococcus faecalis, Enterococcus faecium, Lactococcus lactis, Listeria monocytogenes, Listonella anguillarum Morganella morganii, Photobacterium damselae subsp. piscicida, Proteus mirabilis, Salmonella typhi, Serratia marcescens, Shigella flexneri, Staphylococcus aureus, Staphylococcus haemolyticus, Staphylococcus intermedius, Streptococcus agalactiae, Streptococcus suis and Streptomyces acrimycini"}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "2523": {"$update": {"ARO_category": {"37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36592": {"category_aro_name": "streptogramin vat acetyltransferase", "category_aro_cvterm_id": "36592", "category_aro_accession": "3000453", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "vat (Virginiamycin acetyltransferases) enzymes catalyze the transfer of an acetyl group from acetyl-CoA to the secondary alcohol of streptogramin A compounds, thus inactivating virginiamycin-like antibiotics and conferring resistance to these compounds."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}}}}, "2522": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"37716": {"category_aro_name": "pleuromutilin", "category_aro_cvterm_id": "37716", "category_aro_accession": "3001317", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pleuromutilin is a natural product antibiotic produced by Clitopilus passeckerianus. Related antibiotics of clinical significance, such as tiamulin and retapamulin, are semi-synthetic derivatives of this compound."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}}}}}, "2529": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40875": {"category_aro_name": "capreomycin", "category_aro_cvterm_id": "40875", "category_aro_accession": "3003993", "category_aro_class_name": "Antibiotic", "category_aro_description": "Capreomycin is an aminoglycoside antibiotic, capable of treating a large number of infections but in particular used for killing bacteria causing tuberculosis."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "41421": {"category_aro_name": "cpa acetyltransferase", "category_aro_cvterm_id": "41421", "category_aro_accession": "3004257", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetyltransferases of the cpa family confer resistance to capreomycin, an aminoglycoside antibiotic"}}}}, "2528": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36673": {"category_aro_name": "rifapentine", "category_aro_cvterm_id": "36673", "category_aro_accession": "3000534", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifapentine is a semisynthetic rifamycin that inhibits DNA-dependent RNA synthesis. It is often used in the treatment of tuberculosis and leprosy."}, "41087": {"category_aro_name": "rifampin phosphotransferase", "category_aro_cvterm_id": "41087", "category_aro_accession": "3004040", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Enzymes, protein or other gene products that inactivate rifampin (rifamycin) antibiotics through phosphorylation of the antibiotic at the 21-OH position."}, "36669": {"category_aro_name": "rifabutin", "category_aro_cvterm_id": "36669", "category_aro_accession": "3000530", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifabutin is a semisynthetic rifamycin used in tuberculosis therapy. It inhibits DNA-dependent RNA synthesis."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "36656": {"category_aro_name": "rifaximin", "category_aro_cvterm_id": "36656", "category_aro_accession": "3000517", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifaximin is a semi-synthetic rifamycin used to treat traveller's diarrhea. Rifaximin inhibits RNA synthesis by binding to the beta subunit of bacterial RNA polymerase."}}}}, "2705": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "2704": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "2707": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "2706": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "1829": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1828": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36205": {"category_aro_name": "GES beta-lactamase", "category_aro_cvterm_id": "36205", "category_aro_accession": "3000066", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "GES beta-lactamases or Guiana extended-spectrum beta-lactamases are related to the other plasmid-located class A beta-lactamases"}}}}, "1825": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1824": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36604": {"category_aro_name": "ole glycosyltransferase", "category_aro_cvterm_id": "36604", "category_aro_accession": "3000465", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OleI and OleD are glycosyltransferases found in Streptomyces antibioticus which is a natural producer of antibiotic oleandomycin. OleI glycosylates antibiotic oleandomycin whereas OleD can glycosylate a wide variety of macrolides."}, "37247": {"category_aro_name": "oleandomycin", "category_aro_cvterm_id": "37247", "category_aro_accession": "3000867", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oleandomycin is a 14-membered macrolide produced by Streptomyces antibioticus. It is ssimilar to erythromycin, and contains a desosamine amino sugar and an oleandrose sugar. It targets the 50S ribosomal subunit to prevent protein synthesis."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}}}}, "1827": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1826": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36004": {"category_aro_name": "small multidrug resistance (SMR) antibiotic efflux pump", "category_aro_cvterm_id": "36004", "category_aro_accession": "0010003", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Small multidrug resistance (SMR) proteins are a relatively small family of transporters, restricted to prokaryotic cells. They are also the smallest multidrug transporters, with only four transmembrane alpha-helices and no significant extramembrane domain."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "1821": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1820": {"$update": {"ARO_category": {"36974": {"category_aro_name": "bacitracin B", "category_aro_cvterm_id": "36974", "category_aro_accession": "3000630", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bacitracin B is a component of bacitracin, an antibiotic mixture that interferes with bacterial cell wall synthesis. It differs from Bacitracin A with a valine instead of an isoleucine in its peptide."}, "39982": {"category_aro_name": "undecaprenyl pyrophosphate related proteins conferring resistance to bacitracin", "category_aro_cvterm_id": "39982", "category_aro_accession": "3003398", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Undecaprenyl phosphate is a universal lipid carrier of glycan biosynthetic intermediates for carbohydrate polymers that are exported to the bacterial cell envelope. Antibiotics that targets this compound or proteins associated with the production of this compound leads to cell death."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36975": {"category_aro_name": "bacitracin F", "category_aro_cvterm_id": "36975", "category_aro_accession": "3000631", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bacitracin F is a component of bacitracin, an antibiotic mixture that interferes with bacterial cell wall synthesis. It is formed when the thiazoline ring of bacitracin A is oxidatively deaminated."}, "36973": {"category_aro_name": "bacitracin A", "category_aro_cvterm_id": "36973", "category_aro_accession": "3000629", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bacitracin A is the primary component of bacitracin. It contains many uncommon amino acids and interferes with bacterial cell wall synthesis."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "1823": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "38788": {"category_aro_name": "OXY beta-lactamase", "category_aro_cvterm_id": "38788", "category_aro_accession": "3002388", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXY beta-lactamases are chromosomal class A beta-lactamases that are found in Klebsiella oxytoca. At constitutive low levels, OXY beta-lactamases confer resistance to aminopenicillins and carboxypenicillins. At high induced levels, OXY beta-lactamases confer resistance to penicillins, cephalosporins and aztreonam."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1822": {"$update": {"ARO_category": {"36271": {"category_aro_name": "clorobiocin", "category_aro_cvterm_id": "36271", "category_aro_accession": "3000132", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clorobiocin is an aminocoumarin antibiotic produced by Streptomyces roseochromogenes, and binds DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "36289": {"category_aro_name": "coumermycin A1", "category_aro_cvterm_id": "36289", "category_aro_accession": "3000150", "category_aro_class_name": "Antibiotic", "category_aro_description": "Coumermycin A1 is an antibiotic produced by Streptomyces rishiriensis, and binds DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36618": {"category_aro_name": "aminocoumarin resistant gyrB", "category_aro_cvterm_id": "36618", "category_aro_accession": "3000479", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in DNA gyrase subunit B (gyrB) can result in resistance to aminocoumarins. These mutations usually involve arginine residues in organisms."}}}}, "2147": {"$update": {"ARO_category": {"36725": {"category_aro_name": "pulvomycin", "category_aro_cvterm_id": "36725", "category_aro_accession": "3000586", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pulvomycin is a polyketide antibiotic that binds elongation factor Tu (EF-Tu) to inhibit protein biosynthesis by preventing the formation of the ternary complex (EF-Tu*GTP*aa-tRNA). Phenotypically, it was shown that pulvomycin sensitivity is dominant over resistance."}, "37711": {"category_aro_name": "elfamycin resistant EF-Tu", "category_aro_cvterm_id": "37711", "category_aro_accession": "3001312", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Sequence variants of elongation factor Tu that confer resistance to elfamycin antibiotics."}, "37636": {"category_aro_name": "GE2270A", "category_aro_cvterm_id": "37636", "category_aro_accession": "3001237", "category_aro_class_name": "Antibiotic", "category_aro_description": "GE2270A is the model molecule of cyclic thiazolyl peptide elfamycins. GE2270A is produced by Planobispora rosea. Biosynthesis of the molecule has been shown to originate as a ribosomally synthesized peptide that undergoes significant post-translational modification. Clinical use of cyclic thiazolyl peptides is hindered by their low water solubility and bioavailability."}, "39998": {"category_aro_name": "LFF571", "category_aro_cvterm_id": "39998", "category_aro_accession": "3003414", "category_aro_class_name": "Antibiotic", "category_aro_description": "LFF571 is a novel semi-synthetic thiopeptide antibiotic derived from GE2270. It has been shown to possess potent in vitro and in vivo activity against Gram-positive bacteria. It is hypothesized that it a translation inhibitor leading to cell death."}, "37618": {"category_aro_name": "elfamycin antibiotic", "category_aro_cvterm_id": "37618", "category_aro_accession": "3001219", "category_aro_class_name": "Drug Class", "category_aro_description": "Elfamycins are molecules that inhibit bacterial elongation factor Tu (EF-Tu), a key protein which brings aminoacyl-tRNA (aa-tRNA) to the ribosome during protein synthesis. Elfamycins defined by their target (EF-Tu), rather than a conserved chemical backbone. Elfamycins follow two mechanisms to disrupt protein synthesis: 1. kirromycins and enacyloxin fix EF-Tu in the GTP bound conformation and lock EF-Tu onto the ribosome, and 2. pulvomycin and GE2270 cover the binding site of aa-tRNA disallowing EF-Tu from being charged with aa-tRNA. All elfamycins cause increased the affinity of EF-Tu for GTP."}, "37641": {"category_aro_name": "enacyloxin IIa", "category_aro_cvterm_id": "37641", "category_aro_accession": "3001242", "category_aro_class_name": "Antibiotic", "category_aro_description": "Enacyloxin IIa is structurally distinct but acts in a similar mechanism to kirromycin-like elfamycins. It prohibits the transfer of the amino acid at the A site to the elongating peptide chain. It is most likely that the mechanism of action is that EF-Tu*GDP is locked in the EF-Tu*GTP form, and EF-Tu*GDP*aa-tRNA is immobilized on the ribosome. It is an open question whether enacyloxin IIa actually belongs to the kirromycin-like group of elfamycins due to their high similarity."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "2146": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2145": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "40280": {"category_aro_name": "16S rRNA with mutation conferring resistance to tetracycline derivatives", "category_aro_cvterm_id": "40280", "category_aro_accession": "3003669", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the bacterial 16S rRNA region shown clinically to confer resistance to tetracycline and tetracycline derivatives (polyketide antibiotics)."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2144": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "39310": {"category_aro_name": "ethambutol resistant arabinosyltransferase", "category_aro_cvterm_id": "39310", "category_aro_accession": "3002876", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Arabinosyl transferases allow for the polymerization of arabinose to form arabinan. Arabinan is required for formation of mycobacterial cell walls and arabinosyltransferases are targets of the drug ethambutol. Mutations in these genes can confer resistance to ethambutol."}, "36666": {"category_aro_name": "polyamine antibiotic", "category_aro_cvterm_id": "36666", "category_aro_accession": "3000527", "category_aro_class_name": "Drug Class", "category_aro_description": "Polyamine antibiotics are organic compounds having two or more primary amino groups."}, "36636": {"category_aro_name": "ethambutol", "category_aro_cvterm_id": "36636", "category_aro_accession": "3000497", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ethambutol is an antimycobacterial drug prescribed to treat tuberculosis. It is usually given in combination with other tuberculosis drugs, such as isoniazid, rifampicin, and pyrazinamide. Ethambutol inhibits arabinosyl biosynthesis, disrupting mycobacterial cell wall formation."}}}}, "2143": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2142": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35937": {"category_aro_name": "viomycin", "category_aro_cvterm_id": "35937", "category_aro_accession": "0000018", "category_aro_class_name": "Antibiotic", "category_aro_description": "Viomycin sulfate (Viocin) is an polypeptide antibiotic used in the treatment of tuberculosis. It is produced by the actinomycete Streptomyces puniceus and binds to the bacterial ribosome, inhibiting prokaryotic protein synthesis and certain forms of RNA splicing."}, "36629": {"category_aro_name": "tuberactinomycin", "category_aro_cvterm_id": "36629", "category_aro_accession": "3000490", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tuberactinomycins are a family of cyclic peptide antibiotics that are important in the treatment of tuberculosis. Tuberactinomycins contain nonproteinogenic amino acids and inhibit group I self-splicing RNA to disrupt prokaryotic protein synthesis."}, "40278": {"category_aro_name": "16s rRNA with mutation conferring resistance to peptide antibiotics", "category_aro_cvterm_id": "40278", "category_aro_accession": "3003667", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to peptide antibiotics."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2141": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2140": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "920": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "921": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38817": {"category_aro_name": "OKP beta-lactamase", "category_aro_cvterm_id": "38817", "category_aro_accession": "3002417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OKP beta-lactamases are chromosomal class A beta-lactamase that confer resistance to penicillins and early cephalosporins in Klebsiella pneumoniae. OKP beta-lactamases can be subdivided into two groups: OKP-A and OKP-B which diverge by about 4.2%"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "922": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "923": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "924": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "925": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36461": {"category_aro_name": "AAC(3)", "category_aro_cvterm_id": "36461", "category_aro_accession": "3000322", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 3."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2149": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2148": {"$update": {"ARO_category": {"37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}, "37244": {"category_aro_name": "fluoroquinolone resistant gyrB", "category_aro_cvterm_id": "37244", "category_aro_accession": "3000864", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in DNA gyrase subunit B (gyrB) observed in Mycobacterium tuberculosis can result in resistance to fluoroquinolones."}, "37009": {"category_aro_name": "grepafloxacin", "category_aro_cvterm_id": "37009", "category_aro_accession": "3000665", "category_aro_class_name": "Antibiotic", "category_aro_description": "Grepafloxacin is a broad-spectrum antibacterial quinoline. It is no longer taken due to its high toxicity."}, "37008": {"category_aro_name": "trovafloxacin", "category_aro_cvterm_id": "37008", "category_aro_accession": "3000664", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trovafloxacin is a trifluoroquinalone with a broad spectrum of activity that acts by inhibiting the uncoiling of supercoiled DNA. While potent against many Gram-positive and Gram-negative bacteria, it is less active against pseudomonads and Cl. difficile. It is usually taken as the prodrug trovafloxacin mesylate or alatrofloxacin mesylate for oral or intravenous administration, respectively."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "37004": {"category_aro_name": "lomefloxacin", "category_aro_cvterm_id": "37004", "category_aro_accession": "3000660", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lomefloxacin is a difluoropiperazinyl quinolone, sharing similar activities with other fluoroquinolones. It is used to treat urinary tract infections. Relative to other fluoroquinolones, it has a longer half life and has higher serum concentrations."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36289": {"category_aro_name": "coumermycin A1", "category_aro_cvterm_id": "36289", "category_aro_accession": "3000150", "category_aro_class_name": "Antibiotic", "category_aro_description": "Coumermycin A1 is an antibiotic produced by Streptomyces rishiriensis, and binds DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "40940": {"category_aro_name": "fleroxacin", "category_aro_cvterm_id": "40940", "category_aro_accession": "3004013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Fleroxacin is a broad spectrum fluoroquinolone antibiotic that inhibits the DNA supercoiling activity of bacterial DNA gyrase, resulting in double-stranded DNA breaks and subsequent cell death."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "36271": {"category_aro_name": "clorobiocin", "category_aro_cvterm_id": "36271", "category_aro_accession": "3000132", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clorobiocin is an aminocoumarin antibiotic produced by Streptomyces roseochromogenes, and binds DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "40939": {"category_aro_name": "Clofazimine", "category_aro_cvterm_id": "40939", "category_aro_accession": "3004012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clofazimine is a fluoroquinolone-class phenazine dye used for the treatment of leprosy. Clofazimine binds to DNA and disrupts bacterial DNA gyrase, thereby causing double-stranded DNA breaks, and subsequent cell death."}, "40938": {"category_aro_name": "clinafloxacin", "category_aro_cvterm_id": "40938", "category_aro_accession": "3004011", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clinafloxacin is a fluoroquinolone antibiotic and gyrase (DNA topoisomerase II) inhibitor. It binds to DNA gyrase and disrupts replication by causing double-stranded DNA breaks, resulting in cell death."}, "40937": {"category_aro_name": "cinoxacin", "category_aro_cvterm_id": "40937", "category_aro_accession": "3004010", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cinoxacin is a fluoroquinolone antibiotic primarily used for the treatment of urinary tract infections in adults. Cinoxacin binds to DNA gyrase, resulting in double-stranded DNA breaks and cell death."}, "37142": {"category_aro_name": "pefloxacin", "category_aro_cvterm_id": "37142", "category_aro_accession": "3000762", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pefloxacin is structurally and functionally similar to norfloxacin. It is poorly active against mycobacteria, while anaerobes are resistant."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35942": {"category_aro_name": "enoxacin", "category_aro_cvterm_id": "35942", "category_aro_accession": "0000023", "category_aro_class_name": "Antibiotic", "category_aro_description": "Enoxacin belongs to a group called fluoroquinolones. Its mode of action depends upon blocking bacterial DNA replication by binding itself to DNA gyrase and causing double-stranded breaks in the bacterial chromosome."}}}}, "1920": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36210": {"category_aro_name": "vanS", "category_aro_cvterm_id": "36210", "category_aro_accession": "3000071", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanS is similar to histidine protein kinases like EnvZ and acts as a response regulator by activating VanR. VanS is required for high level transcription of other van glycopeptide resistance genes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35947": {"category_aro_name": "vancomycin", "category_aro_cvterm_id": "35947", "category_aro_accession": "0000028", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vancomycin is a glycopeptide antibiotic used in the prophylaxis and treatment of infections caused by Gram-positive bacteria. Vancomycin inhibits the synthesis of peptidoglycan, the major component of the cell wall of gram-positive bacteria. Its mechanism of action is unusual in that it acts by binding precursors of peptidoglycan, rather than by interacting with an enzyme."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}}}}, "1921": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36459": {"category_aro_name": "macrolide esterase", "category_aro_cvterm_id": "36459", "category_aro_accession": "3000320", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Hydrolytic enzymes that cleave the macrocycle lactone ring of macrolide antibiotics."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35946": {"category_aro_name": "roxithromycin", "category_aro_cvterm_id": "35946", "category_aro_accession": "0000027", "category_aro_class_name": "Antibiotic", "category_aro_description": "Roxithromycin is a semi-synthetic, 14-carbon ring macrolide antibiotic derived from erythromycin. It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}, "1922": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$delete": ["36409"], "$insert": {"40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36383": {"category_aro_name": "reduced permeability to antibiotic", "category_aro_cvterm_id": "36383", "category_aro_accession": "3000244", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Reduction in permeability to antibiotic, generally through reduced production of porins, can provide resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "41445": {"category_aro_name": "General Bacterial Porin with reduced permeability to beta-lactams", "category_aro_cvterm_id": "41445", "category_aro_accession": "3004281", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These are GBPs that are associated with decreased susceptibility to beta-lactams either through mutations in the porin protein, absence of the porin protein, or expression of the porin protein."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}}}}}, "1923": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36266": {"category_aro_name": "APH(3'')", "category_aro_cvterm_id": "36266", "category_aro_accession": "3000127", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of streptomycin on the hydroxyl group at position 3''"}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1924": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "39340": {"category_aro_name": "van ligase", "category_aro_cvterm_id": "39340", "category_aro_accession": "3002906", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "van ligases synthesize alternative substrates for peptidoglycan synthesis that reduce vancomycin binding affinity."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "1925": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36421": {"category_aro_name": "sulfonamide antibiotic", "category_aro_cvterm_id": "36421", "category_aro_accession": "3000282", "category_aro_class_name": "Drug Class", "category_aro_description": "Sulfonamides are broad spectrum, synthetic antibiotics that contain the sulfonamide group. Sulfonamides inhibit dihydropteroate synthase, which catalyzes the conversion of p-aminobenzoic acid to dihydropteroic acid as part of the tetrahydrofolic acid biosynthetic pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor of many nucleotides and amino acids. Many sulfamides are taken with trimethoprim, an inhibitor of dihydrofolate reductase, also disturbing the trihydrofolic acid synthesis pathway."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "40362": {"category_aro_name": "panipenem", "category_aro_cvterm_id": "40362", "category_aro_accession": "3003708", "category_aro_class_name": "Antibiotic", "category_aro_description": "Panipenem is a carbapenem antibacterial agent with a broad spectrum of in vitro activity covering a wide range of Gram-negative and Gram-positive aerobic and anaerobic bacterial. It is used in combination with betamipron to inhibit panipenem uptake into the renal tubule and prevent nephrotoxicity."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35996": {"category_aro_name": "clavulanate", "category_aro_cvterm_id": "35996", "category_aro_accession": "0000079", "category_aro_class_name": "Adjuvant", "category_aro_description": "Clavulanic acid is a beta-lactamase inhibitor (marketed by GlaxoSmithKline, formerly Beecham) combined with penicillin group antibiotics to overcome certain types of antibiotic resistance. It is used to overcome resistance in bacteria that secrete beta-lactamase, which otherwise inactivates most penicillins."}, "35990": {"category_aro_name": "meropenem", "category_aro_cvterm_id": "35990", "category_aro_accession": "0000073", "category_aro_class_name": "Antibiotic", "category_aro_description": "Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36689": {"category_aro_name": "aztreonam", "category_aro_cvterm_id": "36689", "category_aro_accession": "3000550", "category_aro_class_name": "Antibiotic", "category_aro_description": "Aztreonam was the first monobactam discovered, and is greatly effective against Gram-negative bacteria while inactive against Gram-positive bacteria. Artreonam is a poor substrate for beta-lactamases, and may even act as an inhibitor. In Gram-negative bacteria, Aztreonam interferes with filamentation, inhibiting cell division and leading to cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35979": {"category_aro_name": "ceftriaxone", "category_aro_cvterm_id": "35979", "category_aro_accession": "0000062", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftriaxone is a third-generation cephalosporin antibiotic. The presence of an aminothiazolyl sidechain increases ceftriazone's resistance to beta-lactamases. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "40523": {"category_aro_name": "ticarcillin", "category_aro_cvterm_id": "40523", "category_aro_accession": "3003832", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ticarcillin is a carboxypenicillin used for the treatment of Gram-negative bacteria, particularly P. aeruginosa. Ticarcillin's antibiotic properties arise from its ability to prevent cross-linking of peptidoglycan during cell wall synthesis, when the bacteria try to divide, causing cell death."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36468": {"category_aro_name": "sulfamethoxazole", "category_aro_cvterm_id": "36468", "category_aro_accession": "3000329", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfamethoxazole is a sulfonamide antibiotic usually taken with trimethoprim, a diaminopyrimidine antibiotic. Sulfamethoxazole inhibits dihydropteroate synthase, essential to tetrahydrofolic acid biosynthesis. This pathway generates compounds used in the synthesis of many amino acids and nucleotides."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "40957": {"category_aro_name": "trimethoprim-sulfamethoxazole", "category_aro_cvterm_id": "40957", "category_aro_accession": "3004024", "category_aro_class_name": "Antibiotic", "category_aro_description": "An antibiotic cocktail containing the diaminopyrimidine antibiotic Trimethoprim and the sulfonamide antibiotic sulfamethoxazole (1 TMP:5 SMX)."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "1926": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1927": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1928": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1929": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36211": {"category_aro_name": "ACT beta-lactamase", "category_aro_cvterm_id": "36211", "category_aro_accession": "3000072", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "475": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "832": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "833": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "39434": {"category_aro_name": "CfxA beta-lactamase", "category_aro_cvterm_id": "39434", "category_aro_accession": "3003000", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "cfxA beta-lactamases are class A beta-lactamases"}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "830": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "831": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38817": {"category_aro_name": "OKP beta-lactamase", "category_aro_cvterm_id": "38817", "category_aro_accession": "3002417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OKP beta-lactamases are chromosomal class A beta-lactamase that confer resistance to penicillins and early cephalosporins in Klebsiella pneumoniae. OKP beta-lactamases can be subdivided into two groups: OKP-A and OKP-B which diverge by about 4.2%"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "836": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "837": {"$update": {"ARO_category": {"37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36592": {"category_aro_name": "streptogramin vat acetyltransferase", "category_aro_cvterm_id": "36592", "category_aro_accession": "3000453", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "vat (Virginiamycin acetyltransferases) enzymes catalyze the transfer of an acetyl group from acetyl-CoA to the secondary alcohol of streptogramin A compounds, thus inactivating virginiamycin-like antibiotics and conferring resistance to these compounds."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}}}}, "834": {"$update": {"ARO_category": {"35944": {"category_aro_name": "fosfomycin", "category_aro_cvterm_id": "35944", "category_aro_accession": "0000025", "category_aro_class_name": "Drug Class", "category_aro_description": "Fosfomycin (also known as phosphomycin and phosphonomycin) is a broad-spectrum antibiotic produced by certain Streptomyces species. It is effective on gram positive and negative bacteria as it targets the cell wall, an essential feature shared by both bacteria. Its specific target is MurA (MurZ in E.coli), which attaches phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine, a step of commitment to cell wall synthesis. In the active site of MurA, the active cysteine molecule is alkylated which stops the catalytic reaction."}, "36272": {"category_aro_name": "fosfomycin thiol transferase", "category_aro_cvterm_id": "36272", "category_aro_accession": "3000133", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Catalyzes the addition of a thiol group from a nucleophilic molecule to fosfomycin."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "835": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36265": {"category_aro_name": "APH(3')", "category_aro_cvterm_id": "36265", "category_aro_accession": "3000126", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of 2-deoxystreptamine aminoglycosides on the hydroxyl group at position 3'"}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "37045": {"category_aro_name": "lividomycin B", "category_aro_cvterm_id": "37045", "category_aro_accession": "3000701", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lividomycin B is a derivative of lividomycin A with a removed mannose group (demannosyllividomycin A). Livodomycins interfere with bacterial protein synthesis."}, "37044": {"category_aro_name": "lividomycin A", "category_aro_cvterm_id": "37044", "category_aro_accession": "3000700", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lividomycin A is a pentasaccharide antibiotic which interferes with bacterial protein synthesis."}}}}, "838": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "839": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "3": {"$update": {"ARO_description": "The Escherichia coli ompF (oprF) is a nonspecific porin channel involved in the membrane translocation of small hydrophilic molecules, including and especially beta-lactam antibiotics. Mutations in ompF can decrease diffusion of antibiotics across the cellular membrane, thereby decreasing overall susceptibility through absence of porin function.", "model_sequences": {"$update": {"sequence": {"4201": {"dna_sequence": {"fmax": "986982", "fmin": "985893", "accession": "NC_000913.3", "strand": "-", "sequence": "TTAGAACTGGTAAACGATACCCACAGCAACGGTGTCGTCTGAACCTACGCCCAGTTTGTTGTCAGAATCGATCTGGTTGATGATGTAGTCAACATAGGTGGACATGTTTTTGTTGAAGTAGTAGGTTGCGCCCACTTCAAAGTAGTTCACCAGATCAACATCACCGATACCTTCTACGTCTTTCGCTTTAGATTTGGTGTAAGCGATGGACGGACGCAGACCGAAATCGAACTGGTATTGCGCAACTAACAGAACGTCTTGCGTTTTGTTGGCGAAGCCGCTGGTGTTTGTAAATTTATTAGTGATCGGCGTAGCGTTACGGGTTTCACCGTAGTTCGCTGCCAGGTAGATGTTGTTCGCGTCGTACTTCAGACCAGTAGCCCACTGTTCAGCTTTTTTACCGTTGCCAAGAGGTTGAGCTTCTTGCAGGTTGGTACGGTCAGCTGCACCATAAGCACCAACGATACCAAAGCCTTCGTATTCGTAGCTGATAGAACCGCCAACACCGTCGCCGTTAGAACGGCGTGCAGTGTCACGCTCGTTTTTACCCAGGTACTGAACAGCGAAGTTCAGGCCATCAACCAGACCAAAGAAGTTGGAGTTACGATAGGTAGCAACGCCGCCAACACGACCAACGAAGAAGTCATCGCTGTATGCAGTATCACCACCAAATTCTGGCAGCATATCGGTGTAACCCAGTGCATCATAAACCACACCGTAGTTACGGCCGTAATCGAAAGAACCAACGTCAGCGTATTTAAGACCCGCGAATGCCAGACGCGTTTTGTTACCAGTTTGAGCGTCAGCGCCTTCAGAGTTGTTACCCTGGAAGTTATATTCCCACTGACCATAACCGGTCAGATCGGAATTGATTTGAGTTTCCCCTTTAAAACCAAGACGGGCATAGGTCATGTCGCCATTGCCACCGTAACTGTTTTCACCGTTACCCTTGGAAAAATAATGCAGACCAACAGCTTTACCGTACAGATCTACTTTGTTGCCATCTTTGTTATAGATTTCTGCAGCGTTTGCAGTACCTGCTACTAACAGAGCAGGGACGATCACTGCCAGAATATTGCGCTTCATCAT"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Escherichia coli str. K-12 substr. MG1655", "NCBI_taxonomy_id": "511145", "NCBI_taxonomy_cvterm_id": "36849"}, "protein_sequence": {"accession": "NP_415449.1", "sequence": "MMKRNILAVIVPALLVAGTANAAEIYNKDGNKVDLYGKAVGLHYFSKGNGENSYGGNGDMTYARLGFKGETQINSDLTGYGQWEYNFQGNNSEGADAQTGNKTRLAFAGLKYADVGSFDYGRNYGVVYDALGYTDMLPEFGGDTAYSDDFFVGRVGGVATYRNSNFFGLVDGLNFAVQYLGKNERDTARRSNGDGVGGSISYEYEGFGIVGAYGAADRTNLQEAQPLGNGKKAEQWATGLKYDANNIYLAANYGETRNATPITNKFTNTSGFANKTQDVLLVAQYQFDFGLRPSIAYTKSKAKDVEGIGDVDLVNYFEVGATYYFNKNMSTYVDYIINQIDSDNKLGVGSDDTVAVGIVYQF"}}}}}, "ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "36383": {"category_aro_name": "reduced permeability to antibiotic", "category_aro_cvterm_id": "36383", "category_aro_accession": "3000244", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Reduction in permeability to antibiotic, generally through reduced production of porins, can provide resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35976": {"category_aro_name": "cefepime", "category_aro_cvterm_id": "35976", "category_aro_accession": "0000059", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefepime (INN) is a fourth-generation cephalosporin antibiotic developed in 1994. It contains an aminothiazolyl group that decreases its affinity with beta-lactamases. Cefepime shows high binding affinity with penicillin-binding proteins and has an extended spectrum of activity against Gram-positive and Gram-negative bacteria, with greater activity against both Gram-negative and Gram-positive organisms than third-generation agents."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "41445": {"category_aro_name": "General Bacterial Porin with reduced permeability to beta-lactams", "category_aro_cvterm_id": "41445", "category_aro_accession": "3004281", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These are GBPs that are associated with decreased susceptibility to beta-lactams either through mutations in the porin protein, absence of the porin protein, or expression of the porin protein."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}, "model_name": "Pseudomonas aeruginosa ompF with mutation", "ARO_name": "Escherichia coli ompF with mutation conferring resistance to beta-lactam antibiotics"}}, "1986": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1987": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1532": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "784": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "785": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "38788": {"category_aro_name": "OXY beta-lactamase", "category_aro_cvterm_id": "38788", "category_aro_accession": "3002388", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXY beta-lactamases are chromosomal class A beta-lactamases that are found in Klebsiella oxytoca. At constitutive low levels, OXY beta-lactamases confer resistance to aminopenicillins and carboxypenicillins. At high induced levels, OXY beta-lactamases confer resistance to penicillins, cephalosporins and aztreonam."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "786": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "36015": {"category_aro_name": "vanH", "category_aro_cvterm_id": "36015", "category_aro_accession": "3000006", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanH is a D-specific alpha-ketoacid dehydrogenase that synthesizes D-lactate. D-lactate is incorporated into the end of the peptidoglycan subunits, decreasing vancomycin binding affinity."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "787": {"$update": {"ARO_category": {"36476": {"category_aro_name": "iclaprim", "category_aro_cvterm_id": "36476", "category_aro_accession": "3000337", "category_aro_class_name": "Antibiotic", "category_aro_description": "Iclaprim is a bactericidal compound that inhibits dihydrofolate reductase. It is used against clinically important Gram-positive pathogens, including methicillin-sensitive Staphylococcus aureus and methicillin-resistant S. aureus."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36408": {"category_aro_name": "brodimoprim", "category_aro_cvterm_id": "36408", "category_aro_accession": "3000269", "category_aro_class_name": "Antibiotic", "category_aro_description": "Brodimoprim is a structural derivative of trimethoprim and an inhibitor of bacterial dihydrofolate reductase. The 4-methoxy group of trimethoprim is replaced with a bromine atom."}, "37617": {"category_aro_name": "trimethoprim resistant dihydrofolate reductase dfr", "category_aro_cvterm_id": "37617", "category_aro_accession": "3001218", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Alternative dihydropteroate synthase dfr present on plasmids produces alternate proteins that are less sensitive to trimethoprim from inhibiting its role in folate synthesis, thus conferring trimethoprim resistance."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36423": {"category_aro_name": "tetroxoprim", "category_aro_cvterm_id": "36423", "category_aro_accession": "3000284", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetroxoprim is a trimethoprim derivative that inhibits bacterial dihydrofolate reductase."}}}}, "780": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36230": {"category_aro_name": "CARB beta-lactamase", "category_aro_cvterm_id": "36230", "category_aro_accession": "3000091", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CARB beta-lactamases are class A lactamases that can hydrolyze carbenicillin. Many of the PSE beta-lactamases have been renamed as CARB-lactamases with the notable exception of PSE-2 which is now OXA-10."}}}}, "781": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "782": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1729": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1726": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36206": {"category_aro_name": "FOX beta-lactamase", "category_aro_cvterm_id": "36206", "category_aro_accession": "3000067", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "FOX beta-lactamases are plasmid-encoded AmpC-type beta-lactamase which conferred resistance to broad-spectrum cephalosporins and cephamycins"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1727": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1724": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "36015": {"category_aro_name": "vanH", "category_aro_cvterm_id": "36015", "category_aro_accession": "3000006", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanH is a D-specific alpha-ketoacid dehydrogenase that synthesizes D-lactate. D-lactate is incorporated into the end of the peptidoglycan subunits, decreasing vancomycin binding affinity."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "1725": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "788": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "789": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1720": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "1721": {"$update": {"ARO_category": {"36463": {"category_aro_name": "sulfadiazine", "category_aro_cvterm_id": "36463", "category_aro_accession": "3000324", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfadiazine is a potent inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids."}, "39972": {"category_aro_name": "dapsone resistant dihydropteroate synthase folP", "category_aro_cvterm_id": "39972", "category_aro_accession": "3003388", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Dapsone inhibits bacterial synthesis of dihydrofolic acid by competing with with para-aminobenzoate for the active site of dihydropteroate synthetase. Thus acts as a competitive inhibitor of folP. Point mutation within the folP gene results in lowered affinity of dapsone for folP"}, "36466": {"category_aro_name": "sulfadoxine", "category_aro_cvterm_id": "36466", "category_aro_accession": "3000327", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfadoxine is an inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids."}, "37027": {"category_aro_name": "sulfacetamide", "category_aro_cvterm_id": "37027", "category_aro_accession": "3000683", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfacetamide is a very soluable sulfonamide antibiotic previously used to treat urinary tract infections. Its relatively low activity and toxicity to those with Stevens-Johnson syndrome have reduced its use and availability."}, "36464": {"category_aro_name": "sulfadimidine", "category_aro_cvterm_id": "36464", "category_aro_accession": "3000325", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfadimidine is an alkaline sulfonamide antibiotic that inhibits dihydropteroate synthase, and enzyme in the tetrahydrofolic acid biosynthesis pathway. This interferes with the production of folate, which is a precursor to many amino acids and nucleotides."}, "37028": {"category_aro_name": "mafenide", "category_aro_cvterm_id": "37028", "category_aro_accession": "3000684", "category_aro_class_name": "Antibiotic", "category_aro_description": "Mafenide is a sulfonamide used topically for treating burns."}, "36468": {"category_aro_name": "sulfamethoxazole", "category_aro_cvterm_id": "36468", "category_aro_accession": "3000329", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfamethoxazole is a sulfonamide antibiotic usually taken with trimethoprim, a diaminopyrimidine antibiotic. Sulfamethoxazole inhibits dihydropteroate synthase, essential to tetrahydrofolic acid biosynthesis. This pathway generates compounds used in the synthesis of many amino acids and nucleotides."}, "36469": {"category_aro_name": "sulfisoxazole", "category_aro_cvterm_id": "36469", "category_aro_accession": "3000330", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfisoxazole is an inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids."}, "39996": {"category_aro_name": "dapsone", "category_aro_cvterm_id": "39996", "category_aro_accession": "3003412", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dapsone is a sulfone in which it inhibits folic acid synthesis, such as the dihydropteroate synthase."}, "37043": {"category_aro_name": "sulfamethizole", "category_aro_cvterm_id": "37043", "category_aro_accession": "3000699", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfamethizole is a short-acting sulfonamide that inhibits dihydropteroate synthetase."}, "39985": {"category_aro_name": "sulfone antibiotic", "category_aro_cvterm_id": "39985", "category_aro_accession": "3003401", "category_aro_class_name": "Drug Class", "category_aro_description": "A sulfone active against a wide range of bacteria but mainly employed for its actions against mycobacterium laprae. Its mechanism of action involves inhibition of folic acid synthesis in susceptible organisms."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37042": {"category_aro_name": "sulfasalazine", "category_aro_cvterm_id": "37042", "category_aro_accession": "3000698", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfasalazine is a derivative of the early sulfonamide sulfapyridine (salicylazosulfapyridine). It was developed to increase water solubility and is taken orally for ulcerative colitis."}, "36421": {"category_aro_name": "sulfonamide antibiotic", "category_aro_cvterm_id": "36421", "category_aro_accession": "3000282", "category_aro_class_name": "Drug Class", "category_aro_description": "Sulfonamides are broad spectrum, synthetic antibiotics that contain the sulfonamide group. Sulfonamides inhibit dihydropteroate synthase, which catalyzes the conversion of p-aminobenzoic acid to dihydropteroic acid as part of the tetrahydrofolic acid biosynthetic pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor of many nucleotides and amino acids. Many sulfamides are taken with trimethoprim, an inhibitor of dihydrofolate reductase, also disturbing the trihydrofolic acid synthesis pathway."}}, "model_param": {"$update": {"snp": {"$update": {"param_value": {"$insert": {"3409": "V48F", "3408": "V48A", "3407": "V48G", "3406": "R54G"}}, "experimental": {"$insert": {"3409": "V48F", "3408": "V48A", "3407": "V48G", "3406": "R54G"}}}}}}}}, "252": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "36292": {"category_aro_name": "APH(9)", "category_aro_cvterm_id": "36292", "category_aro_accession": "3000153", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of spectinomycin on the hydroxyl group at position 9"}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "60": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "61": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "62": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35927": {"category_aro_name": "cefoxitin", "category_aro_cvterm_id": "35927", "category_aro_accession": "0000008", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefoxitin is a cephamycin antibiotic often grouped with the second generation cephalosporins. Cefoxitin is bactericidal and acts by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. Cefoxitin's 7-alpha-methoxy group and 3' leaving group make it a poor substrate for most beta-lactamases."}}}}, "63": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36461": {"category_aro_name": "AAC(3)", "category_aro_cvterm_id": "36461", "category_aro_accession": "3000322", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 3."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "64": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "65": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36205": {"category_aro_name": "GES beta-lactamase", "category_aro_cvterm_id": "36205", "category_aro_accession": "3000066", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "GES beta-lactamases or Guiana extended-spectrum beta-lactamases are related to the other plasmid-located class A beta-lactamases"}}}}, "66": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "67": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "68": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "69": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "41439": {"category_aro_name": "ANT(3'')", "category_aro_cvterm_id": "41439", "category_aro_accession": "3004275", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotidylylation of streptomycin at the hydroxyl group at position 3''"}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1371": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1588": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1589": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36195": {"category_aro_name": "PER beta-lactamase", "category_aro_cvterm_id": "36195", "category_aro_accession": "3000056", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PER beta-lactamases are plasmid-mediated extended spectrum beta-lactamases found in the Enterobacteriaceae family."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "406": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36212": {"category_aro_name": "ACC beta-lactamase", "category_aro_cvterm_id": "36212", "category_aro_accession": "3000073", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACC beta-lactamases or Ambler class C beta-lactamases are AmpC beta-lactamases. They possess an interesting resistance phenotype due to their low activity against cephamycins."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "1582": {"$update": {"ARO_category": {"36476": {"category_aro_name": "iclaprim", "category_aro_cvterm_id": "36476", "category_aro_accession": "3000337", "category_aro_class_name": "Antibiotic", "category_aro_description": "Iclaprim is a bactericidal compound that inhibits dihydrofolate reductase. It is used against clinically important Gram-positive pathogens, including methicillin-sensitive Staphylococcus aureus and methicillin-resistant S. aureus."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36408": {"category_aro_name": "brodimoprim", "category_aro_cvterm_id": "36408", "category_aro_accession": "3000269", "category_aro_class_name": "Antibiotic", "category_aro_description": "Brodimoprim is a structural derivative of trimethoprim and an inhibitor of bacterial dihydrofolate reductase. The 4-methoxy group of trimethoprim is replaced with a bromine atom."}, "37617": {"category_aro_name": "trimethoprim resistant dihydrofolate reductase dfr", "category_aro_cvterm_id": "37617", "category_aro_accession": "3001218", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Alternative dihydropteroate synthase dfr present on plasmids produces alternate proteins that are less sensitive to trimethoprim from inhibiting its role in folate synthesis, thus conferring trimethoprim resistance."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36423": {"category_aro_name": "tetroxoprim", "category_aro_cvterm_id": "36423", "category_aro_accession": "3000284", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetroxoprim is a trimethoprim derivative that inhibits bacterial dihydrofolate reductase."}}}}, "1583": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1580": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "36261": {"category_aro_name": "chloramphenicol acetyltransferase (CAT)", "category_aro_cvterm_id": "36261", "category_aro_accession": "3000122", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Inactivates chloramphenicol by addition of an acyl group. cat is used to describe many variants of the chloramphenicol acetyltransferase gene in a range of organisms including Acinetobacter calcoaceticus, Agrobacterium tumefaciens, Bacillus clausii, Bacillus subtilis, Campylobacter coli, Enterococcus faecalis, Enterococcus faecium, Lactococcus lactis, Listeria monocytogenes, Listonella anguillarum Morganella morganii, Photobacterium damselae subsp. piscicida, Proteus mirabilis, Salmonella typhi, Serratia marcescens, Shigella flexneri, Staphylococcus aureus, Staphylococcus haemolyticus, Staphylococcus intermedius, Streptococcus agalactiae, Streptococcus suis and Streptomyces acrimycini"}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "1581": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36211": {"category_aro_name": "ACT beta-lactamase", "category_aro_cvterm_id": "36211", "category_aro_accession": "3000072", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1586": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1373": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1584": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "1585": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "2433": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}}}}}, "1038": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "404": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "508": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "509": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36206": {"category_aro_name": "FOX beta-lactamase", "category_aro_cvterm_id": "36206", "category_aro_accession": "3000067", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "FOX beta-lactamases are plasmid-encoded AmpC-type beta-lactamase which conferred resistance to broad-spectrum cephalosporins and cephamycins"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1032": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "507": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}}}}}, "504": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1031": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36290": {"category_aro_name": "APH(6)", "category_aro_cvterm_id": "36290", "category_aro_accession": "3000151", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of streptomycin on the hydroxyl group at position 6"}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "502": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "41439": {"category_aro_name": "ANT(3'')", "category_aro_cvterm_id": "41439", "category_aro_accession": "3004275", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotidylylation of streptomycin at the hydroxyl group at position 3''"}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "503": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1034": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "402": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "1212": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "631": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "632": {"$update": {"ARO_category": {"41433": {"category_aro_name": "pmr phosphoethanolamine transferase", "category_aro_cvterm_id": "41433", "category_aro_accession": "3004269", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "This family of phosphoethanolamine transferase catalyze the addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) and phosphoethanolamine to lipid A, which impedes the binding of colistin to the cell membrane."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "1211": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "1216": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1217": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "636": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "637": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "38788": {"category_aro_name": "OXY beta-lactamase", "category_aro_cvterm_id": "38788", "category_aro_accession": "3002388", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXY beta-lactamases are chromosomal class A beta-lactamases that are found in Klebsiella oxytoca. At constitutive low levels, OXY beta-lactamases confer resistance to aminopenicillins and carboxypenicillins. At high induced levels, OXY beta-lactamases confer resistance to penicillins, cephalosporins and aztreonam."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "638": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36211": {"category_aro_name": "ACT beta-lactamase", "category_aro_cvterm_id": "36211", "category_aro_accession": "3000072", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "639": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36461": {"category_aro_name": "AAC(3)", "category_aro_cvterm_id": "36461", "category_aro_accession": "3000322", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 3."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1218": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "927": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "2416": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$delete": ["36590"], "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "35985": {"category_aro_name": "daptomycin", "category_aro_cvterm_id": "35985", "category_aro_accession": "0000068", "category_aro_class_name": "Antibiotic", "category_aro_description": "Daptomycin is a novel lipopeptide antibiotic used in the treatment of certain infections caused by Gram-positive organisms. Daptomycin interferes with the bacterial cell membrane, reducing membrane potential and inhibiting cell wall synthesis."}, "36989": {"category_aro_name": "cefotaxime", "category_aro_cvterm_id": "36989", "category_aro_accession": "3000645", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefotaxime is a semisynthetic cephalosporin taken parenterally. It is resistant to most beta-lactamases and active against Gram-negative rods and cocci due to its aminothiazoyl and methoximino functional groups."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35934": {"category_aro_name": "methicillin", "category_aro_cvterm_id": "35934", "category_aro_accession": "0000015", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derived from penicillin to combat penicillin-resistance, methicillin is insensitive to beta-lactamases (also known as penicillinases) secreted by many penicillin-resistant bacteria. Methicillin is bactericidal, and acts by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}}, "465": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36210": {"category_aro_name": "vanS", "category_aro_cvterm_id": "36210", "category_aro_accession": "3000071", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanS is similar to histidine protein kinases like EnvZ and acts as a response regulator by activating VanR. VanS is required for high level transcription of other van glycopeptide resistance genes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35947": {"category_aro_name": "vancomycin", "category_aro_cvterm_id": "35947", "category_aro_accession": "0000028", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vancomycin is a glycopeptide antibiotic used in the prophylaxis and treatment of infections caused by Gram-positive bacteria. Vancomycin inhibits the synthesis of peptidoglycan, the major component of the cell wall of gram-positive bacteria. Its mechanism of action is unusual in that it acts by binding precursors of peptidoglycan, rather than by interacting with an enzyme."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}}}}, "1728": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "783": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36309": {"category_aro_name": "imipenem", "category_aro_cvterm_id": "36309", "category_aro_accession": "3000170", "category_aro_class_name": "Antibiotic", "category_aro_description": "Imipenem is a broad-spectrum antibiotic and is usually taken with cilastatin, which prevents hydrolysis of imipenem by renal dehydropeptidase-I. It is resistant to hydrolysis by most other beta-lactamases. Notable exceptions are the KPC beta-lactamases and Ambler Class B enzymes."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}, "35996": {"category_aro_name": "clavulanate", "category_aro_cvterm_id": "35996", "category_aro_accession": "0000079", "category_aro_class_name": "Adjuvant", "category_aro_description": "Clavulanic acid is a beta-lactamase inhibitor (marketed by GlaxoSmithKline, formerly Beecham) combined with penicillin group antibiotics to overcome certain types of antibiotic resistance. It is used to overcome resistance in bacteria that secrete beta-lactamase, which otherwise inactivates most penicillins."}, "36196": {"category_aro_name": "NDM beta-lactamase", "category_aro_cvterm_id": "36196", "category_aro_accession": "3000057", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "NDM beta-lactamases or New Delhi metallo-beta-lactamases are class B beta-lactamases that confer resistance to a broad range of antibiotics including carbapenems, cephalosporins and penicillins."}, "35987": {"category_aro_name": "ertapenem", "category_aro_cvterm_id": "35987", "category_aro_accession": "0000070", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ertapenem is a carbapenem antibiotic and is highly resistant to beta-lactamases like other carbapenems. It inhibits bacterial cell wall synthesis."}, "35990": {"category_aro_name": "meropenem", "category_aro_cvterm_id": "35990", "category_aro_accession": "0000073", "category_aro_class_name": "Antibiotic", "category_aro_description": "Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem."}}}}, "1106": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36196": {"category_aro_name": "NDM beta-lactamase", "category_aro_cvterm_id": "36196", "category_aro_accession": "3000057", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "NDM beta-lactamases or New Delhi metallo-beta-lactamases are class B beta-lactamases that confer resistance to a broad range of antibiotics including carbapenems, cephalosporins and penicillins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35995": {"category_aro_name": "piperacillin", "category_aro_cvterm_id": "35995", "category_aro_accession": "0000078", "category_aro_class_name": "Antibiotic", "category_aro_description": "Piperacillin is an acetylureidopenicillin and has an extended spectrum of targets relative to other beta-lactam antibiotics. It inhibits cell wall synthesis in bacteria, and is usually taken with the beta-lactamase inhibitor tazobactam to overcome penicillin-resistant bacteria."}, "35994": {"category_aro_name": "tazobactam", "category_aro_cvterm_id": "35994", "category_aro_accession": "0000077", "category_aro_class_name": "Adjuvant", "category_aro_description": "Tazobactam is a compound which inhibits the action of bacterial beta-lactamases."}, "35927": {"category_aro_name": "cefoxitin", "category_aro_cvterm_id": "35927", "category_aro_accession": "0000008", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefoxitin is a cephamycin antibiotic often grouped with the second generation cephalosporins. Cefoxitin is bactericidal and acts by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. Cefoxitin's 7-alpha-methoxy group and 3' leaving group make it a poor substrate for most beta-lactamases."}, "35987": {"category_aro_name": "ertapenem", "category_aro_cvterm_id": "35987", "category_aro_accession": "0000070", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ertapenem is a carbapenem antibiotic and is highly resistant to beta-lactamases like other carbapenems. It inhibits bacterial cell wall synthesis."}}}}, "1455": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36199": {"category_aro_name": "IND beta-lactamase", "category_aro_cvterm_id": "36199", "category_aro_accession": "3000060", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "IND beta-lactamases are class B carbapenem-hydrolyzing beta-lactamases"}}}}, "1104": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "1105": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36461": {"category_aro_name": "AAC(3)", "category_aro_cvterm_id": "36461", "category_aro_accession": "3000322", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 3."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}}}}, "1450": {"$update": {"ARO_category": {"40471": {"category_aro_name": "fluoroquinolone self resistant parC", "category_aro_cvterm_id": "40471", "category_aro_accession": "3003786", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Inherent parC resistance to fluoroquinolone from an antibiotic producer. The presence of these genes confers self-resistance to the antibiotic it produces."}, "37009": {"category_aro_name": "grepafloxacin", "category_aro_cvterm_id": "37009", "category_aro_accession": "3000665", "category_aro_class_name": "Antibiotic", "category_aro_description": "Grepafloxacin is a broad-spectrum antibacterial quinoline. It is no longer taken due to its high toxicity."}, "37008": {"category_aro_name": "trovafloxacin", "category_aro_cvterm_id": "37008", "category_aro_accession": "3000664", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trovafloxacin is a trifluoroquinalone with a broad spectrum of activity that acts by inhibiting the uncoiling of supercoiled DNA. While potent against many Gram-positive and Gram-negative bacteria, it is less active against pseudomonads and Cl. difficile. It is usually taken as the prodrug trovafloxacin mesylate or alatrofloxacin mesylate for oral or intravenous administration, respectively."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "37004": {"category_aro_name": "lomefloxacin", "category_aro_cvterm_id": "37004", "category_aro_accession": "3000660", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lomefloxacin is a difluoropiperazinyl quinolone, sharing similar activities with other fluoroquinolones. It is used to treat urinary tract infections. Relative to other fluoroquinolones, it has a longer half life and has higher serum concentrations."}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37142": {"category_aro_name": "pefloxacin", "category_aro_cvterm_id": "37142", "category_aro_accession": "3000762", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pefloxacin is structurally and functionally similar to norfloxacin. It is poorly active against mycobacteria, while anaerobes are resistant."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36913": {"category_aro_name": "fluoroquinolone resistant parC", "category_aro_cvterm_id": "36913", "category_aro_accession": "3000619", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ParC is a subunit of topoisomerase IV, which decatenates and relaxes DNA to allow access to genes for transcription or translation. Point mutations in ParC prevent fluoroquinolone antibiotics from inhibiting DNA synthesis, and confer low-level resistance. Higher-level resistance results from both gyrA and parC mutations."}, "35942": {"category_aro_name": "enoxacin", "category_aro_cvterm_id": "35942", "category_aro_accession": "0000023", "category_aro_class_name": "Antibiotic", "category_aro_description": "Enoxacin belongs to a group called fluoroquinolones. Its mode of action depends upon blocking bacterial DNA replication by binding itself to DNA gyrase and causing double-stranded breaks in the bacterial chromosome."}}}}, "1103": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1452": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1453": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36216": {"category_aro_name": "vanY", "category_aro_cvterm_id": "36216", "category_aro_accession": "3000077", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanY is a D,D-carboxypeptidase that cleaves removes the terminal D-Ala from peptidoglycan for the addition of D-Lactate. The D-Ala-D-Lac peptidoglycan subunits have reduced binding affinity with vancomycin compared to D-Ala-D-Ala."}}}}, "1458": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1459": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1108": {"$update": {"ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "41428": {"category_aro_name": "daptomycin resistant liaS", "category_aro_cvterm_id": "41428", "category_aro_accession": "3004264", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Mutations in the liaS histidine kinase that confer daptomycin resistance."}, "35985": {"category_aro_name": "daptomycin", "category_aro_cvterm_id": "35985", "category_aro_accession": "0000068", "category_aro_class_name": "Antibiotic", "category_aro_description": "Daptomycin is a novel lipopeptide antibiotic used in the treatment of certain infections caused by Gram-positive organisms. Daptomycin interferes with the bacterial cell membrane, reducing membrane potential and inhibiting cell wall synthesis."}}}}, "1109": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "41382": {"category_aro_name": "CAU beta-lactamase", "category_aro_cvterm_id": "41382", "category_aro_accession": "3004218", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CAU beta-lactamases are a subclass B3 family."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "1722": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1723": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1577": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "466": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "2136": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2137": {"$update": {"ARO_category": {"36725": {"category_aro_name": "pulvomycin", "category_aro_cvterm_id": "36725", "category_aro_accession": "3000586", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pulvomycin is a polyketide antibiotic that binds elongation factor Tu (EF-Tu) to inhibit protein biosynthesis by preventing the formation of the ternary complex (EF-Tu*GTP*aa-tRNA). Phenotypically, it was shown that pulvomycin sensitivity is dominant over resistance."}, "37711": {"category_aro_name": "elfamycin resistant EF-Tu", "category_aro_cvterm_id": "37711", "category_aro_accession": "3001312", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Sequence variants of elongation factor Tu that confer resistance to elfamycin antibiotics."}, "37636": {"category_aro_name": "GE2270A", "category_aro_cvterm_id": "37636", "category_aro_accession": "3001237", "category_aro_class_name": "Antibiotic", "category_aro_description": "GE2270A is the model molecule of cyclic thiazolyl peptide elfamycins. GE2270A is produced by Planobispora rosea. Biosynthesis of the molecule has been shown to originate as a ribosomally synthesized peptide that undergoes significant post-translational modification. Clinical use of cyclic thiazolyl peptides is hindered by their low water solubility and bioavailability."}, "39998": {"category_aro_name": "LFF571", "category_aro_cvterm_id": "39998", "category_aro_accession": "3003414", "category_aro_class_name": "Antibiotic", "category_aro_description": "LFF571 is a novel semi-synthetic thiopeptide antibiotic derived from GE2270. It has been shown to possess potent in vitro and in vivo activity against Gram-positive bacteria. It is hypothesized that it a translation inhibitor leading to cell death."}, "37618": {"category_aro_name": "elfamycin antibiotic", "category_aro_cvterm_id": "37618", "category_aro_accession": "3001219", "category_aro_class_name": "Drug Class", "category_aro_description": "Elfamycins are molecules that inhibit bacterial elongation factor Tu (EF-Tu), a key protein which brings aminoacyl-tRNA (aa-tRNA) to the ribosome during protein synthesis. Elfamycins defined by their target (EF-Tu), rather than a conserved chemical backbone. Elfamycins follow two mechanisms to disrupt protein synthesis: 1. kirromycins and enacyloxin fix EF-Tu in the GTP bound conformation and lock EF-Tu onto the ribosome, and 2. pulvomycin and GE2270 cover the binding site of aa-tRNA disallowing EF-Tu from being charged with aa-tRNA. All elfamycins cause increased the affinity of EF-Tu for GTP."}, "37641": {"category_aro_name": "enacyloxin IIa", "category_aro_cvterm_id": "37641", "category_aro_accession": "3001242", "category_aro_class_name": "Antibiotic", "category_aro_description": "Enacyloxin IIa is structurally distinct but acts in a similar mechanism to kirromycin-like elfamycins. It prohibits the transfer of the amino acid at the A site to the elongating peptide chain. It is most likely that the mechanism of action is that EF-Tu*GDP is locked in the EF-Tu*GTP form, and EF-Tu*GDP*aa-tRNA is immobilized on the ribosome. It is an open question whether enacyloxin IIa actually belongs to the kirromycin-like group of elfamycins due to their high similarity."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}, "model_param": {"$update": {"snp": {"$update": {"param_value": {"$insert": {"3410": "Q330H", "3411": "A376T"}}, "experimental": {"$insert": {"3410": "Q330H", "3411": "A376T"}}}}}}}}, "2794": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36600": {"category_aro_name": "florfenicol", "category_aro_cvterm_id": "36600", "category_aro_accession": "3000461", "category_aro_class_name": "Antibiotic", "category_aro_description": "Florfenicol is a fluorine derivative of chloramphenicol, where the nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3) and the hydroxyl group (-OH), by a fluorine group (-F). The action mechanism is the same as chloramphenicol's, where the antibiotic binds to the 23S RNA of the 50S subunit of bacterial ribosomes to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "41251": {"category_aro_name": "23S rRNA with mutation conferring resistance to macrolide antibiotics", "category_aro_cvterm_id": "41251", "category_aro_accession": "3004125", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotide point mutations in the 23S rRNA subunit may confer resistance to macrolide antibiotics."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "216": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36236": {"category_aro_name": "LEN beta-lactamase", "category_aro_cvterm_id": "36236", "category_aro_accession": "3000097", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "LEN beta-lactamases are chromosomal class A beta-lactamases that confer resistance to ampicillin, amoxicillin, carbenicillin, and ticarcillin but not to extended-spectrum beta-lactams."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}}}}, "217": {"$update": {"ARO_category": {"36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35948": {"category_aro_name": "teicoplanin", "category_aro_cvterm_id": "35948", "category_aro_accession": "0000029", "category_aro_class_name": "Antibiotic", "category_aro_description": "Teicoplanin is a glycopeptide antibiotic used in the prophylaxis and treatment of serious infections caused by Gram-positive bacteria. Teicoplanin has a unique acyl-aliphatic chain, and binds to cell wall precursors to inhibit transglycosylation and transpeptidation."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36020": {"category_aro_name": "vanX", "category_aro_cvterm_id": "36020", "category_aro_accession": "3000011", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanX is a D,D-dipeptidase that cleaves D-Ala-D-Ala but not D-Ala-D-Lac, ensuring that the latter dipeptide that has reduced binding affinity with vancomycin is used to synthesize peptidoglycan substrate."}, "35947": {"category_aro_name": "vancomycin", "category_aro_cvterm_id": "35947", "category_aro_accession": "0000028", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vancomycin is a glycopeptide antibiotic used in the prophylaxis and treatment of infections caused by Gram-positive bacteria. Vancomycin inhibits the synthesis of peptidoglycan, the major component of the cell wall of gram-positive bacteria. Its mechanism of action is unusual in that it acts by binding precursors of peptidoglycan, rather than by interacting with an enzyme."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}}}}, "214": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "215": {"$update": {"ARO_category": {"36974": {"category_aro_name": "bacitracin B", "category_aro_cvterm_id": "36974", "category_aro_accession": "3000630", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bacitracin B is a component of bacitracin, an antibiotic mixture that interferes with bacterial cell wall synthesis. It differs from Bacitracin A with a valine instead of an isoleucine in its peptide."}, "39982": {"category_aro_name": "undecaprenyl pyrophosphate related proteins conferring resistance to bacitracin", "category_aro_cvterm_id": "39982", "category_aro_accession": "3003398", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Undecaprenyl phosphate is a universal lipid carrier of glycan biosynthetic intermediates for carbohydrate polymers that are exported to the bacterial cell envelope. Antibiotics that targets this compound or proteins associated with the production of this compound leads to cell death."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36975": {"category_aro_name": "bacitracin F", "category_aro_cvterm_id": "36975", "category_aro_accession": "3000631", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bacitracin F is a component of bacitracin, an antibiotic mixture that interferes with bacterial cell wall synthesis. It is formed when the thiazoline ring of bacitracin A is oxidatively deaminated."}, "36973": {"category_aro_name": "bacitracin A", "category_aro_cvterm_id": "36973", "category_aro_accession": "3000629", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bacitracin A is the primary component of bacitracin. It contains many uncommon amino acids and interferes with bacterial cell wall synthesis."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "213": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "210": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "211": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1530": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "218": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "41436": {"category_aro_name": "16S rRNA methyltransferase (A1408)", "category_aro_cvterm_id": "41436", "category_aro_accession": "3004272", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Methyltransferases that methylate the A1408 position of 16S rRNA, which is part of an aminoglycoside binding site."}}}}, "219": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38817": {"category_aro_name": "OKP beta-lactamase", "category_aro_cvterm_id": "38817", "category_aro_accession": "3002417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OKP beta-lactamases are chromosomal class A beta-lactamase that confer resistance to penicillins and early cephalosporins in Klebsiella pneumoniae. OKP beta-lactamases can be subdivided into two groups: OKP-A and OKP-B which diverge by about 4.2%"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "2138": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35975": {"category_aro_name": "cefazolin", "category_aro_cvterm_id": "35975", "category_aro_accession": "0000058", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefazolin (INN), also known as cefazoline or cephazolin, is a first generation cephalosporin antibiotic. It is administered parenterally, and is active against a broad spectrum of bacteria."}, "41359": {"category_aro_name": "NmcA beta-lactamase", "category_aro_cvterm_id": "41359", "category_aro_accession": "3004195", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "nmcA beta-lactamases are chromosomal-encoded Class A beta-lactamases first isolated from Enterobacter cloacae, specifically a clinical strain known as NOR-1. nmcA beta-lactamases have been shown to hydrolyze carbapenems."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35996": {"category_aro_name": "clavulanate", "category_aro_cvterm_id": "35996", "category_aro_accession": "0000079", "category_aro_class_name": "Adjuvant", "category_aro_description": "Clavulanic acid is a beta-lactamase inhibitor (marketed by GlaxoSmithKline, formerly Beecham) combined with penicillin group antibiotics to overcome certain types of antibiotic resistance. It is used to overcome resistance in bacteria that secrete beta-lactamase, which otherwise inactivates most penicillins."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}, "35927": {"category_aro_name": "cefoxitin", "category_aro_cvterm_id": "35927", "category_aro_accession": "0000008", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefoxitin is a cephamycin antibiotic often grouped with the second generation cephalosporins. Cefoxitin is bactericidal and acts by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. Cefoxitin's 7-alpha-methoxy group and 3' leaving group make it a poor substrate for most beta-lactamases."}}}}, "2139": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36210": {"category_aro_name": "vanS", "category_aro_cvterm_id": "36210", "category_aro_accession": "3000071", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanS is similar to histidine protein kinases like EnvZ and acts as a response regulator by activating VanR. VanS is required for high level transcription of other van glycopeptide resistance genes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35947": {"category_aro_name": "vancomycin", "category_aro_cvterm_id": "35947", "category_aro_accession": "0000028", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vancomycin is a glycopeptide antibiotic used in the prophylaxis and treatment of infections caused by Gram-positive bacteria. Vancomycin inhibits the synthesis of peptidoglycan, the major component of the cell wall of gram-positive bacteria. Its mechanism of action is unusual in that it acts by binding precursors of peptidoglycan, rather than by interacting with an enzyme."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}}}}, "462": {"$update": {"ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "39627": {"category_aro_name": "daptomycin resistant pgsA", "category_aro_cvterm_id": "39627", "category_aro_accession": "3003080", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "pgsA or phosphatidylglycerophosphate synthetase is an integral membrane protein involved in phospholipid biosynthesis. It is a CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase. Laboratory experiments have detected mutations conferring daptomycin resistance in Entercoccus."}, "35985": {"category_aro_name": "daptomycin", "category_aro_cvterm_id": "35985", "category_aro_accession": "0000068", "category_aro_class_name": "Antibiotic", "category_aro_description": "Daptomycin is a novel lipopeptide antibiotic used in the treatment of certain infections caused by Gram-positive organisms. Daptomycin interferes with the bacterial cell membrane, reducing membrane potential and inhibiting cell wall synthesis."}}}}, "939": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "4": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "938": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "2550": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "40463": {"category_aro_name": "nybomycin", "category_aro_cvterm_id": "40463", "category_aro_accession": "3003780", "category_aro_class_name": "Drug Class", "category_aro_description": "A heterocyclic antibiotic that targets mutant gyrA (type II topoisomerase) containing an S84L substitution, counteracting acquired quinolone resistance. It is effective against quinolone-resistant Gram-positive bacteria including S. aureus and E. faecalis. Due to its ability to counteract quinolone resistance by targeting the mutant form of the gyrA protein, it is classified as a reverse antibiotic (RA)."}, "39876": {"category_aro_name": "fluoroquinolone resistant gyrA", "category_aro_cvterm_id": "39876", "category_aro_accession": "3003292", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DNA gyrase is responsible for DNA supercoiling and consists of two alpha and two beta subunits. GyrA point mutations confer resistance by preventing fluoroquinolone antibiotics from binding the alpha-subunit."}}}}, "2551": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}, "model_param": {"$update": {"40297": {"$update": {"param_description": "The gene order model parameter describes the relative order of a set of genes or other genetic elements on a chromosome, a plasmid or within an operon. Antibiotic resistance is only conferred when the detected set of genes appears in the indicated order; otherwise, no resistance phenotype is produced. This parameter is part of the gene cluster meta-model, and may be attached to detection models with the following notation: [[cvterm_id 1],[cvterm_id 2],...,[cvterm_id n]], where the cvterm_id denotes a gene-associated AMR term and an attached model id. This parameter currently (August 2017) lacks an algorithm for detection."}}}}}}, "2396": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "2397": {"$update": {"ARO_category": {"41451": {"category_aro_name": "lipid A phosphatase", "category_aro_cvterm_id": "41451", "category_aro_accession": "3004287", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The antimicrobial activity of certain antibiotics, such as peptide antibiotics, is proposed to be initiated through binding to the lipid A moiety of lipopolysaccharides. Thus, covalent modification of Gram-negative bacterial lipid A by phosphatases is a mechanism to reduce the susceptibility of the bacteria to antibiotics."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "2395": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "41422": {"category_aro_name": "amp acetyltransferase", "category_aro_cvterm_id": "41422", "category_aro_accession": "3004258", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "A family of acetyltransferases that confer resistance to apramycin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2398": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "2399": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "41240": {"category_aro_name": "nitrofuran antibiotic", "category_aro_cvterm_id": "41240", "category_aro_accession": "3004116", "category_aro_class_name": "Drug Class", "category_aro_description": "Nitrofurans are chemotherapeutic agents with antibacterial and antiprotozoal activity."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35992": {"category_aro_name": "nitrofurantoin", "category_aro_cvterm_id": "35992", "category_aro_accession": "0000075", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nitrofurantoin is an antibiotic used to treat urinary tract infections. It inhibits enzyme synthesis by inhibiting essential enzymes involved in the citric acid cycle, as well as those involved in DNA, RNA, and protein synthesis. It is marketed under the following brand names: Furadantin, Macrobid, Macrodantin, Nitro Macro and Urantoin."}}}}}, "2778": {"$update": {"ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "41432": {"category_aro_name": "MCR phosphoethanolamine transferase", "category_aro_cvterm_id": "41432", "category_aro_accession": "3004268", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "A group of mobile colistin resistance genes encode the MCR family of phosphoethanolamine transferases, which catalyze the addition of phosphoethanolamine onto lipid A, thus interfering with the binding of colistin to the cell membrane."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36968": {"category_aro_name": "colistin B", "category_aro_cvterm_id": "36968", "category_aro_accession": "3000624", "category_aro_class_name": "Antibiotic", "category_aro_description": "Colistin B, or polymyxin E2, has a 6-heptanoic acid lipid tail. Polymyxins disrupt the cell membrane of Gram-negative bacteria."}, "36966": {"category_aro_name": "colistin A", "category_aro_cvterm_id": "36966", "category_aro_accession": "3000622", "category_aro_class_name": "Antibiotic", "category_aro_description": "Colistin A, or polymyxin E1, has a 6-octanoic acid lipid tail. Polymyxins disrupt the cell membrane of Gram-negative bacteria."}}}}, "2779": {"$update": {"ARO_category": {"35944": {"category_aro_name": "fosfomycin", "category_aro_cvterm_id": "35944", "category_aro_accession": "0000025", "category_aro_class_name": "Drug Class", "category_aro_description": "Fosfomycin (also known as phosphomycin and phosphonomycin) is a broad-spectrum antibiotic produced by certain Streptomyces species. It is effective on gram positive and negative bacteria as it targets the cell wall, an essential feature shared by both bacteria. Its specific target is MurA (MurZ in E.coli), which attaches phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine, a step of commitment to cell wall synthesis. In the active site of MurA, the active cysteine molecule is alkylated which stops the catalytic reaction."}, "36272": {"category_aro_name": "fosfomycin thiol transferase", "category_aro_cvterm_id": "36272", "category_aro_accession": "3000133", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Catalyzes the addition of a thiol group from a nucleophilic molecule to fosfomycin."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "2770": {"$update": {"ARO_category": {"41436": {"category_aro_name": "16S rRNA methyltransferase (A1408)", "category_aro_cvterm_id": "41436", "category_aro_accession": "3004272", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Methyltransferases that methylate the A1408 position of 16S rRNA, which is part of an aminoglycoside binding site."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2771": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}}, "2773": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "41216": {"category_aro_name": "TMB beta-lactamase", "category_aro_cvterm_id": "41216", "category_aro_accession": "3004104", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TMB-1, the first known member of the Tripoli metallo-beta-lactamase family (TMB) was isolated from Achromobacter xylosoxidans in a Tripoli central hospital. TMB-1 was located on a class 1 integron and is a chromosomally-encoded beta-lactamase capable of hydrolyzing multiple antibiotics."}}}}, "2774": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "41216": {"category_aro_name": "TMB beta-lactamase", "category_aro_cvterm_id": "41216", "category_aro_accession": "3004104", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TMB-1, the first known member of the Tripoli metallo-beta-lactamase family (TMB) was isolated from Achromobacter xylosoxidans in a Tripoli central hospital. TMB-1 was located on a class 1 integron and is a chromosomally-encoded beta-lactamase capable of hydrolyzing multiple antibiotics."}}}}, "2775": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$delete": ["35950"], "$insert": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}}}}}, "1858": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1859": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1850": {"$update": {"ARO_category": {"35944": {"category_aro_name": "fosfomycin", "category_aro_cvterm_id": "35944", "category_aro_accession": "0000025", "category_aro_class_name": "Drug Class", "category_aro_description": "Fosfomycin (also known as phosphomycin and phosphonomycin) is a broad-spectrum antibiotic produced by certain Streptomyces species. It is effective on gram positive and negative bacteria as it targets the cell wall, an essential feature shared by both bacteria. Its specific target is MurA (MurZ in E.coli), which attaches phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine, a step of commitment to cell wall synthesis. In the active site of MurA, the active cysteine molecule is alkylated which stops the catalytic reaction."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41410": {"category_aro_name": "Fom phosphotransferase family", "category_aro_cvterm_id": "41410", "category_aro_accession": "3004246", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Two members of the Fom family have been identified, FomA and FomB. FomB must interact with FomA confer resistance to fosfomycin, however FomA is capable of conferring resistance alone."}}}}, "1851": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36198": {"category_aro_name": "KPC beta-lactamase", "category_aro_cvterm_id": "36198", "category_aro_accession": "3000059", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Klebsiella pneumoniae carbapenem resistant (KPC) beta-lactamases are notorious for their ability to efficiently hydrolyze carbapenems, unlike other Ambler Class A beta-lactamases. There are currently 9 variants reported worldwide. These enzymes were first isolated from Klebsiella pneumoniae strains in 2001 in the United States. Hospital outbreaks have since been reported in Greece and Israel and KPC carrying strains are now endemic to New York facilities. KPC-1 and KPC-2 have been shown to be identical and are now referred to as KPC-2."}}}}, "1852": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "41435": {"category_aro_name": "16S rRNA methyltransferase (G1405)", "category_aro_cvterm_id": "41435", "category_aro_accession": "3004271", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Methyltransferases that methylate the G1405 position of 16S rRNA, which is part of an aminoglycoside binding site."}}}}, "1853": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1854": {"$update": {"ARO_category": {"35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "41435": {"category_aro_name": "16S rRNA methyltransferase (G1405)", "category_aro_cvterm_id": "41435", "category_aro_accession": "3004271", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Methyltransferases that methylate the G1405 position of 16S rRNA, which is part of an aminoglycoside binding site."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1855": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1856": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1857": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "919": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36195": {"category_aro_name": "PER beta-lactamase", "category_aro_cvterm_id": "36195", "category_aro_accession": "3000056", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PER beta-lactamases are plasmid-mediated extended spectrum beta-lactamases found in the Enterobacteriaceae family."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "918": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "915": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "914": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36364": {"category_aro_name": "ANT(6)", "category_aro_cvterm_id": "36364", "category_aro_accession": "3000225", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucelotidylylation of streptomycin at the hydroxyl group at position 6"}}}}, "917": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "916": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "911": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "910": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36673": {"category_aro_name": "rifapentine", "category_aro_cvterm_id": "36673", "category_aro_accession": "3000534", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifapentine is a semisynthetic rifamycin that inhibits DNA-dependent RNA synthesis. It is often used in the treatment of tuberculosis and leprosy."}, "41087": {"category_aro_name": "rifampin phosphotransferase", "category_aro_cvterm_id": "41087", "category_aro_accession": "3004040", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Enzymes, protein or other gene products that inactivate rifampin (rifamycin) antibiotics through phosphorylation of the antibiotic at the 21-OH position."}, "36669": {"category_aro_name": "rifabutin", "category_aro_cvterm_id": "36669", "category_aro_accession": "3000530", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifabutin is a semisynthetic rifamycin used in tuberculosis therapy. It inhibits DNA-dependent RNA synthesis."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "36656": {"category_aro_name": "rifaximin", "category_aro_cvterm_id": "36656", "category_aro_accession": "3000517", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifaximin is a semi-synthetic rifamycin used to treat traveller's diarrhea. Rifaximin inhibits RNA synthesis by binding to the beta subunit of bacterial RNA polymerase."}}}}, "913": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "38788": {"category_aro_name": "OXY beta-lactamase", "category_aro_cvterm_id": "38788", "category_aro_accession": "3002388", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXY beta-lactamases are chromosomal class A beta-lactamases that are found in Klebsiella oxytoca. At constitutive low levels, OXY beta-lactamases confer resistance to aminopenicillins and carboxypenicillins. At high induced levels, OXY beta-lactamases confer resistance to penicillins, cephalosporins and aztreonam."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "912": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36236": {"category_aro_name": "LEN beta-lactamase", "category_aro_cvterm_id": "36236", "category_aro_accession": "3000097", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "LEN beta-lactamases are chromosomal class A beta-lactamases that confer resistance to ampicillin, amoxicillin, carbenicillin, and ticarcillin but not to extended-spectrum beta-lactams."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}}}}, "1933": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1932": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1931": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1930": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1937": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1936": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1935": {"$update": {"ARO_category": {"40463": {"category_aro_name": "nybomycin", "category_aro_cvterm_id": "40463", "category_aro_accession": "3003780", "category_aro_class_name": "Drug Class", "category_aro_description": "A heterocyclic antibiotic that targets mutant gyrA (type II topoisomerase) containing an S84L substitution, counteracting acquired quinolone resistance. It is effective against quinolone-resistant Gram-positive bacteria including S. aureus and E. faecalis. Due to its ability to counteract quinolone resistance by targeting the mutant form of the gyrA protein, it is classified as a reverse antibiotic (RA)."}, "37009": {"category_aro_name": "grepafloxacin", "category_aro_cvterm_id": "37009", "category_aro_accession": "3000665", "category_aro_class_name": "Antibiotic", "category_aro_description": "Grepafloxacin is a broad-spectrum antibacterial quinoline. It is no longer taken due to its high toxicity."}, "37008": {"category_aro_name": "trovafloxacin", "category_aro_cvterm_id": "37008", "category_aro_accession": "3000664", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trovafloxacin is a trifluoroquinalone with a broad spectrum of activity that acts by inhibiting the uncoiling of supercoiled DNA. While potent against many Gram-positive and Gram-negative bacteria, it is less active against pseudomonads and Cl. difficile. It is usually taken as the prodrug trovafloxacin mesylate or alatrofloxacin mesylate for oral or intravenous administration, respectively."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "37004": {"category_aro_name": "lomefloxacin", "category_aro_cvterm_id": "37004", "category_aro_accession": "3000660", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lomefloxacin is a difluoropiperazinyl quinolone, sharing similar activities with other fluoroquinolones. It is used to treat urinary tract infections. Relative to other fluoroquinolones, it has a longer half life and has higher serum concentrations."}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}, "39876": {"category_aro_name": "fluoroquinolone resistant gyrA", "category_aro_cvterm_id": "39876", "category_aro_accession": "3003292", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DNA gyrase is responsible for DNA supercoiling and consists of two alpha and two beta subunits. GyrA point mutations confer resistance by preventing fluoroquinolone antibiotics from binding the alpha-subunit."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37142": {"category_aro_name": "pefloxacin", "category_aro_cvterm_id": "37142", "category_aro_accession": "3000762", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pefloxacin is structurally and functionally similar to norfloxacin. It is poorly active against mycobacteria, while anaerobes are resistant."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35942": {"category_aro_name": "enoxacin", "category_aro_cvterm_id": "35942", "category_aro_accession": "0000023", "category_aro_class_name": "Antibiotic", "category_aro_description": "Enoxacin belongs to a group called fluoroquinolones. Its mode of action depends upon blocking bacterial DNA replication by binding itself to DNA gyrase and causing double-stranded breaks in the bacterial chromosome."}}}}, "1934": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36360": {"category_aro_name": "lincosamide nucleotidyltransferase (LNU)", "category_aro_cvterm_id": "36360", "category_aro_accession": "3000221", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Resistance to the lincosamide antibiotic by ATP-dependent modification of the 3' and/or 4'-hydroxyl groups of the methylthiolincosamide sugar."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}, "1939": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1938": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$delete": ["36590"], "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35971": {"category_aro_name": "penicillin", "category_aro_cvterm_id": "35971", "category_aro_accession": "0000054", "category_aro_class_name": "Antibiotic", "category_aro_description": "Penicillin (sometimes abbreviated PCN) is a beta-lactam antibiotic used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms. It works by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "1424": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "38788": {"category_aro_name": "OXY beta-lactamase", "category_aro_cvterm_id": "38788", "category_aro_accession": "3002388", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXY beta-lactamases are chromosomal class A beta-lactamases that are found in Klebsiella oxytoca. At constitutive low levels, OXY beta-lactamases confer resistance to aminopenicillins and carboxypenicillins. At high induced levels, OXY beta-lactamases confer resistance to penicillins, cephalosporins and aztreonam."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "847": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "846": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36207": {"category_aro_name": "DHA beta-lactamase", "category_aro_cvterm_id": "36207", "category_aro_accession": "3000068", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DHA beta-lactamases are plasmid-mediated AmpC \u03b2-lactamases that confer resistance to cephamycins and oxyimino-cephalosporins."}}}}, "845": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "844": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "843": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "842": {"$update": {"ARO_category": {"41433": {"category_aro_name": "pmr phosphoethanolamine transferase", "category_aro_cvterm_id": "41433", "category_aro_accession": "3004269", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "This family of phosphoethanolamine transferase catalyze the addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) and phosphoethanolamine to lipid A, which impedes the binding of colistin to the cell membrane."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "841": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "840": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "849": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "848": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38817": {"category_aro_name": "OKP beta-lactamase", "category_aro_cvterm_id": "38817", "category_aro_accession": "3002417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OKP beta-lactamases are chromosomal class A beta-lactamase that confer resistance to penicillins and early cephalosporins in Klebsiella pneumoniae. OKP beta-lactamases can be subdivided into two groups: OKP-A and OKP-B which diverge by about 4.2%"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1587": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "2407": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "40463": {"category_aro_name": "nybomycin", "category_aro_cvterm_id": "40463", "category_aro_accession": "3003780", "category_aro_class_name": "Drug Class", "category_aro_description": "A heterocyclic antibiotic that targets mutant gyrA (type II topoisomerase) containing an S84L substitution, counteracting acquired quinolone resistance. It is effective against quinolone-resistant Gram-positive bacteria including S. aureus and E. faecalis. Due to its ability to counteract quinolone resistance by targeting the mutant form of the gyrA protein, it is classified as a reverse antibiotic (RA)."}, "39876": {"category_aro_name": "fluoroquinolone resistant gyrA", "category_aro_cvterm_id": "39876", "category_aro_accession": "3003292", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DNA gyrase is responsible for DNA supercoiling and consists of two alpha and two beta subunits. GyrA point mutations confer resistance by preventing fluoroquinolone antibiotics from binding the alpha-subunit."}}}}, "1739": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1738": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1731": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36472": {"category_aro_name": "macrolide phosphotransferase (MPH)", "category_aro_cvterm_id": "36472", "category_aro_accession": "3000333", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Macrolide phosphotransferases (MPH) are enzymes encoded by macrolide phosphotransferase genes (mph genes). These enzymes phosphorylate macrolides in GTP dependent manner at 2'-OH of desosamine sugar thereby inactivating them. Characterized MPH's are differentiated based on their substrate specificity."}, "37247": {"category_aro_name": "oleandomycin", "category_aro_cvterm_id": "37247", "category_aro_accession": "3000867", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oleandomycin is a 14-membered macrolide produced by Streptomyces antibioticus. It is ssimilar to erythromycin, and contains a desosamine amino sugar and an oleandrose sugar. It targets the 50S ribosomal subunit to prevent protein synthesis."}, "35974": {"category_aro_name": "telithromycin", "category_aro_cvterm_id": "35974", "category_aro_accession": "0000057", "category_aro_class_name": "Antibiotic", "category_aro_description": "Telithromycin is a semi-synthetic derivative of erythromycin. It is a 14-membered macrolide and is the first ketolide antibiotic to be used in clinics. Telithromycin binds the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36315": {"category_aro_name": "dirithromycin", "category_aro_cvterm_id": "36315", "category_aro_accession": "3000176", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dirithromycin is an oxazine derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome to inhibit bacterial protein synthesis."}, "36284": {"category_aro_name": "tylosin", "category_aro_cvterm_id": "36284", "category_aro_accession": "3000145", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tylosin is a 16-membered macrolide, naturally produced by Streptomyces fradiae. It interacts with the bacterial ribosome 50S subunit to inhibit protein synthesis."}, "35946": {"category_aro_name": "roxithromycin", "category_aro_cvterm_id": "35946", "category_aro_accession": "0000027", "category_aro_class_name": "Antibiotic", "category_aro_description": "Roxithromycin is a semi-synthetic, 14-carbon ring macrolide antibiotic derived from erythromycin. It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36295": {"category_aro_name": "spiramycin", "category_aro_cvterm_id": "36295", "category_aro_accession": "3000156", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spiramycin is a 16-membered macrolide and is natural product produced by Streptomyces ambofaciens. It binds to the 50S subunit of bacterial ribosomes and inhibits peptidyl transfer activity to disrupt protein synthesis."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}, "1730": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1733": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1732": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1735": {"$update": {"ARO_category": {"37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36592": {"category_aro_name": "streptogramin vat acetyltransferase", "category_aro_cvterm_id": "36592", "category_aro_accession": "3000453", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "vat (Virginiamycin acetyltransferases) enzymes catalyze the transfer of an acetyl group from acetyl-CoA to the secondary alcohol of streptogramin A compounds, thus inactivating virginiamycin-like antibiotics and conferring resistance to these compounds."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}}}}, "1734": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36199": {"category_aro_name": "IND beta-lactamase", "category_aro_cvterm_id": "36199", "category_aro_accession": "3000060", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "IND beta-lactamases are class B carbapenem-hydrolyzing beta-lactamases"}}}}, "1737": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36368": {"category_aro_name": "ANT(4')", "category_aro_cvterm_id": "36368", "category_aro_accession": "3000229", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotidylylation of 2-deoxystreptamine aminoglycosides at the hydroxyl group at position 4'"}, "35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1736": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36205": {"category_aro_name": "GES beta-lactamase", "category_aro_cvterm_id": "36205", "category_aro_accession": "3000066", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "GES beta-lactamases or Guiana extended-spectrum beta-lactamases are related to the other plasmid-located class A beta-lactamases"}}}}, "1039": {"$update": {"ARO_category": {"36476": {"category_aro_name": "iclaprim", "category_aro_cvterm_id": "36476", "category_aro_accession": "3000337", "category_aro_class_name": "Antibiotic", "category_aro_description": "Iclaprim is a bactericidal compound that inhibits dihydrofolate reductase. It is used against clinically important Gram-positive pathogens, including methicillin-sensitive Staphylococcus aureus and methicillin-resistant S. aureus."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36408": {"category_aro_name": "brodimoprim", "category_aro_cvterm_id": "36408", "category_aro_accession": "3000269", "category_aro_class_name": "Antibiotic", "category_aro_description": "Brodimoprim is a structural derivative of trimethoprim and an inhibitor of bacterial dihydrofolate reductase. The 4-methoxy group of trimethoprim is replaced with a bromine atom."}, "37617": {"category_aro_name": "trimethoprim resistant dihydrofolate reductase dfr", "category_aro_cvterm_id": "37617", "category_aro_accession": "3001218", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Alternative dihydropteroate synthase dfr present on plasmids produces alternate proteins that are less sensitive to trimethoprim from inhibiting its role in folate synthesis, thus conferring trimethoprim resistance."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36423": {"category_aro_name": "tetroxoprim", "category_aro_cvterm_id": "36423", "category_aro_accession": "3000284", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetroxoprim is a trimethoprim derivative that inhibits bacterial dihydrofolate reductase."}}}}, "796": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36584": {"category_aro_name": "rifampin monooxygenase", "category_aro_cvterm_id": "36584", "category_aro_accession": "3000445", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Enzyme responsible for the decolorization of rifampin by monoxygenation."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36673": {"category_aro_name": "rifapentine", "category_aro_cvterm_id": "36673", "category_aro_accession": "3000534", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifapentine is a semisynthetic rifamycin that inhibits DNA-dependent RNA synthesis. It is often used in the treatment of tuberculosis and leprosy."}, "36669": {"category_aro_name": "rifabutin", "category_aro_cvterm_id": "36669", "category_aro_accession": "3000530", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifabutin is a semisynthetic rifamycin used in tuberculosis therapy. It inhibits DNA-dependent RNA synthesis."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "36656": {"category_aro_name": "rifaximin", "category_aro_cvterm_id": "36656", "category_aro_accession": "3000517", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifaximin is a semi-synthetic rifamycin used to treat traveller's diarrhea. Rifaximin inhibits RNA synthesis by binding to the beta subunit of bacterial RNA polymerase."}}}}, "753": {"$update": {"ARO_category": {"41381": {"category_aro_name": "SMB beta-lactamase", "category_aro_cvterm_id": "41381", "category_aro_accession": "3004217", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SMB beta-lactamases are a subclass B3 beta-lactamases that hydrolyze a variety of beta-lactams, including penicillins, cephalosporins, and carbapenems."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}}}}, "752": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36713": {"category_aro_name": "vanR", "category_aro_cvterm_id": "36713", "category_aro_accession": "3000574", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanR is a OmpR-family transcriptional activator in the VanSR regulatory system. When activated by VanS, it promotes cotranscription of VanA, VanH, and VanX."}, "35947": {"category_aro_name": "vancomycin", "category_aro_cvterm_id": "35947", "category_aro_accession": "0000028", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vancomycin is a glycopeptide antibiotic used in the prophylaxis and treatment of infections caused by Gram-positive bacteria. Vancomycin inhibits the synthesis of peptidoglycan, the major component of the cell wall of gram-positive bacteria. Its mechanism of action is unusual in that it acts by binding precursors of peptidoglycan, rather than by interacting with an enzyme."}}}}, "751": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "750": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "757": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "756": {"$update": {"ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "41427": {"category_aro_name": "daptomycin resistant liaR", "category_aro_cvterm_id": "41427", "category_aro_accession": "3004263", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Mutations to the liaR response regulator that confer resistance to daptomycin."}, "35985": {"category_aro_name": "daptomycin", "category_aro_cvterm_id": "35985", "category_aro_accession": "0000068", "category_aro_class_name": "Antibiotic", "category_aro_description": "Daptomycin is a novel lipopeptide antibiotic used in the treatment of certain infections caused by Gram-positive organisms. Daptomycin interferes with the bacterial cell membrane, reducing membrane potential and inhibiting cell wall synthesis."}}}}, "755": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36198": {"category_aro_name": "KPC beta-lactamase", "category_aro_cvterm_id": "36198", "category_aro_accession": "3000059", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Klebsiella pneumoniae carbapenem resistant (KPC) beta-lactamases are notorious for their ability to efficiently hydrolyze carbapenems, unlike other Ambler Class A beta-lactamases. There are currently 9 variants reported worldwide. These enzymes were first isolated from Klebsiella pneumoniae strains in 2001 in the United States. Hospital outbreaks have since been reported in Greece and Israel and KPC carrying strains are now endemic to New York facilities. KPC-1 and KPC-2 have been shown to be identical and are now referred to as KPC-2."}}}}, "754": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "759": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36233": {"category_aro_name": "OCH beta-lactamase", "category_aro_cvterm_id": "36233", "category_aro_accession": "3000094", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OCH beta-lactamases are Ambler class C chromosomal-encoded beta-lactamases in Ochrobactrum anthropi"}}}}, "758": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1595": {"$update": {"ARO_category": {"37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35980": {"category_aro_name": "cefuroxime", "category_aro_cvterm_id": "35980", "category_aro_accession": "0000063", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefuroxime is a second-generation cephalosporin antibiotic with increased stability with beta-lactamases than first-generation cephalosporins. Cefuroxime is active against Gram-positive organisms but less active against methicillin-resistant strains."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36992": {"category_aro_name": "ceftibuten", "category_aro_cvterm_id": "36992", "category_aro_accession": "3000648", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftibuten is a semisynthetic cephalosporin active against Gram-negative bacilli. It is resistant against many plasmid-mediated beta-lactamases."}, "36993": {"category_aro_name": "cefditoren", "category_aro_cvterm_id": "36993", "category_aro_accession": "3000649", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefditoren is a semisynthetic cephalosporin active against staphylococci, streptococci, and and most enterobacteria. It is resistant to staphylococcal and most enterobacterial beta-lactamases, and is usually taken as the prodrug cefditoren pivoxil."}, "35995": {"category_aro_name": "piperacillin", "category_aro_cvterm_id": "35995", "category_aro_accession": "0000078", "category_aro_class_name": "Antibiotic", "category_aro_description": "Piperacillin is an acetylureidopenicillin and has an extended spectrum of targets relative to other beta-lactam antibiotics. It inhibits cell wall synthesis in bacteria, and is usually taken with the beta-lactamase inhibitor tazobactam to overcome penicillin-resistant bacteria."}, "36991": {"category_aro_name": "cefpodoxime", "category_aro_cvterm_id": "36991", "category_aro_accession": "3000647", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefpodoxime is a semisynthetic cephalosporin that acts similarly to cefotaxime with broad-spectrum activity. It is stable to many plasmid-mediated beta-lactamses. Cefpodoxime is consumed as the prodrug cefpodoxime proxetil."}, "36990": {"category_aro_name": "cefixime", "category_aro_cvterm_id": "36990", "category_aro_accession": "3000646", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefixime is a cephalosporin resistant to most beta-lactamases. It is active against many enterobacteria, but activity against staphylococci is poor."}, "36994": {"category_aro_name": "cefdinir", "category_aro_cvterm_id": "36994", "category_aro_accession": "3000650", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefdinir is similar to cefixime with a modified side-chain at its 7-amino position. It also shares similar activity with cefixime but is more active against staphylococci. It has also be shown to enhance phagocytosis."}, "35990": {"category_aro_name": "meropenem", "category_aro_cvterm_id": "35990", "category_aro_accession": "0000073", "category_aro_class_name": "Antibiotic", "category_aro_description": "Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36309": {"category_aro_name": "imipenem", "category_aro_cvterm_id": "36309", "category_aro_accession": "3000170", "category_aro_class_name": "Antibiotic", "category_aro_description": "Imipenem is a broad-spectrum antibiotic and is usually taken with cilastatin, which prevents hydrolysis of imipenem by renal dehydropeptidase-I. It is resistant to hydrolysis by most other beta-lactamases. Notable exceptions are the KPC beta-lactamases and Ambler Class B enzymes."}, "35927": {"category_aro_name": "cefoxitin", "category_aro_cvterm_id": "35927", "category_aro_accession": "0000008", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefoxitin is a cephamycin antibiotic often grouped with the second generation cephalosporins. Cefoxitin is bactericidal and acts by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. Cefoxitin's 7-alpha-methoxy group and 3' leaving group make it a poor substrate for most beta-lactamases."}, "36689": {"category_aro_name": "aztreonam", "category_aro_cvterm_id": "36689", "category_aro_accession": "3000550", "category_aro_class_name": "Antibiotic", "category_aro_description": "Aztreonam was the first monobactam discovered, and is greatly effective against Gram-negative bacteria while inactive against Gram-positive bacteria. Artreonam is a poor substrate for beta-lactamases, and may even act as an inhibitor. In Gram-negative bacteria, Aztreonam interferes with filamentation, inhibiting cell division and leading to cell death."}, "37085": {"category_aro_name": "isopenicillin N", "category_aro_cvterm_id": "37085", "category_aro_accession": "3000705", "category_aro_class_name": "Antibiotic", "category_aro_description": "Isopenicillin N is a natural penicillin derivative produced by Penicillium chrysogenum with activity similar to penicillin N."}, "35975": {"category_aro_name": "cefazolin", "category_aro_cvterm_id": "35975", "category_aro_accession": "0000058", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefazolin (INN), also known as cefazoline or cephazolin, is a first generation cephalosporin antibiotic. It is administered parenterally, and is active against a broad spectrum of bacteria."}, "37086": {"category_aro_name": "penicillin N", "category_aro_cvterm_id": "37086", "category_aro_accession": "3000706", "category_aro_class_name": "Antibiotic", "category_aro_description": "Penicillin N is a penicillin derivative produced by Cephalosporium acremonium."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35976": {"category_aro_name": "cefepime", "category_aro_cvterm_id": "35976", "category_aro_accession": "0000059", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefepime (INN) is a fourth-generation cephalosporin antibiotic developed in 1994. It contains an aminothiazolyl group that decreases its affinity with beta-lactamases. Cefepime shows high binding affinity with penicillin-binding proteins and has an extended spectrum of activity against Gram-positive and Gram-negative bacteria, with greater activity against both Gram-negative and Gram-positive organisms than third-generation agents."}, "35971": {"category_aro_name": "penicillin", "category_aro_cvterm_id": "35971", "category_aro_accession": "0000054", "category_aro_class_name": "Antibiotic", "category_aro_description": "Penicillin (sometimes abbreviated PCN) is a beta-lactam antibiotic used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms. It works by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35973": {"category_aro_name": "oxacillin", "category_aro_cvterm_id": "35973", "category_aro_accession": "0000056", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxacillin is a penicillinase-resistant beta-lactam. It is similar to methicillin, and has replaced methicillin in clinical use. Oxacillin, especially in combination with other antibiotics, is effective against many penicillinase-producing strains of Staphylococcus aureus and Staphylococcus epidermidis."}, "40928": {"category_aro_name": "cefmetazole", "category_aro_cvterm_id": "40928", "category_aro_accession": "3004001", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefmetazole is a semi-synthetic cephamycin antibiotic with broad spectrum antibiotic activity against both gram-positive and gram-negative bacteria, that disrupt cell wall synthesis through binding to PBPs causing cell lysis."}, "40944": {"category_aro_name": "moxalactam", "category_aro_cvterm_id": "40944", "category_aro_accession": "3004017", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxalactam (Latamoxef) is a broad spectrum cephalosporin (oxacephem) and beta-lactam antibiotic. Moxalactam binding to PBPs inhibits peptidoglycan cross-linkage in the cell wall, resulting in cell death. Moxalactam is proposed to be effective against meningitides as it passes the blood-brain barrier."}, "35930": {"category_aro_name": "cloxacillin", "category_aro_cvterm_id": "35930", "category_aro_accession": "0000011", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cloxacillin is a semisynthetic, isoxazolyl penicillin derivative in the beta-lactam class of antibiotics. It interferes with peptidogylcan synthesis and is commonly used for treating penicillin-resistant Staphylococcus aureus infections."}, "36995": {"category_aro_name": "ceftaroline", "category_aro_cvterm_id": "36995", "category_aro_accession": "3000651", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftaroline is a novel cephalosporin active against methicillin resistant Staphylococcus aureus. Like other cephalosporins it binds penicillin-binding proteins to inhibit cell wall synthesis. It strongly binds with PBP2a, associated with methicillin resistance. It is taken orally as the prodrug ceftaroline fosamil."}, "35979": {"category_aro_name": "ceftriaxone", "category_aro_cvterm_id": "35979", "category_aro_accession": "0000062", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftriaxone is a third-generation cephalosporin antibiotic. The presence of an aminothiazolyl sidechain increases ceftriazone's resistance to beta-lactamases. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria."}, "35934": {"category_aro_name": "methicillin", "category_aro_cvterm_id": "35934", "category_aro_accession": "0000015", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derived from penicillin to combat penicillin-resistance, methicillin is insensitive to beta-lactamases (also known as penicillinases) secreted by many penicillin-resistant bacteria. Methicillin is bactericidal, and acts by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40943": {"category_aro_name": "loracarbef", "category_aro_cvterm_id": "40943", "category_aro_accession": "3004016", "category_aro_class_name": "Antibiotic", "category_aro_description": "Loracarbef is a second-generation cephalosporin (carbacephem) and broad spectrum beta-lactam antibiotic. Loracarbef inhibits PBPs through binding, disrupting peptidoglycan cell wall cross-linkage and resulting in cell death."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36989": {"category_aro_name": "cefotaxime", "category_aro_cvterm_id": "36989", "category_aro_accession": "3000645", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefotaxime is a semisynthetic cephalosporin taken parenterally. It is resistant to most beta-lactamases and active against Gram-negative rods and cocci due to its aminothiazoyl and methoximino functional groups."}, "36988": {"category_aro_name": "cefaclor", "category_aro_cvterm_id": "36988", "category_aro_accession": "3000644", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefaclor is a semisynthetic cephalosporin derived from cephalexin. It has broad-spectrum antibiotic activity."}, "37589": {"category_aro_name": "methicillin resistant PBP2", "category_aro_cvterm_id": "37589", "category_aro_accession": "3001208", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "In methicillin sensitive S. aureus (MSSA), beta-lactams bind to native penicillin-binding proteins (PBPs) and disrupt synthesis of the cell membrane's peptidoglycan layer. In methicillin resistant S. aureus (MRSA), foreign PBP2a acquired by lateral gene transfer is able to perform peptidoglycan synthesis in the presence of beta-lactams."}, "40929": {"category_aro_name": "cefonicid", "category_aro_cvterm_id": "40929", "category_aro_accession": "3004002", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefonicid is a second-generation cephalosporin-class beta-lactam antibiotic with broad spectrum activity. Particularly used against urinary tract infections and lower respiratory infections. Causes cell lysis by inactivation of PBPs through binding, inhibiting peptidoglycan synthesis."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "36980": {"category_aro_name": "flucloxacillin", "category_aro_cvterm_id": "36980", "category_aro_accession": "3000636", "category_aro_class_name": "Antibiotic", "category_aro_description": "Flucloxacillin is similar to cloxacillin, with an extra additional fluorine atom."}, "36983": {"category_aro_name": "mezlocillin", "category_aro_cvterm_id": "36983", "category_aro_accession": "3000639", "category_aro_class_name": "Antibiotic", "category_aro_description": "Mezlocillin is a penicillin derivative taken parenterally."}, "36982": {"category_aro_name": "azlocillin", "category_aro_cvterm_id": "36982", "category_aro_accession": "3000638", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azlocillin is a semisynthetic derivative of penicillin that is notably active against Ps. aeruginosa and other Gram-negative bacteria."}, "36985": {"category_aro_name": "cefalexin", "category_aro_cvterm_id": "36985", "category_aro_accession": "3000641", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalexin is a cephalosporin antibiotic that causes filamentation. It is resistant to staphylococcal beta-lactamase, but degraded by enterobacterial beta-lactamases."}, "36984": {"category_aro_name": "doripenem", "category_aro_cvterm_id": "36984", "category_aro_accession": "3000640", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doripenem is a carbapenem with a broad range of activity against Gram-positive and Gram-negative bacteria, and along with meropenem, it is the most active beta-lactam antibiotic against Pseudomonas aeruginosa. It inhibits bacterial cell wall synthesis."}, "36987": {"category_aro_name": "cefotiam", "category_aro_cvterm_id": "36987", "category_aro_accession": "3000643", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefotiam is a cephalosporin antibiotic with similar activity to cefuroxime but more active against enterobacteria. It is consumed orally as the prodrug cefotiam hexetil."}, "36986": {"category_aro_name": "cefadroxil", "category_aro_cvterm_id": "36986", "category_aro_accession": "3000642", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefadroxil, or p-hydroxycephalexin, is an cephalosporin antibiotic similar to cefalexin."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "37141": {"category_aro_name": "mecillinam", "category_aro_cvterm_id": "37141", "category_aro_accession": "3000761", "category_aro_class_name": "Antibiotic", "category_aro_description": "Mecillinam is a broad-spectrum beta-lactam antibiotic that was semi-synthetically derived to have a different drug centre, being a 6-alpha-amidinopenicillanate instead of a 6-alpha-acylaminopenicillanate. Contrasting most beta-lactam drugs, mecillinam is most active against Gram-negative bacteria. It binds specifically to penicillin binding protein 2 (PBP2)."}, "36979": {"category_aro_name": "dicloxacillin", "category_aro_cvterm_id": "36979", "category_aro_accession": "3000635", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dicloxacillin is a penicillin derivative that has an extra chlorine atom in comparison to cloxacillin. While more active than cloxacillin, its high affinity for serum protein reduces its activity in human serum in vitro."}, "36978": {"category_aro_name": "propicillin", "category_aro_cvterm_id": "36978", "category_aro_accession": "3000634", "category_aro_class_name": "Antibiotic", "category_aro_description": "Propicillin is an orally taken penicillin derivative that has high absorption but poor activity."}, "35978": {"category_aro_name": "ceftobiprole", "category_aro_cvterm_id": "35978", "category_aro_accession": "0000061", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftobiprole (Zeftera/Zevtera) is a next generation (5th generation) cephalosporin antibiotic with activity against methicillin-resistant Staphylococcus aureus, penicillin-resistant Streptococcus pneumoniae, Pseudomonas aeruginosa, and Enterococci. Ceftobiprole inhibits transpeptidases essential to building cell walls, and is a poor substrate for most beta-lactamases."}, "36976": {"category_aro_name": "benzylpenicillin", "category_aro_cvterm_id": "36976", "category_aro_accession": "3000632", "category_aro_class_name": "Antibiotic", "category_aro_description": "Benzylpenicillin, commonly referred to as penicillin G, is effective against both Gram-positive and Gram-negative bacteria. It is unstable in acid."}, "36977": {"category_aro_name": "phenoxymethylpenicillin", "category_aro_cvterm_id": "36977", "category_aro_accession": "3000633", "category_aro_class_name": "Antibiotic", "category_aro_description": "Phenoxymethylpenicillin, or penicillin V, is a penicillin derivative that is acid stable but less active than benzylpenicillin (penicillin G)."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35961": {"category_aro_name": "carbenicillin", "category_aro_cvterm_id": "35961", "category_aro_accession": "0000043", "category_aro_class_name": "Antibiotic", "category_aro_description": "Carbenicillin is a semi-synthetic antibiotic belonging to the carboxypenicillin subgroup of the penicillins. It has gram-negative coverage which includes Pseudomonas aeruginosa but limited gram-positive coverage. The carboxypenicillins are susceptible to degradation by beta-lactamase enzymes. Carbenicillin antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40933": {"category_aro_name": "ceftiofur", "category_aro_cvterm_id": "40933", "category_aro_accession": "3004006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftiofur is a third-generation broad spectrum cephalosporin and beta-lactam antibiotic. It causes cell lysis by disrupting peptidoglycan cross-linkage and cell wall formation by binding to PBPs."}, "40932": {"category_aro_name": "cefprozil", "category_aro_cvterm_id": "40932", "category_aro_accession": "3004005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefprozil is a cephalosporin and beta-lactam antibiotic with bactericidal activity. It selectively binds to PBPs and inhibits peptidoglycan synthesis, a major cell wall component, resulting in cell lysis."}, "40935": {"category_aro_name": "cephapirin", "category_aro_cvterm_id": "40935", "category_aro_accession": "3004008", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cephapirin is a first-generation cephalosporin and broad spectrum beta-lactam antibiotic. Inactivation of penicillin-binding proteins through cephapirin binding disrupts peptidoglycan cross-linking, resulting in cell lysis."}, "40934": {"category_aro_name": "ceftizoxime", "category_aro_cvterm_id": "40934", "category_aro_accession": "3004007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftizoxime is a third-generation cephalosporin and broad spectrum beta-lactam antibiotic. Ceftizoxime causes bacterial cell lysis through peptidoglycan cross-linking inhibition by binding to PBPs."}, "35987": {"category_aro_name": "ertapenem", "category_aro_cvterm_id": "35987", "category_aro_accession": "0000070", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ertapenem is a carbapenem antibiotic and is highly resistant to beta-lactamases like other carbapenems. It inhibits bacterial cell wall synthesis."}, "40936": {"category_aro_name": "cefradine", "category_aro_cvterm_id": "40936", "category_aro_accession": "3004009", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefradine is a first-generation cephalosporin and broad spectrum beta-lactam antibiotic. Cefradine binding to penicillin-binding proteins disrupts cell wall peptidoglycan cross-linkage, resulting in cell lysis."}}}}, "506": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1597": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1596": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40512": {"category_aro_name": "BAL30072", "category_aro_cvterm_id": "40512", "category_aro_accession": "3003821", "category_aro_class_name": "Antibiotic", "category_aro_description": "BAL30072 is a monocyclic beta-lactam antibiotic belonging to the sulfactams. BAL30072 was found to trigger the spheroplasting and lysis of Escherichia coli rather than the formation of extensive filaments."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1591": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1590": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1593": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1592": {"$update": {"ARO_category": {"36476": {"category_aro_name": "iclaprim", "category_aro_cvterm_id": "36476", "category_aro_accession": "3000337", "category_aro_class_name": "Antibiotic", "category_aro_description": "Iclaprim is a bactericidal compound that inhibits dihydrofolate reductase. It is used against clinically important Gram-positive pathogens, including methicillin-sensitive Staphylococcus aureus and methicillin-resistant S. aureus."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36408": {"category_aro_name": "brodimoprim", "category_aro_cvterm_id": "36408", "category_aro_accession": "3000269", "category_aro_class_name": "Antibiotic", "category_aro_description": "Brodimoprim is a structural derivative of trimethoprim and an inhibitor of bacterial dihydrofolate reductase. The 4-methoxy group of trimethoprim is replaced with a bromine atom."}, "37617": {"category_aro_name": "trimethoprim resistant dihydrofolate reductase dfr", "category_aro_cvterm_id": "37617", "category_aro_accession": "3001218", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Alternative dihydropteroate synthase dfr present on plasmids produces alternate proteins that are less sensitive to trimethoprim from inhibiting its role in folate synthesis, thus conferring trimethoprim resistance."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36423": {"category_aro_name": "tetroxoprim", "category_aro_cvterm_id": "36423", "category_aro_accession": "3000284", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetroxoprim is a trimethoprim derivative that inhibits bacterial dihydrofolate reductase."}}}}, "1599": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1030": {"$update": {"ARO_category": {"36255": {"category_aro_name": "vanZ", "category_aro_cvterm_id": "36255", "category_aro_accession": "3000116", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanZ is a teicoplanin resistance gene that is an accessory protein. VanZ prevents the incorporation of the terminal D-Ala into peptidoglycan subunits."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35948": {"category_aro_name": "teicoplanin", "category_aro_cvterm_id": "35948", "category_aro_accession": "0000029", "category_aro_class_name": "Antibiotic", "category_aro_description": "Teicoplanin is a glycopeptide antibiotic used in the prophylaxis and treatment of serious infections caused by Gram-positive bacteria. Teicoplanin has a unique acyl-aliphatic chain, and binds to cell wall precursors to inhibit transglycosylation and transpeptidation."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35947": {"category_aro_name": "vancomycin", "category_aro_cvterm_id": "35947", "category_aro_accession": "0000028", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vancomycin is a glycopeptide antibiotic used in the prophylaxis and treatment of infections caused by Gram-positive bacteria. Vancomycin inhibits the synthesis of peptidoglycan, the major component of the cell wall of gram-positive bacteria. Its mechanism of action is unusual in that it acts by binding precursors of peptidoglycan, rather than by interacting with an enzyme."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}}}}, "1025": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1024": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1027": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "1026": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1021": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1020": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1023": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1022": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1036": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36011": {"category_aro_name": "vanW", "category_aro_cvterm_id": "36011", "category_aro_accession": "3000002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "vanW is an accessory gene, with unknown function, found on vancomycin resistance operons."}}}}, "1029": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1028": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35975": {"category_aro_name": "cefazolin", "category_aro_cvterm_id": "35975", "category_aro_accession": "0000058", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefazolin (INN), also known as cefazoline or cephazolin, is a first generation cephalosporin antibiotic. It is administered parenterally, and is active against a broad spectrum of bacteria."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1037": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "500": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "501": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36461": {"category_aro_name": "AAC(3)", "category_aro_cvterm_id": "36461", "category_aro_accession": "3000322", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 3."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "605": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "604": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "607": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "606": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36027": {"category_aro_name": "IMI beta-lactamase", "category_aro_cvterm_id": "36027", "category_aro_accession": "3000018", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "IMI beta-lactamases are a group of TEM-1-like beta-lactamase that are known to hydrolyze imipenem. IMI beta-lactamases are inhibited by clavulanic acid and tazobactam."}}}}, "601": {"$update": {"ARO_category": {"36476": {"category_aro_name": "iclaprim", "category_aro_cvterm_id": "36476", "category_aro_accession": "3000337", "category_aro_class_name": "Antibiotic", "category_aro_description": "Iclaprim is a bactericidal compound that inhibits dihydrofolate reductase. It is used against clinically important Gram-positive pathogens, including methicillin-sensitive Staphylococcus aureus and methicillin-resistant S. aureus."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36408": {"category_aro_name": "brodimoprim", "category_aro_cvterm_id": "36408", "category_aro_accession": "3000269", "category_aro_class_name": "Antibiotic", "category_aro_description": "Brodimoprim is a structural derivative of trimethoprim and an inhibitor of bacterial dihydrofolate reductase. The 4-methoxy group of trimethoprim is replaced with a bromine atom."}, "37617": {"category_aro_name": "trimethoprim resistant dihydrofolate reductase dfr", "category_aro_cvterm_id": "37617", "category_aro_accession": "3001218", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Alternative dihydropteroate synthase dfr present on plasmids produces alternate proteins that are less sensitive to trimethoprim from inhibiting its role in folate synthesis, thus conferring trimethoprim resistance."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36423": {"category_aro_name": "tetroxoprim", "category_aro_cvterm_id": "36423", "category_aro_accession": "3000284", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetroxoprim is a trimethoprim derivative that inhibits bacterial dihydrofolate reductase."}}}}, "600": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35927": {"category_aro_name": "cefoxitin", "category_aro_cvterm_id": "35927", "category_aro_accession": "0000008", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefoxitin is a cephamycin antibiotic often grouped with the second generation cephalosporins. Cefoxitin is bactericidal and acts by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. Cefoxitin's 7-alpha-methoxy group and 3' leaving group make it a poor substrate for most beta-lactamases."}}}}, "603": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"35944": {"category_aro_name": "fosfomycin", "category_aro_cvterm_id": "35944", "category_aro_accession": "0000025", "category_aro_class_name": "Drug Class", "category_aro_description": "Fosfomycin (also known as phosphomycin and phosphonomycin) is a broad-spectrum antibiotic produced by certain Streptomyces species. It is effective on gram positive and negative bacteria as it targets the cell wall, an essential feature shared by both bacteria. Its specific target is MurA (MurZ in E.coli), which attaches phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine, a step of commitment to cell wall synthesis. In the active site of MurA, the active cysteine molecule is alkylated which stops the catalytic reaction."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}}}}}, "602": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "1205": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "1204": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}}}}}, "1207": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36207": {"category_aro_name": "DHA beta-lactamase", "category_aro_cvterm_id": "36207", "category_aro_accession": "3000068", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DHA beta-lactamases are plasmid-mediated AmpC \u03b2-lactamases that confer resistance to cephamycins and oxyimino-cephalosporins."}}}}, "1206": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}}}}}, "609": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "1200": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "1203": {"$update": {"ARO_category": {"36659": {"category_aro_name": "isoniazid", "category_aro_cvterm_id": "36659", "category_aro_accession": "3000520", "category_aro_class_name": "Drug Class", "category_aro_description": "Isoniazid is an organic compound that is the first-line anti tuberculosis medication in prevention and treatment. As a prodrug, it is activated by mycobacterial catalase-peroxidases such as M. tuberculosis KatG. Isoniazid inhibits mycolic acid synthesis, which prevents cell wall synthesis in mycobacteria."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "40053": {"category_aro_name": "antibiotic resistant ndh", "category_aro_cvterm_id": "40053", "category_aro_accession": "3003460", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ndh is a NADH oxidase. It participates in antibiotic resistance by diminishing NADH oxidation and consequently causes an increase in NADH concentration and depletion of NAD+. This alteration of the NADH/NAD+ ratio prevents the peroxidation reactions required for the activation of INH, as well as the displacement of the NADH-isonicotinic acyl complex from InhA enzyme binding site."}}}}, "1202": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "633": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "634": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "635": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1214": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1215": {"$update": {"ARO_category": {"35944": {"category_aro_name": "fosfomycin", "category_aro_cvterm_id": "35944", "category_aro_accession": "0000025", "category_aro_class_name": "Drug Class", "category_aro_description": "Fosfomycin (also known as phosphomycin and phosphonomycin) is a broad-spectrum antibiotic produced by certain Streptomyces species. It is effective on gram positive and negative bacteria as it targets the cell wall, an essential feature shared by both bacteria. Its specific target is MurA (MurZ in E.coli), which attaches phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine, a step of commitment to cell wall synthesis. In the active site of MurA, the active cysteine molecule is alkylated which stops the catalytic reaction."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41409": {"category_aro_name": "fosC phosphotransferase family", "category_aro_cvterm_id": "41409", "category_aro_accession": "3004245", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The fosC family of phosphotransferases phosphorylate fosfomycin to confer resistance and have been found in various bacterial isolates."}}}}, "1111": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1110": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36236": {"category_aro_name": "LEN beta-lactamase", "category_aro_cvterm_id": "36236", "category_aro_accession": "3000097", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "LEN beta-lactamases are chromosomal class A beta-lactamases that confer resistance to ampicillin, amoxicillin, carbenicillin, and ticarcillin but not to extended-spectrum beta-lactams."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}}}}, "1113": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36364": {"category_aro_name": "ANT(6)", "category_aro_cvterm_id": "36364", "category_aro_accession": "3000225", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucelotidylylation of streptomycin at the hydroxyl group at position 6"}}}}, "1444": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36199": {"category_aro_name": "IND beta-lactamase", "category_aro_cvterm_id": "36199", "category_aro_accession": "3000060", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "IND beta-lactamases are class B carbapenem-hydrolyzing beta-lactamases"}}}}, "1115": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1442": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}, "35965": {"category_aro_name": "puromycin", "category_aro_cvterm_id": "35965", "category_aro_accession": "0000047", "category_aro_class_name": "Antibiotic", "category_aro_description": "Puromycin is an aminonucleoside antibiotic, derived from Streptomyces alboniger, that causes premature chain termination during ribosomal protein translation."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}}}}}, "1117": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "37247": {"category_aro_name": "oleandomycin", "category_aro_cvterm_id": "37247", "category_aro_accession": "3000867", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oleandomycin is a 14-membered macrolide produced by Streptomyces antibioticus. It is ssimilar to erythromycin, and contains a desosamine amino sugar and an oleandrose sugar. It targets the 50S ribosomal subunit to prevent protein synthesis."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35974": {"category_aro_name": "telithromycin", "category_aro_cvterm_id": "35974", "category_aro_accession": "0000057", "category_aro_class_name": "Antibiotic", "category_aro_description": "Telithromycin is a semi-synthetic derivative of erythromycin. It is a 14-membered macrolide and is the first ketolide antibiotic to be used in clinics. Telithromycin binds the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36284": {"category_aro_name": "tylosin", "category_aro_cvterm_id": "36284", "category_aro_accession": "3000145", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tylosin is a 16-membered macrolide, naturally produced by Streptomyces fradiae. It interacts with the bacterial ribosome 50S subunit to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36315": {"category_aro_name": "dirithromycin", "category_aro_cvterm_id": "36315", "category_aro_accession": "3000176", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dirithromycin is an oxazine derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome to inhibit bacterial protein synthesis."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "36699": {"category_aro_name": "Erm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36699", "category_aro_accession": "3000560", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Erm proteins are part of the RNA methyltransferase family and methylate A2058 (E. coli nomenclature) of the 23S ribosomal RNA conferring degrees of resistance to Macrolides, Lincosamides and Streptogramin b. This is called the MLSb phenotype."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35946": {"category_aro_name": "roxithromycin", "category_aro_cvterm_id": "35946", "category_aro_accession": "0000027", "category_aro_class_name": "Antibiotic", "category_aro_description": "Roxithromycin is a semi-synthetic, 14-carbon ring macrolide antibiotic derived from erythromycin. It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36295": {"category_aro_name": "spiramycin", "category_aro_cvterm_id": "36295", "category_aro_accession": "3000156", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spiramycin is a 16-membered macrolide and is natural product produced by Streptomyces ambofaciens. It binds to the 50S subunit of bacterial ribosomes and inhibits peptidyl transfer activity to disrupt protein synthesis."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}, "1116": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36673": {"category_aro_name": "rifapentine", "category_aro_cvterm_id": "36673", "category_aro_accession": "3000534", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifapentine is a semisynthetic rifamycin that inhibits DNA-dependent RNA synthesis. It is often used in the treatment of tuberculosis and leprosy."}, "36669": {"category_aro_name": "rifabutin", "category_aro_cvterm_id": "36669", "category_aro_accession": "3000530", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifabutin is a semisynthetic rifamycin used in tuberculosis therapy. It inhibits DNA-dependent RNA synthesis."}, "36529": {"category_aro_name": "rifampin ADP-ribosyltransferase (Arr)", "category_aro_cvterm_id": "36529", "category_aro_accession": "3000390", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Enzyme responsible for the ADP-ribosylative inactivation of rifampin at the 23-OH position using NAD+."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "36656": {"category_aro_name": "rifaximin", "category_aro_cvterm_id": "36656", "category_aro_accession": "3000517", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifaximin is a semi-synthetic rifamycin used to treat traveller's diarrhea. Rifaximin inhibits RNA synthesis by binding to the beta subunit of bacterial RNA polymerase."}}}}, "1119": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "41368": {"category_aro_name": "EBR beta-lactamase", "category_aro_cvterm_id": "41368", "category_aro_accession": "3004204", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "EBR beta-lactamases are Class B beta-lactamases first isolated from Empedobacter brevis and are able to hydrolyze penicillins, cephalosporins, and carbapenems."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "1118": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}, "35990": {"category_aro_name": "meropenem", "category_aro_cvterm_id": "35990", "category_aro_accession": "0000073", "category_aro_class_name": "Antibiotic", "category_aro_description": "Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem."}}}}, "467": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36230": {"category_aro_name": "CARB beta-lactamase", "category_aro_cvterm_id": "36230", "category_aro_accession": "3000091", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CARB beta-lactamases are class A lactamases that can hydrolyze carbenicillin. Many of the PSE beta-lactamases have been renamed as CARB-lactamases with the notable exception of PSE-2 which is now OXA-10."}}}}, "1449": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1448": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1219": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36713": {"category_aro_name": "vanR", "category_aro_cvterm_id": "36713", "category_aro_accession": "3000574", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanR is a OmpR-family transcriptional activator in the VanSR regulatory system. When activated by VanS, it promotes cotranscription of VanA, VanH, and VanX."}, "35947": {"category_aro_name": "vancomycin", "category_aro_cvterm_id": "35947", "category_aro_accession": "0000028", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vancomycin is a glycopeptide antibiotic used in the prophylaxis and treatment of infections caused by Gram-positive bacteria. Vancomycin inhibits the synthesis of peptidoglycan, the major component of the cell wall of gram-positive bacteria. Its mechanism of action is unusual in that it acts by binding precursors of peptidoglycan, rather than by interacting with an enzyme."}}}}, "1357": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "460": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1355": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "489": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40059": {"category_aro_name": "antibiotic resistant gidB", "category_aro_cvterm_id": "40059", "category_aro_accession": "3003466", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "GidB is a m7G methyltransferase specific for 16S rRNA. Mutations within the gidB gene causes changes in the structure or 16s rRNA, leading to resistance to aminoglycosides"}}}}, "488": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "487": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "486": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "485": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "484": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "483": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36205": {"category_aro_name": "GES beta-lactamase", "category_aro_cvterm_id": "36205", "category_aro_accession": "3000066", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "GES beta-lactamases or Guiana extended-spectrum beta-lactamases are related to the other plasmid-located class A beta-lactamases"}}}}, "482": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36236": {"category_aro_name": "LEN beta-lactamase", "category_aro_cvterm_id": "36236", "category_aro_accession": "3000097", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "LEN beta-lactamases are chromosomal class A beta-lactamases that confer resistance to ampicillin, amoxicillin, carbenicillin, and ticarcillin but not to extended-spectrum beta-lactams."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}}}}, "481": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "480": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36205": {"category_aro_name": "GES beta-lactamase", "category_aro_cvterm_id": "36205", "category_aro_accession": "3000066", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "GES beta-lactamases or Guiana extended-spectrum beta-lactamases are related to the other plasmid-located class A beta-lactamases"}}}}, "790": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "199": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36234": {"category_aro_name": "SRT beta-lactamase", "category_aro_cvterm_id": "36234", "category_aro_accession": "3000095", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SRT beta-lactamases."}}}}, "198": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "195": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "194": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "197": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "196": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "39310": {"category_aro_name": "ethambutol resistant arabinosyltransferase", "category_aro_cvterm_id": "39310", "category_aro_accession": "3002876", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Arabinosyl transferases allow for the polymerization of arabinose to form arabinan. Arabinan is required for formation of mycobacterial cell walls and arabinosyltransferases are targets of the drug ethambutol. Mutations in these genes can confer resistance to ethambutol."}, "36666": {"category_aro_name": "polyamine antibiotic", "category_aro_cvterm_id": "36666", "category_aro_accession": "3000527", "category_aro_class_name": "Drug Class", "category_aro_description": "Polyamine antibiotics are organic compounds having two or more primary amino groups."}, "36636": {"category_aro_name": "ethambutol", "category_aro_cvterm_id": "36636", "category_aro_accession": "3000497", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ethambutol is an antimycobacterial drug prescribed to treat tuberculosis. It is usually given in combination with other tuberculosis drugs, such as isoniazid, rifampicin, and pyrazinamide. Ethambutol inhibits arabinosyl biosynthesis, disrupting mycobacterial cell wall formation."}}}}, "191": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "190": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "193": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "192": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1454": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1107": {"$update": {"ARO_category": {"36237": {"category_aro_name": "PDC beta-lactamase", "category_aro_cvterm_id": "36237", "category_aro_accession": "3000098", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PDC beta-lactamases are class C beta-lactamases that are found in Pseudomonas aeruginosa."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1456": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "2383": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36368": {"category_aro_name": "ANT(4')", "category_aro_cvterm_id": "36368", "category_aro_accession": "3000229", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotidylylation of 2-deoxystreptamine aminoglycosides at the hydroxyl group at position 4'"}, "35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1457": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "2387": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36699": {"category_aro_name": "Erm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36699", "category_aro_accession": "3000560", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Erm proteins are part of the RNA methyltransferase family and methylate A2058 (E. coli nomenclature) of the 23S ribosomal RNA conferring degrees of resistance to Macrolides, Lincosamides and Streptogramin b. This is called the MLSb phenotype."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}, "2386": {"$update": {"ARO_category": {"37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37015": {"category_aro_name": "tiamulin", "category_aro_cvterm_id": "37015", "category_aro_accession": "3000671", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tiamulin is a pleuromutilin derivative currently used in veterinary medicine. It binds to the 23 rRNA of the 50S ribosomal subunit to inhibit protein translation."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35989": {"category_aro_name": "linezolid", "category_aro_cvterm_id": "35989", "category_aro_accession": "0000072", "category_aro_class_name": "Antibiotic", "category_aro_description": "Linezolid is a synthetic antibiotic used for the treatment of serious infections caused by Gram-positive bacteria that are resistant to several other antibiotics. It inhibits protein synthesis by binding to domain V of the 23S rRNA of the 50S subunit of bacterial ribosomes."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36218": {"category_aro_name": "oxazolidinone antibiotic", "category_aro_cvterm_id": "36218", "category_aro_accession": "3000079", "category_aro_class_name": "Drug Class", "category_aro_description": "Oxazolidinones are a class of synthetic antibiotics discovered the the 1980's. They inhibit protein synthesis by binding to domain V of the 23S rRNA of the 50S subunit of bacterial ribosomes. Linezolid is the only member of this class currently in clinical use."}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36341": {"category_aro_name": "Cfr 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36341", "category_aro_accession": "3000202", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Cfr genes produce enzymes which catalyze the methylation of the 23S rRNA subunit at position 8 of adenine-2503. Methylation of 23S rRNA at this site confers resistance to some classes of antibiotics, including streptogramins, chloramphenicols, florfenicols, linezolids and clindamycin."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}, "1102": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1451": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36197": {"category_aro_name": "MIR beta-lactamase", "category_aro_cvterm_id": "36197", "category_aro_accession": "3000058", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "MIR beta-lactamases are plasmid-mediated beta-lactamases that confer resistance to oxyimino- and alpha-methoxy beta-lactams"}}}}, "2769": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}, "35965": {"category_aro_name": "puromycin", "category_aro_cvterm_id": "35965", "category_aro_accession": "0000047", "category_aro_class_name": "Antibiotic", "category_aro_description": "Puromycin is an aminonucleoside antibiotic, derived from Streptomyces alboniger, that causes premature chain termination during ribosomal protein translation."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}}}}}, "2768": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35973": {"category_aro_name": "oxacillin", "category_aro_cvterm_id": "35973", "category_aro_accession": "0000056", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxacillin is a penicillinase-resistant beta-lactam. It is similar to methicillin, and has replaced methicillin in clinical use. Oxacillin, especially in combination with other antibiotics, is effective against many penicillinase-producing strains of Staphylococcus aureus and Staphylococcus epidermidis."}, "35930": {"category_aro_name": "cloxacillin", "category_aro_cvterm_id": "35930", "category_aro_accession": "0000011", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cloxacillin is a semisynthetic, isoxazolyl penicillin derivative in the beta-lactam class of antibiotics. It interferes with peptidogylcan synthesis and is commonly used for treating penicillin-resistant Staphylococcus aureus infections."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "1100": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "2763": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}}}}}, "2762": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "2761": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"37626": {"category_aro_name": "kitasamycin", "category_aro_cvterm_id": "37626", "category_aro_accession": "3001227", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kitasamycin is a macrolide antibiotic and is produced by Streptoverticillium kitasatoense. The drug has antimicrobial activity against a wide spectrum of pathogens."}, "36309": {"category_aro_name": "imipenem", "category_aro_cvterm_id": "36309", "category_aro_accession": "3000170", "category_aro_class_name": "Antibiotic", "category_aro_description": "Imipenem is a broad-spectrum antibiotic and is usually taken with cilastatin, which prevents hydrolysis of imipenem by renal dehydropeptidase-I. It is resistant to hydrolysis by most other beta-lactamases. Notable exceptions are the KPC beta-lactamases and Ambler Class B enzymes."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "40353": {"category_aro_name": "rokitamycin", "category_aro_cvterm_id": "40353", "category_aro_accession": "3003701", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rokitamycin is a macrolide antibiotic. Synthesized from strains of Streptomyces kitasatoensis."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "2760": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "2766": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "2765": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}}}}}, "902": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "903": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36267": {"category_aro_name": "APH(2'')", "category_aro_cvterm_id": "36267", "category_aro_accession": "3000128", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of 2-deoxystreptamine aminoglycosides on the hydroxyl group at position 2''"}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "900": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "901": {"$update": {"ARO_category": {"39430": {"category_aro_name": "LCR beta-lactamase", "category_aro_cvterm_id": "39430", "category_aro_accession": "3002996", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "LCR beta-lactamases are a class D beta-lactamase that hydrolyze a variety of penams and some cephalosporins."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "906": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36230": {"category_aro_name": "CARB beta-lactamase", "category_aro_cvterm_id": "36230", "category_aro_accession": "3000091", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CARB beta-lactamases are class A lactamases that can hydrolyze carbenicillin. Many of the PSE beta-lactamases have been renamed as CARB-lactamases with the notable exception of PSE-2 which is now OXA-10."}}}}, "907": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36600": {"category_aro_name": "florfenicol", "category_aro_cvterm_id": "36600", "category_aro_accession": "3000461", "category_aro_class_name": "Antibiotic", "category_aro_description": "Florfenicol is a fluorine derivative of chloramphenicol, where the nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3) and the hydroxyl group (-OH), by a fluorine group (-F). The action mechanism is the same as chloramphenicol's, where the antibiotic binds to the 23S RNA of the 50S subunit of bacterial ribosomes to inhibit protein synthesis."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "904": {"$update": {"ARO_category": {"35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "41435": {"category_aro_name": "16S rRNA methyltransferase (G1405)", "category_aro_cvterm_id": "41435", "category_aro_accession": "3004271", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Methyltransferases that methylate the G1405 position of 16S rRNA, which is part of an aminoglycoside binding site."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "905": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1843": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "41435": {"category_aro_name": "16S rRNA methyltransferase (G1405)", "category_aro_cvterm_id": "41435", "category_aro_accession": "3004271", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Methyltransferases that methylate the G1405 position of 16S rRNA, which is part of an aminoglycoside binding site."}}}}, "1842": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36027": {"category_aro_name": "IMI beta-lactamase", "category_aro_cvterm_id": "36027", "category_aro_accession": "3000018", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "IMI beta-lactamases are a group of TEM-1-like beta-lactamase that are known to hydrolyze imipenem. IMI beta-lactamases are inhibited by clavulanic acid and tazobactam."}}}}, "908": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "909": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1847": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}}}}}, "1846": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1845": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1844": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "2614": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36472": {"category_aro_name": "macrolide phosphotransferase (MPH)", "category_aro_cvterm_id": "36472", "category_aro_accession": "3000333", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Macrolide phosphotransferases (MPH) are enzymes encoded by macrolide phosphotransferase genes (mph genes). These enzymes phosphorylate macrolides in GTP dependent manner at 2'-OH of desosamine sugar thereby inactivating them. Characterized MPH's are differentiated based on their substrate specificity."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}}}}, "1908": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38817": {"category_aro_name": "OKP beta-lactamase", "category_aro_cvterm_id": "38817", "category_aro_accession": "3002417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OKP beta-lactamases are chromosomal class A beta-lactamase that confer resistance to penicillins and early cephalosporins in Klebsiella pneumoniae. OKP beta-lactamases can be subdivided into two groups: OKP-A and OKP-B which diverge by about 4.2%"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1909": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1906": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1907": {"$update": {"ARO_category": {"36210": {"category_aro_name": "vanS", "category_aro_cvterm_id": "36210", "category_aro_accession": "3000071", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanS is similar to histidine protein kinases like EnvZ and acts as a response regulator by activating VanR. VanS is required for high level transcription of other van glycopeptide resistance genes."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35948": {"category_aro_name": "teicoplanin", "category_aro_cvterm_id": "35948", "category_aro_accession": "0000029", "category_aro_class_name": "Antibiotic", "category_aro_description": "Teicoplanin is a glycopeptide antibiotic used in the prophylaxis and treatment of serious infections caused by Gram-positive bacteria. Teicoplanin has a unique acyl-aliphatic chain, and binds to cell wall precursors to inhibit transglycosylation and transpeptidation."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35947": {"category_aro_name": "vancomycin", "category_aro_cvterm_id": "35947", "category_aro_accession": "0000028", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vancomycin is a glycopeptide antibiotic used in the prophylaxis and treatment of infections caused by Gram-positive bacteria. Vancomycin inhibits the synthesis of peptidoglycan, the major component of the cell wall of gram-positive bacteria. Its mechanism of action is unusual in that it acts by binding precursors of peptidoglycan, rather than by interacting with an enzyme."}}}}, "1904": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36211": {"category_aro_name": "ACT beta-lactamase", "category_aro_cvterm_id": "36211", "category_aro_accession": "3000072", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1905": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36211": {"category_aro_name": "ACT beta-lactamase", "category_aro_cvterm_id": "36211", "category_aro_accession": "3000072", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1902": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1903": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35973": {"category_aro_name": "oxacillin", "category_aro_cvterm_id": "35973", "category_aro_accession": "0000056", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxacillin is a penicillinase-resistant beta-lactam. It is similar to methicillin, and has replaced methicillin in clinical use. Oxacillin, especially in combination with other antibiotics, is effective against many penicillinase-producing strains of Staphylococcus aureus and Staphylococcus epidermidis."}, "35930": {"category_aro_name": "cloxacillin", "category_aro_cvterm_id": "35930", "category_aro_accession": "0000011", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cloxacillin is a semisynthetic, isoxazolyl penicillin derivative in the beta-lactam class of antibiotics. It interferes with peptidogylcan synthesis and is commonly used for treating penicillin-resistant Staphylococcus aureus infections."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "1900": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36211": {"category_aro_name": "ACT beta-lactamase", "category_aro_cvterm_id": "36211", "category_aro_accession": "3000072", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1901": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "854": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "855": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "856": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36251": {"category_aro_name": "multidrug and toxic compound extrusion (MATE) transporter", "category_aro_cvterm_id": "36251", "category_aro_accession": "3000112", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Multidrug and toxic compound extrusion (MATE) transporters utilize the cationic gradient across the membrane as an energy source. Although there is a diverse substrate specificity, almost all MATE transporters recognize fluoroquinolones. Arciflavine, ethidium and aminoglycosides are also good substrates."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "850": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "851": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "40002": {"category_aro_name": "pyrazinamide resistant pncA", "category_aro_cvterm_id": "40002", "category_aro_accession": "3003418", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "pncA is a pyrazinamidase/nicotinamidase. It catalyzes the activation of pyrazinamide to pyrazinoic acid. Mutations arise within the pncA gene that caused the loss of pyrazinamidase activity is the major mechanism of antibiotic resistance"}, "39997": {"category_aro_name": "pyrazinamide", "category_aro_cvterm_id": "39997", "category_aro_accession": "3003413", "category_aro_class_name": "Drug Class", "category_aro_description": "Pyrazinamide is an Antimycobacterial. It is highly specific and active only against Mycobacterium tuberculosis. This compound is a prodrug and needs to be activated inside the cell. It interferes with the bacterium's ability to synthesize new fatty acids, causing cell death."}}}}, "852": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "853": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "858": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36199": {"category_aro_name": "IND beta-lactamase", "category_aro_cvterm_id": "36199", "category_aro_accession": "3000060", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "IND beta-lactamases are class B carbapenem-hydrolyzing beta-lactamases"}}}}, "425": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "740": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "741": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35927": {"category_aro_name": "cefoxitin", "category_aro_cvterm_id": "35927", "category_aro_accession": "0000008", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefoxitin is a cephamycin antibiotic often grouped with the second generation cephalosporins. Cefoxitin is bactericidal and acts by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. Cefoxitin's 7-alpha-methoxy group and 3' leaving group make it a poor substrate for most beta-lactamases."}, "40928": {"category_aro_name": "cefmetazole", "category_aro_cvterm_id": "40928", "category_aro_accession": "3004001", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefmetazole is a semi-synthetic cephamycin antibiotic with broad spectrum antibiotic activity against both gram-positive and gram-negative bacteria, that disrupt cell wall synthesis through binding to PBPs causing cell lysis."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "40931": {"category_aro_name": "cefotetan", "category_aro_cvterm_id": "40931", "category_aro_accession": "3004004", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefotetan is a cephamycin-class beta-lactam antibiotic that is highly resistant to beta-lactamases and effective against a wide range of gram-negative and gram-positive bacteria."}, "39434": {"category_aro_name": "CfxA beta-lactamase", "category_aro_cvterm_id": "39434", "category_aro_accession": "3003000", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "cfxA beta-lactamases are class A beta-lactamases"}, "40941": {"category_aro_name": "flomoxef", "category_aro_cvterm_id": "40941", "category_aro_accession": "3004014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Flomoxef is a second-generation cephamycin (oxacephem) and beta-lactam antibiotic."}}}}, "742": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36461": {"category_aro_name": "AAC(3)", "category_aro_cvterm_id": "36461", "category_aro_accession": "3000322", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 3."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "743": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36673": {"category_aro_name": "rifapentine", "category_aro_cvterm_id": "36673", "category_aro_accession": "3000534", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifapentine is a semisynthetic rifamycin that inhibits DNA-dependent RNA synthesis. It is often used in the treatment of tuberculosis and leprosy."}, "36669": {"category_aro_name": "rifabutin", "category_aro_cvterm_id": "36669", "category_aro_accession": "3000530", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifabutin is a semisynthetic rifamycin used in tuberculosis therapy. It inhibits DNA-dependent RNA synthesis."}, "36529": {"category_aro_name": "rifampin ADP-ribosyltransferase (Arr)", "category_aro_cvterm_id": "36529", "category_aro_accession": "3000390", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Enzyme responsible for the ADP-ribosylative inactivation of rifampin at the 23-OH position using NAD+."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "36656": {"category_aro_name": "rifaximin", "category_aro_cvterm_id": "36656", "category_aro_accession": "3000517", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifaximin is a semi-synthetic rifamycin used to treat traveller's diarrhea. Rifaximin inhibits RNA synthesis by binding to the beta subunit of bacterial RNA polymerase."}}}}, "744": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36210": {"category_aro_name": "vanS", "category_aro_cvterm_id": "36210", "category_aro_accession": "3000071", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanS is similar to histidine protein kinases like EnvZ and acts as a response regulator by activating VanR. VanS is required for high level transcription of other van glycopeptide resistance genes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35947": {"category_aro_name": "vancomycin", "category_aro_cvterm_id": "35947", "category_aro_accession": "0000028", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vancomycin is a glycopeptide antibiotic used in the prophylaxis and treatment of infections caused by Gram-positive bacteria. Vancomycin inhibits the synthesis of peptidoglycan, the major component of the cell wall of gram-positive bacteria. Its mechanism of action is unusual in that it acts by binding precursors of peptidoglycan, rather than by interacting with an enzyme."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}}}}, "745": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "746": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36480": {"category_aro_name": "AAC(2')", "category_aro_cvterm_id": "36480", "category_aro_accession": "3000341", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 2'."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "747": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "748": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36989": {"category_aro_name": "cefotaxime", "category_aro_cvterm_id": "36989", "category_aro_accession": "3000645", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefotaxime is a semisynthetic cephalosporin taken parenterally. It is resistant to most beta-lactamases and active against Gram-negative rods and cocci due to its aminothiazoyl and methoximino functional groups."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37139": {"category_aro_name": "fusidic acid", "category_aro_cvterm_id": "37139", "category_aro_accession": "3000759", "category_aro_class_name": "Drug Class", "category_aro_description": "Fusidic acid is the only commercially available fusidane, a group of steroid-like antibiotics. It is most active against Gram-positive bacteria, and acts by inhibiting elongation factor G to block protein synthesis."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "749": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1050": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1051": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36236": {"category_aro_name": "LEN beta-lactamase", "category_aro_cvterm_id": "36236", "category_aro_accession": "3000097", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "LEN beta-lactamases are chromosomal class A beta-lactamases that confer resistance to ampicillin, amoxicillin, carbenicillin, and ticarcillin but not to extended-spectrum beta-lactams."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}}}}, "1052": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1053": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1055": {"$update": {"ARO_category": {"39897": {"category_aro_name": "fluoroquinolone resistant parE", "category_aro_cvterm_id": "39897", "category_aro_accession": "3003313", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ParE is a subunit of topoisomerase IV, necessary for cell survival. Point mutations in ParE prevent fluoroquinolones from inhibiting DNA synthesis, thus conferring resistance."}, "37009": {"category_aro_name": "grepafloxacin", "category_aro_cvterm_id": "37009", "category_aro_accession": "3000665", "category_aro_class_name": "Antibiotic", "category_aro_description": "Grepafloxacin is a broad-spectrum antibacterial quinoline. It is no longer taken due to its high toxicity."}, "37008": {"category_aro_name": "trovafloxacin", "category_aro_cvterm_id": "37008", "category_aro_accession": "3000664", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trovafloxacin is a trifluoroquinalone with a broad spectrum of activity that acts by inhibiting the uncoiling of supercoiled DNA. While potent against many Gram-positive and Gram-negative bacteria, it is less active against pseudomonads and Cl. difficile. It is usually taken as the prodrug trovafloxacin mesylate or alatrofloxacin mesylate for oral or intravenous administration, respectively."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "37004": {"category_aro_name": "lomefloxacin", "category_aro_cvterm_id": "37004", "category_aro_accession": "3000660", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lomefloxacin is a difluoropiperazinyl quinolone, sharing similar activities with other fluoroquinolones. It is used to treat urinary tract infections. Relative to other fluoroquinolones, it has a longer half life and has higher serum concentrations."}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37142": {"category_aro_name": "pefloxacin", "category_aro_cvterm_id": "37142", "category_aro_accession": "3000762", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pefloxacin is structurally and functionally similar to norfloxacin. It is poorly active against mycobacteria, while anaerobes are resistant."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35942": {"category_aro_name": "enoxacin", "category_aro_cvterm_id": "35942", "category_aro_accession": "0000023", "category_aro_class_name": "Antibiotic", "category_aro_description": "Enoxacin belongs to a group called fluoroquinolones. Its mode of action depends upon blocking bacterial DNA replication by binding itself to DNA gyrase and causing double-stranded breaks in the bacterial chromosome."}}}}, "1056": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "1057": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1058": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "1059": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "36292": {"category_aro_name": "APH(9)", "category_aro_cvterm_id": "36292", "category_aro_accession": "3000153", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of spectinomycin on the hydroxyl group at position 9"}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1696": {"$update": {"ARO_category": {"37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}, "37244": {"category_aro_name": "fluoroquinolone resistant gyrB", "category_aro_cvterm_id": "37244", "category_aro_accession": "3000864", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in DNA gyrase subunit B (gyrB) observed in Mycobacterium tuberculosis can result in resistance to fluoroquinolones."}, "37009": {"category_aro_name": "grepafloxacin", "category_aro_cvterm_id": "37009", "category_aro_accession": "3000665", "category_aro_class_name": "Antibiotic", "category_aro_description": "Grepafloxacin is a broad-spectrum antibacterial quinoline. It is no longer taken due to its high toxicity."}, "37008": {"category_aro_name": "trovafloxacin", "category_aro_cvterm_id": "37008", "category_aro_accession": "3000664", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trovafloxacin is a trifluoroquinalone with a broad spectrum of activity that acts by inhibiting the uncoiling of supercoiled DNA. While potent against many Gram-positive and Gram-negative bacteria, it is less active against pseudomonads and Cl. difficile. It is usually taken as the prodrug trovafloxacin mesylate or alatrofloxacin mesylate for oral or intravenous administration, respectively."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "37004": {"category_aro_name": "lomefloxacin", "category_aro_cvterm_id": "37004", "category_aro_accession": "3000660", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lomefloxacin is a difluoropiperazinyl quinolone, sharing similar activities with other fluoroquinolones. It is used to treat urinary tract infections. Relative to other fluoroquinolones, it has a longer half life and has higher serum concentrations."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36289": {"category_aro_name": "coumermycin A1", "category_aro_cvterm_id": "36289", "category_aro_accession": "3000150", "category_aro_class_name": "Antibiotic", "category_aro_description": "Coumermycin A1 is an antibiotic produced by Streptomyces rishiriensis, and binds DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "40940": {"category_aro_name": "fleroxacin", "category_aro_cvterm_id": "40940", "category_aro_accession": "3004013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Fleroxacin is a broad spectrum fluoroquinolone antibiotic that inhibits the DNA supercoiling activity of bacterial DNA gyrase, resulting in double-stranded DNA breaks and subsequent cell death."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "36271": {"category_aro_name": "clorobiocin", "category_aro_cvterm_id": "36271", "category_aro_accession": "3000132", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clorobiocin is an aminocoumarin antibiotic produced by Streptomyces roseochromogenes, and binds DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "40939": {"category_aro_name": "Clofazimine", "category_aro_cvterm_id": "40939", "category_aro_accession": "3004012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clofazimine is a fluoroquinolone-class phenazine dye used for the treatment of leprosy. Clofazimine binds to DNA and disrupts bacterial DNA gyrase, thereby causing double-stranded DNA breaks, and subsequent cell death."}, "40938": {"category_aro_name": "clinafloxacin", "category_aro_cvterm_id": "40938", "category_aro_accession": "3004011", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clinafloxacin is a fluoroquinolone antibiotic and gyrase (DNA topoisomerase II) inhibitor. It binds to DNA gyrase and disrupts replication by causing double-stranded DNA breaks, resulting in cell death."}, "40937": {"category_aro_name": "cinoxacin", "category_aro_cvterm_id": "40937", "category_aro_accession": "3004010", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cinoxacin is a fluoroquinolone antibiotic primarily used for the treatment of urinary tract infections in adults. Cinoxacin binds to DNA gyrase, resulting in double-stranded DNA breaks and cell death."}, "37142": {"category_aro_name": "pefloxacin", "category_aro_cvterm_id": "37142", "category_aro_accession": "3000762", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pefloxacin is structurally and functionally similar to norfloxacin. It is poorly active against mycobacteria, while anaerobes are resistant."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35942": {"category_aro_name": "enoxacin", "category_aro_cvterm_id": "35942", "category_aro_accession": "0000023", "category_aro_class_name": "Antibiotic", "category_aro_description": "Enoxacin belongs to a group called fluoroquinolones. Its mode of action depends upon blocking bacterial DNA replication by binding itself to DNA gyrase and causing double-stranded breaks in the bacterial chromosome."}}}}, "1697": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1694": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1695": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36207": {"category_aro_name": "DHA beta-lactamase", "category_aro_cvterm_id": "36207", "category_aro_accession": "3000068", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DHA beta-lactamases are plasmid-mediated AmpC \u03b2-lactamases that confer resistance to cephamycins and oxyimino-cephalosporins."}}}}, "1692": {"$update": {"ARO_category": {"36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35921": {"category_aro_name": "tetracycline-resistant ribosomal protection protein", "category_aro_cvterm_id": "35921", "category_aro_accession": "0000002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "A family of proteins known to bind to the 30S ribosomal subunit. This interaction prevents tetracycline and tetracycline derivatives from inhibiting ribosomal function. Thus, these proteins confer elevated resistance to tetracycline derivatives as a ribosomal protection protein."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}, "1693": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1690": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1691": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1791": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1698": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36233": {"category_aro_name": "OCH beta-lactamase", "category_aro_cvterm_id": "36233", "category_aro_accession": "3000094", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OCH beta-lactamases are Ambler class C chromosomal-encoded beta-lactamases in Ochrobactrum anthropi"}}}}, "1699": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "36020": {"category_aro_name": "vanX", "category_aro_cvterm_id": "36020", "category_aro_accession": "3000011", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanX is a D,D-dipeptidase that cleaves D-Ala-D-Ala but not D-Ala-D-Lac, ensuring that the latter dipeptide that has reduced binding affinity with vancomycin is used to synthesize peptidoglycan substrate."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "1278": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1279": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "618": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}, "36251": {"category_aro_name": "multidrug and toxic compound extrusion (MATE) transporter", "category_aro_cvterm_id": "36251", "category_aro_accession": "3000112", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Multidrug and toxic compound extrusion (MATE) transporters utilize the cationic gradient across the membrane as an energy source. Although there is a diverse substrate specificity, almost all MATE transporters recognize fluoroquinolones. Arciflavine, ethidium and aminoglycosides are also good substrates."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}}}}}, "619": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "612": {"$update": {"ARO_category": {"36237": {"category_aro_name": "PDC beta-lactamase", "category_aro_cvterm_id": "36237", "category_aro_accession": "3000098", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PDC beta-lactamases are class C beta-lactamases that are found in Pseudomonas aeruginosa."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1271": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "610": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "611": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1274": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "617": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "614": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40158": {"category_aro_name": "SHW beta-lactamase", "category_aro_cvterm_id": "40158", "category_aro_accession": "3003555", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "This family of sublcass B1 beta-lactamases were discovered in species of the Shewanella genus."}}}}, "615": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1795": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36182": {"category_aro_name": "VEB beta-lactamase", "category_aro_cvterm_id": "36182", "category_aro_accession": "3000043", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VEB beta-lactamases or Vietnamese extended-spectrum beta-lactamases are class A beta-lactamases that confer high-level resistance to oxyimino cephalosporins and to aztreonam"}}}}, "1794": {"$update": {"ARO_category": {"36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "36383": {"category_aro_name": "reduced permeability to antibiotic", "category_aro_cvterm_id": "36383", "category_aro_accession": "3000244", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Reduction in permeability to antibiotic, generally through reduced production of porins, can provide resistance."}, "35928": {"category_aro_name": "tunicamycin", "category_aro_cvterm_id": "35928", "category_aro_accession": "0000009", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tunicamycin is mixture of homologous nucleoside antibiotics that block the reaction of UDP-N-acetylglucosamine and dolichyl phosphate in the first step of glycoprotein synthesis."}, "41449": {"category_aro_name": "tunicamycin resistance protein", "category_aro_cvterm_id": "41449", "category_aro_accession": "3004285", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "A grouping of tunicamycin resistance proteins that are homologous to tmrB found in Bacillus subtilis."}}}}, "1491": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36360": {"category_aro_name": "lincosamide nucleotidyltransferase (LNU)", "category_aro_cvterm_id": "36360", "category_aro_accession": "3000221", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Resistance to the lincosamide antibiotic by ATP-dependent modification of the 3' and/or 4'-hydroxyl groups of the methylthiolincosamide sugar."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}, "1472": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36207": {"category_aro_name": "DHA beta-lactamase", "category_aro_cvterm_id": "36207", "category_aro_accession": "3000068", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DHA beta-lactamases are plasmid-mediated AmpC \u03b2-lactamases that confer resistance to cephamycins and oxyimino-cephalosporins."}}}}, "1473": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1470": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1471": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36309": {"category_aro_name": "imipenem", "category_aro_cvterm_id": "36309", "category_aro_accession": "3000170", "category_aro_class_name": "Antibiotic", "category_aro_description": "Imipenem is a broad-spectrum antibiotic and is usually taken with cilastatin, which prevents hydrolysis of imipenem by renal dehydropeptidase-I. It is resistant to hydrolysis by most other beta-lactamases. Notable exceptions are the KPC beta-lactamases and Ambler Class B enzymes."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "40523": {"category_aro_name": "ticarcillin", "category_aro_cvterm_id": "40523", "category_aro_accession": "3003832", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ticarcillin is a carboxypenicillin used for the treatment of Gram-negative bacteria, particularly P. aeruginosa. Ticarcillin's antibiotic properties arise from its ability to prevent cross-linking of peptidoglycan during cell wall synthesis, when the bacteria try to divide, causing cell death."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "1476": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1477": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1474": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$delete": ["35950"], "$insert": {"36421": {"category_aro_name": "sulfonamide antibiotic", "category_aro_cvterm_id": "36421", "category_aro_accession": "3000282", "category_aro_class_name": "Drug Class", "category_aro_description": "Sulfonamides are broad spectrum, synthetic antibiotics that contain the sulfonamide group. Sulfonamides inhibit dihydropteroate synthase, which catalyzes the conversion of p-aminobenzoic acid to dihydropteroic acid as part of the tetrahydrofolic acid biosynthetic pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor of many nucleotides and amino acids. Many sulfamides are taken with trimethoprim, an inhibitor of dihydrofolate reductase, also disturbing the trihydrofolic acid synthesis pathway."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "40362": {"category_aro_name": "panipenem", "category_aro_cvterm_id": "40362", "category_aro_accession": "3003708", "category_aro_class_name": "Antibiotic", "category_aro_description": "Panipenem is a carbapenem antibacterial agent with a broad spectrum of in vitro activity covering a wide range of Gram-negative and Gram-positive aerobic and anaerobic bacterial. It is used in combination with betamipron to inhibit panipenem uptake into the renal tubule and prevent nephrotoxicity."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35996": {"category_aro_name": "clavulanate", "category_aro_cvterm_id": "35996", "category_aro_accession": "0000079", "category_aro_class_name": "Adjuvant", "category_aro_description": "Clavulanic acid is a beta-lactamase inhibitor (marketed by GlaxoSmithKline, formerly Beecham) combined with penicillin group antibiotics to overcome certain types of antibiotic resistance. It is used to overcome resistance in bacteria that secrete beta-lactamase, which otherwise inactivates most penicillins."}, "35990": {"category_aro_name": "meropenem", "category_aro_cvterm_id": "35990", "category_aro_accession": "0000073", "category_aro_class_name": "Antibiotic", "category_aro_description": "Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36689": {"category_aro_name": "aztreonam", "category_aro_cvterm_id": "36689", "category_aro_accession": "3000550", "category_aro_class_name": "Antibiotic", "category_aro_description": "Aztreonam was the first monobactam discovered, and is greatly effective against Gram-negative bacteria while inactive against Gram-positive bacteria. Artreonam is a poor substrate for beta-lactamases, and may even act as an inhibitor. In Gram-negative bacteria, Aztreonam interferes with filamentation, inhibiting cell division and leading to cell death."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35979": {"category_aro_name": "ceftriaxone", "category_aro_cvterm_id": "35979", "category_aro_accession": "0000062", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftriaxone is a third-generation cephalosporin antibiotic. The presence of an aminothiazolyl sidechain increases ceftriazone's resistance to beta-lactamases. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36468": {"category_aro_name": "sulfamethoxazole", "category_aro_cvterm_id": "36468", "category_aro_accession": "3000329", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfamethoxazole is a sulfonamide antibiotic usually taken with trimethoprim, a diaminopyrimidine antibiotic. Sulfamethoxazole inhibits dihydropteroate synthase, essential to tetrahydrofolic acid biosynthesis. This pathway generates compounds used in the synthesis of many amino acids and nucleotides."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "40957": {"category_aro_name": "trimethoprim-sulfamethoxazole", "category_aro_cvterm_id": "40957", "category_aro_accession": "3004024", "category_aro_class_name": "Antibiotic", "category_aro_description": "An antibiotic cocktail containing the diaminopyrimidine antibiotic Trimethoprim and the sulfonamide antibiotic sulfamethoxazole (1 TMP:5 SMX)."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "1475": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1478": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36230": {"category_aro_name": "CARB beta-lactamase", "category_aro_cvterm_id": "36230", "category_aro_accession": "3000091", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CARB beta-lactamases are class A lactamases that can hydrolyze carbenicillin. Many of the PSE beta-lactamases have been renamed as CARB-lactamases with the notable exception of PSE-2 which is now OXA-10."}}}}, "1479": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1304": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1305": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36421": {"category_aro_name": "sulfonamide antibiotic", "category_aro_cvterm_id": "36421", "category_aro_accession": "3000282", "category_aro_class_name": "Drug Class", "category_aro_description": "Sulfonamides are broad spectrum, synthetic antibiotics that contain the sulfonamide group. Sulfonamides inhibit dihydropteroate synthase, which catalyzes the conversion of p-aminobenzoic acid to dihydropteroic acid as part of the tetrahydrofolic acid biosynthetic pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor of many nucleotides and amino acids. Many sulfamides are taken with trimethoprim, an inhibitor of dihydrofolate reductase, also disturbing the trihydrofolic acid synthesis pathway."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "40362": {"category_aro_name": "panipenem", "category_aro_cvterm_id": "40362", "category_aro_accession": "3003708", "category_aro_class_name": "Antibiotic", "category_aro_description": "Panipenem is a carbapenem antibacterial agent with a broad spectrum of in vitro activity covering a wide range of Gram-negative and Gram-positive aerobic and anaerobic bacterial. It is used in combination with betamipron to inhibit panipenem uptake into the renal tubule and prevent nephrotoxicity."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35996": {"category_aro_name": "clavulanate", "category_aro_cvterm_id": "35996", "category_aro_accession": "0000079", "category_aro_class_name": "Adjuvant", "category_aro_description": "Clavulanic acid is a beta-lactamase inhibitor (marketed by GlaxoSmithKline, formerly Beecham) combined with penicillin group antibiotics to overcome certain types of antibiotic resistance. It is used to overcome resistance in bacteria that secrete beta-lactamase, which otherwise inactivates most penicillins."}, "35990": {"category_aro_name": "meropenem", "category_aro_cvterm_id": "35990", "category_aro_accession": "0000073", "category_aro_class_name": "Antibiotic", "category_aro_description": "Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36689": {"category_aro_name": "aztreonam", "category_aro_cvterm_id": "36689", "category_aro_accession": "3000550", "category_aro_class_name": "Antibiotic", "category_aro_description": "Aztreonam was the first monobactam discovered, and is greatly effective against Gram-negative bacteria while inactive against Gram-positive bacteria. Artreonam is a poor substrate for beta-lactamases, and may even act as an inhibitor. In Gram-negative bacteria, Aztreonam interferes with filamentation, inhibiting cell division and leading to cell death."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35979": {"category_aro_name": "ceftriaxone", "category_aro_cvterm_id": "35979", "category_aro_accession": "0000062", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftriaxone is a third-generation cephalosporin antibiotic. The presence of an aminothiazolyl sidechain increases ceftriazone's resistance to beta-lactamases. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "40523": {"category_aro_name": "ticarcillin", "category_aro_cvterm_id": "40523", "category_aro_accession": "3003832", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ticarcillin is a carboxypenicillin used for the treatment of Gram-negative bacteria, particularly P. aeruginosa. Ticarcillin's antibiotic properties arise from its ability to prevent cross-linking of peptidoglycan during cell wall synthesis, when the bacteria try to divide, causing cell death."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36468": {"category_aro_name": "sulfamethoxazole", "category_aro_cvterm_id": "36468", "category_aro_accession": "3000329", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfamethoxazole is a sulfonamide antibiotic usually taken with trimethoprim, a diaminopyrimidine antibiotic. Sulfamethoxazole inhibits dihydropteroate synthase, essential to tetrahydrofolic acid biosynthesis. This pathway generates compounds used in the synthesis of many amino acids and nucleotides."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "40957": {"category_aro_name": "trimethoprim-sulfamethoxazole", "category_aro_cvterm_id": "40957", "category_aro_accession": "3004024", "category_aro_class_name": "Antibiotic", "category_aro_description": "An antibiotic cocktail containing the diaminopyrimidine antibiotic Trimethoprim and the sulfonamide antibiotic sulfamethoxazole (1 TMP:5 SMX)."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}}, "1306": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36199": {"category_aro_name": "IND beta-lactamase", "category_aro_cvterm_id": "36199", "category_aro_accession": "3000060", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "IND beta-lactamases are class B carbapenem-hydrolyzing beta-lactamases"}}}}, "1307": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "38788": {"category_aro_name": "OXY beta-lactamase", "category_aro_cvterm_id": "38788", "category_aro_accession": "3002388", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXY beta-lactamases are chromosomal class A beta-lactamases that are found in Klebsiella oxytoca. At constitutive low levels, OXY beta-lactamases confer resistance to aminopenicillins and carboxypenicillins. At high induced levels, OXY beta-lactamases confer resistance to penicillins, cephalosporins and aztreonam."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1300": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "1301": {"$update": {"ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "39856": {"category_aro_name": "daptomycin resistant cls", "category_aro_cvterm_id": "39856", "category_aro_accession": "3003272", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Cardiolipin synthetase catalyzes the formation of cardiolipin from two phosphatidylglycerol molecules. Cardiolipin is important in membrane translocation and permeabilization. Current known mutations on the enzyme confer resistance to daptomycin."}, "35985": {"category_aro_name": "daptomycin", "category_aro_cvterm_id": "35985", "category_aro_accession": "0000068", "category_aro_class_name": "Antibiotic", "category_aro_description": "Daptomycin is a novel lipopeptide antibiotic used in the treatment of certain infections caused by Gram-positive organisms. Daptomycin interferes with the bacterial cell membrane, reducing membrane potential and inhibiting cell wall synthesis."}}}}, "1302": {"$update": {"ARO_category": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36176": {"category_aro_name": "tetracycline inactivation enzyme", "category_aro_cvterm_id": "36176", "category_aro_accession": "3000036", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Enzymes or other gene products which hydroxylate tetracycline and other tetracycline derivatives. Hydroxylation inactivates tetracycline-like antibiotics, thus conferring resistance to these compounds."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}, "1303": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38784": {"category_aro_name": "BEL beta-lactamase", "category_aro_cvterm_id": "38784", "category_aro_accession": "3002384", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "BEL beta-lactamases are class A expanded-spectrum beta-lactamases that are inhibited by clavulanic acid. They are chromosomally encoded and hydrolyze most cephalosporins and aztreonam."}}}}, "1308": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36511": {"category_aro_name": "vanT", "category_aro_cvterm_id": "36511", "category_aro_accession": "3000372", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanT is a membrane bound serine racemase, converting L-serine to D-serine. It is associated with VanC, which incorporated D-serine into D-Ala-D-Ser terminal end of peptidoglycan subunits that have a decreased binding affinity with vancomycin. It was isolated from Enterococcus gallinarum."}}}}, "1309": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36211": {"category_aro_name": "ACT beta-lactamase", "category_aro_cvterm_id": "36211", "category_aro_accession": "3000072", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "498": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "499": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36210": {"category_aro_name": "vanS", "category_aro_cvterm_id": "36210", "category_aro_accession": "3000071", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanS is similar to histidine protein kinases like EnvZ and acts as a response regulator by activating VanR. VanS is required for high level transcription of other van glycopeptide resistance genes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35947": {"category_aro_name": "vancomycin", "category_aro_cvterm_id": "35947", "category_aro_accession": "0000028", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vancomycin is a glycopeptide antibiotic used in the prophylaxis and treatment of infections caused by Gram-positive bacteria. Vancomycin inhibits the synthesis of peptidoglycan, the major component of the cell wall of gram-positive bacteria. Its mechanism of action is unusual in that it acts by binding precursors of peptidoglycan, rather than by interacting with an enzyme."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}}}}, "494": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36198": {"category_aro_name": "KPC beta-lactamase", "category_aro_cvterm_id": "36198", "category_aro_accession": "3000059", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Klebsiella pneumoniae carbapenem resistant (KPC) beta-lactamases are notorious for their ability to efficiently hydrolyze carbapenems, unlike other Ambler Class A beta-lactamases. There are currently 9 variants reported worldwide. These enzymes were first isolated from Klebsiella pneumoniae strains in 2001 in the United States. Hospital outbreaks have since been reported in Greece and Israel and KPC carrying strains are now endemic to New York facilities. KPC-1 and KPC-2 have been shown to be identical and are now referred to as KPC-2."}}}}, "495": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "496": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36198": {"category_aro_name": "KPC beta-lactamase", "category_aro_cvterm_id": "36198", "category_aro_accession": "3000059", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Klebsiella pneumoniae carbapenem resistant (KPC) beta-lactamases are notorious for their ability to efficiently hydrolyze carbapenems, unlike other Ambler Class A beta-lactamases. There are currently 9 variants reported worldwide. These enzymes were first isolated from Klebsiella pneumoniae strains in 2001 in the United States. Hospital outbreaks have since been reported in Greece and Israel and KPC carrying strains are now endemic to New York facilities. KPC-1 and KPC-2 have been shown to be identical and are now referred to as KPC-2."}}}}, "497": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "490": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "491": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36195": {"category_aro_name": "PER beta-lactamase", "category_aro_cvterm_id": "36195", "category_aro_accession": "3000056", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PER beta-lactamases are plasmid-mediated extended spectrum beta-lactamases found in the Enterobacteriaceae family."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "492": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "36261": {"category_aro_name": "chloramphenicol acetyltransferase (CAT)", "category_aro_cvterm_id": "36261", "category_aro_accession": "3000122", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Inactivates chloramphenicol by addition of an acyl group. cat is used to describe many variants of the chloramphenicol acetyltransferase gene in a range of organisms including Acinetobacter calcoaceticus, Agrobacterium tumefaciens, Bacillus clausii, Bacillus subtilis, Campylobacter coli, Enterococcus faecalis, Enterococcus faecium, Lactococcus lactis, Listeria monocytogenes, Listonella anguillarum Morganella morganii, Photobacterium damselae subsp. piscicida, Proteus mirabilis, Salmonella typhi, Serratia marcescens, Shigella flexneri, Staphylococcus aureus, Staphylococcus haemolyticus, Staphylococcus intermedius, Streptococcus agalactiae, Streptococcus suis and Streptomyces acrimycini"}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "493": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "24": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "37139": {"category_aro_name": "fusidic acid", "category_aro_cvterm_id": "37139", "category_aro_accession": "3000759", "category_aro_class_name": "Drug Class", "category_aro_description": "Fusidic acid is the only commercially available fusidane, a group of steroid-like antibiotics. It is most active against Gram-positive bacteria, and acts by inhibiting elongation factor G to block protein synthesis."}, "39459": {"category_aro_name": "fusidic acid inactivation enzyme", "category_aro_cvterm_id": "39459", "category_aro_accession": "3003025", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Enzymes that confer resistance to fusidic acid by inactivation"}}}}, "25": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "26": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36182": {"category_aro_name": "VEB beta-lactamase", "category_aro_cvterm_id": "36182", "category_aro_accession": "3000043", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VEB beta-lactamases or Vietnamese extended-spectrum beta-lactamases are class A beta-lactamases that confer high-level resistance to oxyimino cephalosporins and to aztreonam"}}}}, "27": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36360": {"category_aro_name": "lincosamide nucleotidyltransferase (LNU)", "category_aro_cvterm_id": "36360", "category_aro_accession": "3000221", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Resistance to the lincosamide antibiotic by ATP-dependent modification of the 3' and/or 4'-hydroxyl groups of the methylthiolincosamide sugar."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}, "20": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "21": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "22": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36211": {"category_aro_name": "ACT beta-lactamase", "category_aro_cvterm_id": "36211", "category_aro_accession": "3000072", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "23": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "28": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "29": {"$update": {"ARO_category": {"36463": {"category_aro_name": "sulfadiazine", "category_aro_cvterm_id": "36463", "category_aro_accession": "3000324", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfadiazine is a potent inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids."}, "36466": {"category_aro_name": "sulfadoxine", "category_aro_cvterm_id": "36466", "category_aro_accession": "3000327", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfadoxine is an inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids."}, "37027": {"category_aro_name": "sulfacetamide", "category_aro_cvterm_id": "37027", "category_aro_accession": "3000683", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfacetamide is a very soluable sulfonamide antibiotic previously used to treat urinary tract infections. Its relatively low activity and toxicity to those with Stevens-Johnson syndrome have reduced its use and availability."}, "36464": {"category_aro_name": "sulfadimidine", "category_aro_cvterm_id": "36464", "category_aro_accession": "3000325", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfadimidine is an alkaline sulfonamide antibiotic that inhibits dihydropteroate synthase, and enzyme in the tetrahydrofolic acid biosynthesis pathway. This interferes with the production of folate, which is a precursor to many amino acids and nucleotides."}, "37028": {"category_aro_name": "mafenide", "category_aro_cvterm_id": "37028", "category_aro_accession": "3000684", "category_aro_class_name": "Antibiotic", "category_aro_description": "Mafenide is a sulfonamide used topically for treating burns."}, "39999": {"category_aro_name": "sulfonamide resistant dihydropteroate synthase folP", "category_aro_cvterm_id": "39999", "category_aro_accession": "3003415", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in dihydropteroate synthase folP prevent sulfonamide antibiotics from inhibiting its role in folate synthesis, thus conferring sulfonamide resistance"}, "36469": {"category_aro_name": "sulfisoxazole", "category_aro_cvterm_id": "36469", "category_aro_accession": "3000330", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfisoxazole is an inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids."}, "39996": {"category_aro_name": "dapsone", "category_aro_cvterm_id": "39996", "category_aro_accession": "3003412", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dapsone is a sulfone in which it inhibits folic acid synthesis, such as the dihydropteroate synthase."}, "37043": {"category_aro_name": "sulfamethizole", "category_aro_cvterm_id": "37043", "category_aro_accession": "3000699", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfamethizole is a short-acting sulfonamide that inhibits dihydropteroate synthetase."}, "39985": {"category_aro_name": "sulfone antibiotic", "category_aro_cvterm_id": "39985", "category_aro_accession": "3003401", "category_aro_class_name": "Drug Class", "category_aro_description": "A sulfone active against a wide range of bacteria but mainly employed for its actions against mycobacterium laprae. Its mechanism of action involves inhibition of folic acid synthesis in susceptible organisms."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37042": {"category_aro_name": "sulfasalazine", "category_aro_cvterm_id": "37042", "category_aro_accession": "3000698", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfasalazine is a derivative of the early sulfonamide sulfapyridine (salicylazosulfapyridine). It was developed to increase water solubility and is taken orally for ulcerative colitis."}, "36468": {"category_aro_name": "sulfamethoxazole", "category_aro_cvterm_id": "36468", "category_aro_accession": "3000329", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfamethoxazole is a sulfonamide antibiotic usually taken with trimethoprim, a diaminopyrimidine antibiotic. Sulfamethoxazole inhibits dihydropteroate synthase, essential to tetrahydrofolic acid biosynthesis. This pathway generates compounds used in the synthesis of many amino acids and nucleotides."}, "36421": {"category_aro_name": "sulfonamide antibiotic", "category_aro_cvterm_id": "36421", "category_aro_accession": "3000282", "category_aro_class_name": "Drug Class", "category_aro_description": "Sulfonamides are broad spectrum, synthetic antibiotics that contain the sulfonamide group. Sulfonamides inhibit dihydropteroate synthase, which catalyzes the conversion of p-aminobenzoic acid to dihydropteroic acid as part of the tetrahydrofolic acid biosynthetic pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor of many nucleotides and amino acids. Many sulfamides are taken with trimethoprim, an inhibitor of dihydrofolate reductase, also disturbing the trihydrofolic acid synthesis pathway."}}}}, "1241": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "7": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "2281": {"$update": {"ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37243": {"category_aro_name": "defensin resistant mprF", "category_aro_cvterm_id": "37243", "category_aro_accession": "3000863", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "MprF is a integral membrane protein that modifies the negatively-charged phosphatidylglycerol on the membrane surface of both Gram-positive and Gram-negative bacteria. This confers resistance to cationic peptides that disrupt the cell membrane, including defensins."}, "37037": {"category_aro_name": "defensin", "category_aro_cvterm_id": "37037", "category_aro_accession": "3000693", "category_aro_class_name": "Antibiotic", "category_aro_description": "Defensins are natural cationic peptides that have antibiotic properties. It is part of the innate immune system of plants and animals."}}}}, "2282": {"$update": {"ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37243": {"category_aro_name": "defensin resistant mprF", "category_aro_cvterm_id": "37243", "category_aro_accession": "3000863", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "MprF is a integral membrane protein that modifies the negatively-charged phosphatidylglycerol on the membrane surface of both Gram-positive and Gram-negative bacteria. This confers resistance to cationic peptides that disrupt the cell membrane, including defensins."}, "37037": {"category_aro_name": "defensin", "category_aro_cvterm_id": "37037", "category_aro_accession": "3000693", "category_aro_class_name": "Antibiotic", "category_aro_description": "Defensins are natural cationic peptides that have antibiotic properties. It is part of the innate immune system of plants and animals."}}}}, "2283": {"$update": {"ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37243": {"category_aro_name": "defensin resistant mprF", "category_aro_cvterm_id": "37243", "category_aro_accession": "3000863", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "MprF is a integral membrane protein that modifies the negatively-charged phosphatidylglycerol on the membrane surface of both Gram-positive and Gram-negative bacteria. This confers resistance to cationic peptides that disrupt the cell membrane, including defensins."}, "37037": {"category_aro_name": "defensin", "category_aro_cvterm_id": "37037", "category_aro_accession": "3000693", "category_aro_class_name": "Antibiotic", "category_aro_description": "Defensins are natural cationic peptides that have antibiotic properties. It is part of the innate immune system of plants and animals."}}}}, "2284": {"$update": {"ARO_category": {"35944": {"category_aro_name": "fosfomycin", "category_aro_cvterm_id": "35944", "category_aro_accession": "0000025", "category_aro_class_name": "Drug Class", "category_aro_description": "Fosfomycin (also known as phosphomycin and phosphonomycin) is a broad-spectrum antibiotic produced by certain Streptomyces species. It is effective on gram positive and negative bacteria as it targets the cell wall, an essential feature shared by both bacteria. Its specific target is MurA (MurZ in E.coli), which attaches phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine, a step of commitment to cell wall synthesis. In the active site of MurA, the active cysteine molecule is alkylated which stops the catalytic reaction."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "39245": {"category_aro_name": "murA transferase", "category_aro_cvterm_id": "39245", "category_aro_accession": "3002811", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "murA or UDP-N-acetylglucosamine enolpyruvyl transferase catalyses the initial step in peptidoglycan biosynthesis and is inhibited by fosfomycin. Overexpression of murA through mutations confers fosfomycin resistance."}}, "model_param": {"$update": {"snp": {"$update": {"param_value": {"$insert": {"3628": "C115E", "3627": "C115D", "3639": "C115S"}}}, "$insert": {"experimental": {"3628": "C115E", "3627": "C115D", "3639": "C115S"}}}}}}}, "2375": {"$update": {"ARO_category": {"41389": {"category_aro_name": "Rm3 family beta-lactamase", "category_aro_cvterm_id": "41389", "category_aro_accession": "3004225", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "A family encompassing subclass B3 Rm3-like beta-lactamases."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}}}}, "2372": {"$update": {"ARO_category": {"35944": {"category_aro_name": "fosfomycin", "category_aro_cvterm_id": "35944", "category_aro_accession": "0000025", "category_aro_class_name": "Drug Class", "category_aro_description": "Fosfomycin (also known as phosphomycin and phosphonomycin) is a broad-spectrum antibiotic produced by certain Streptomyces species. It is effective on gram positive and negative bacteria as it targets the cell wall, an essential feature shared by both bacteria. Its specific target is MurA (MurZ in E.coli), which attaches phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine, a step of commitment to cell wall synthesis. In the active site of MurA, the active cysteine molecule is alkylated which stops the catalytic reaction."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "41411": {"category_aro_name": "GlpT", "category_aro_cvterm_id": "41411", "category_aro_accession": "3004247", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Fosfomycin is transported bacterial cells through transporters, one of them being glycerol-3-phosphate, which is encoded by the GlpT gene. Mutations in the GlpT gene can confer resistance to fosfomycin."}}}}, "2373": {"$update": {"ARO_category": {"35944": {"category_aro_name": "fosfomycin", "category_aro_cvterm_id": "35944", "category_aro_accession": "0000025", "category_aro_class_name": "Drug Class", "category_aro_description": "Fosfomycin (also known as phosphomycin and phosphonomycin) is a broad-spectrum antibiotic produced by certain Streptomyces species. It is effective on gram positive and negative bacteria as it targets the cell wall, an essential feature shared by both bacteria. Its specific target is MurA (MurZ in E.coli), which attaches phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine, a step of commitment to cell wall synthesis. In the active site of MurA, the active cysteine molecule is alkylated which stops the catalytic reaction."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "41412": {"category_aro_name": "UhpT", "category_aro_cvterm_id": "41412", "category_aro_accession": "3004248", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "UhpT encodes a transporter that can import fosfomycin-type drugs into bacterial cells. Mutations to UhpT confer resistance."}}}}, "1087": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1086": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1085": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38817": {"category_aro_name": "OKP beta-lactamase", "category_aro_cvterm_id": "38817", "category_aro_accession": "3002417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OKP beta-lactamases are chromosomal class A beta-lactamase that confer resistance to penicillins and early cephalosporins in Klebsiella pneumoniae. OKP beta-lactamases can be subdivided into two groups: OKP-A and OKP-B which diverge by about 4.2%"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1876": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36236": {"category_aro_name": "LEN beta-lactamase", "category_aro_cvterm_id": "36236", "category_aro_accession": "3000097", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "LEN beta-lactamases are chromosomal class A beta-lactamases that confer resistance to ampicillin, amoxicillin, carbenicillin, and ticarcillin but not to extended-spectrum beta-lactams."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}}}}, "1877": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1874": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1875": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36197": {"category_aro_name": "MIR beta-lactamase", "category_aro_cvterm_id": "36197", "category_aro_accession": "3000058", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "MIR beta-lactamases are plasmid-mediated beta-lactamases that confer resistance to oxyimino- and alpha-methoxy beta-lactams"}}}}, "1872": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36635": {"category_aro_name": "vanXY", "category_aro_cvterm_id": "36635", "category_aro_accession": "3000496", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanXY is a protein with both D,D-carboxypeptidase and D,D-dipeptidase activity, found in Enterococcus gallinarum. It cleaves and removes the terminal D-Ala of peptidoglycan subunits for the incorporation of D-Ser by VanC. D-Ala-D-Ser has low binding affinity with vancomycin."}}}}, "1873": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36360": {"category_aro_name": "lincosamide nucleotidyltransferase (LNU)", "category_aro_cvterm_id": "36360", "category_aro_accession": "3000221", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Resistance to the lincosamide antibiotic by ATP-dependent modification of the 3' and/or 4'-hydroxyl groups of the methylthiolincosamide sugar."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}, "1870": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1871": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1083": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1878": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36234": {"category_aro_name": "SRT beta-lactamase", "category_aro_cvterm_id": "36234", "category_aro_accession": "3000095", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SRT beta-lactamases."}}}}, "1879": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36461": {"category_aro_name": "AAC(3)", "category_aro_cvterm_id": "36461", "category_aro_accession": "3000322", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 3."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}}}}, "977": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "976": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "975": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "974": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}}, "973": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "972": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "971": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "970": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38817": {"category_aro_name": "OKP beta-lactamase", "category_aro_cvterm_id": "38817", "category_aro_accession": "3002417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OKP beta-lactamases are chromosomal class A beta-lactamase that confer resistance to penicillins and early cephalosporins in Klebsiella pneumoniae. OKP beta-lactamases can be subdivided into two groups: OKP-A and OKP-B which diverge by about 4.2%"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1080": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "979": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "978": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "182": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}}}}}, "183": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "180": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36207": {"category_aro_name": "DHA beta-lactamase", "category_aro_cvterm_id": "36207", "category_aro_accession": "3000068", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DHA beta-lactamases are plasmid-mediated AmpC \u03b2-lactamases that confer resistance to cephamycins and oxyimino-cephalosporins."}}}}, "181": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36205": {"category_aro_name": "GES beta-lactamase", "category_aro_cvterm_id": "36205", "category_aro_accession": "3000066", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "GES beta-lactamases or Guiana extended-spectrum beta-lactamases are related to the other plasmid-located class A beta-lactamases"}}}}, "186": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "187": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "184": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36233": {"category_aro_name": "OCH beta-lactamase", "category_aro_cvterm_id": "36233", "category_aro_accession": "3000094", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OCH beta-lactamases are Ambler class C chromosomal-encoded beta-lactamases in Ochrobactrum anthropi"}}}}, "185": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "2110": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36230": {"category_aro_name": "CARB beta-lactamase", "category_aro_cvterm_id": "36230", "category_aro_accession": "3000091", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CARB beta-lactamases are class A lactamases that can hydrolyze carbenicillin. Many of the PSE beta-lactamases have been renamed as CARB-lactamases with the notable exception of PSE-2 which is now OXA-10."}}}}, "2111": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "188": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "189": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "2114": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "36265": {"category_aro_name": "APH(3')", "category_aro_cvterm_id": "36265", "category_aro_accession": "3000126", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of 2-deoxystreptamine aminoglycosides on the hydroxyl group at position 3'"}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2115": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "2116": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1559": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35971": {"category_aro_name": "penicillin", "category_aro_cvterm_id": "35971", "category_aro_accession": "0000054", "category_aro_class_name": "Antibiotic", "category_aro_description": "Penicillin (sometimes abbreviated PCN) is a beta-lactam antibiotic used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms. It works by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "1919": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1918": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36367": {"category_aro_name": "ANT(9)", "category_aro_cvterm_id": "36367", "category_aro_accession": "3000228", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotidylylation of spectinomycin at the hydroxyl group at position 9"}}}}, "1911": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1910": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1913": {"$update": {"ARO_category": {"36476": {"category_aro_name": "iclaprim", "category_aro_cvterm_id": "36476", "category_aro_accession": "3000337", "category_aro_class_name": "Antibiotic", "category_aro_description": "Iclaprim is a bactericidal compound that inhibits dihydrofolate reductase. It is used against clinically important Gram-positive pathogens, including methicillin-sensitive Staphylococcus aureus and methicillin-resistant S. aureus."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36408": {"category_aro_name": "brodimoprim", "category_aro_cvterm_id": "36408", "category_aro_accession": "3000269", "category_aro_class_name": "Antibiotic", "category_aro_description": "Brodimoprim is a structural derivative of trimethoprim and an inhibitor of bacterial dihydrofolate reductase. The 4-methoxy group of trimethoprim is replaced with a bromine atom."}, "37617": {"category_aro_name": "trimethoprim resistant dihydrofolate reductase dfr", "category_aro_cvterm_id": "37617", "category_aro_accession": "3001218", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Alternative dihydropteroate synthase dfr present on plasmids produces alternate proteins that are less sensitive to trimethoprim from inhibiting its role in folate synthesis, thus conferring trimethoprim resistance."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36423": {"category_aro_name": "tetroxoprim", "category_aro_cvterm_id": "36423", "category_aro_accession": "3000284", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetroxoprim is a trimethoprim derivative that inhibits bacterial dihydrofolate reductase."}}}}, "1912": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "41405": {"category_aro_name": "class D LRA beta-lactamase", "category_aro_cvterm_id": "41405", "category_aro_accession": "3004241", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Beta-lactamases that are part of the LRA gene family and are classified as Class D beta-lactamases."}, "41395": {"category_aro_name": "class C LRA beta-lactamase", "category_aro_cvterm_id": "41395", "category_aro_accession": "3004231", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Beta-lactamases that are part of the LRA gene family and are classified as Class C beta-lactamases."}}}}, "1915": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1914": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38784": {"category_aro_name": "BEL beta-lactamase", "category_aro_cvterm_id": "38784", "category_aro_accession": "3002384", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "BEL beta-lactamases are class A expanded-spectrum beta-lactamases that are inhibited by clavulanic acid. They are chromosomally encoded and hydrolyze most cephalosporins and aztreonam."}}}}, "1917": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "1916": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "869": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35973": {"category_aro_name": "oxacillin", "category_aro_cvterm_id": "35973", "category_aro_accession": "0000056", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxacillin is a penicillinase-resistant beta-lactam. It is similar to methicillin, and has replaced methicillin in clinical use. Oxacillin, especially in combination with other antibiotics, is effective against many penicillinase-producing strains of Staphylococcus aureus and Staphylococcus epidermidis."}, "35930": {"category_aro_name": "cloxacillin", "category_aro_cvterm_id": "35930", "category_aro_accession": "0000011", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cloxacillin is a semisynthetic, isoxazolyl penicillin derivative in the beta-lactam class of antibiotics. It interferes with peptidogylcan synthesis and is commonly used for treating penicillin-resistant Staphylococcus aureus infections."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "868": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36207": {"category_aro_name": "DHA beta-lactamase", "category_aro_cvterm_id": "36207", "category_aro_accession": "3000068", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DHA beta-lactamases are plasmid-mediated AmpC \u03b2-lactamases that confer resistance to cephamycins and oxyimino-cephalosporins."}}}}, "2113": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "861": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "860": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "863": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36195": {"category_aro_name": "PER beta-lactamase", "category_aro_cvterm_id": "36195", "category_aro_accession": "3000056", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PER beta-lactamases are plasmid-mediated extended spectrum beta-lactamases found in the Enterobacteriaceae family."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "862": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "865": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "864": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "867": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "866": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "2024": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36212": {"category_aro_name": "ACC beta-lactamase", "category_aro_cvterm_id": "36212", "category_aro_accession": "3000073", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACC beta-lactamases or Ambler class C beta-lactamases are AmpC beta-lactamases. They possess an interesting resistance phenotype due to their low activity against cephamycins."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "2025": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "2026": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "2027": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "2020": {"$update": {"ARO_category": {"36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35921": {"category_aro_name": "tetracycline-resistant ribosomal protection protein", "category_aro_cvterm_id": "35921", "category_aro_accession": "0000002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "A family of proteins known to bind to the 30S ribosomal subunit. This interaction prevents tetracycline and tetracycline derivatives from inhibiting ribosomal function. Thus, these proteins confer elevated resistance to tetracycline derivatives as a ribosomal protection protein."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}, "2021": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "2022": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "2023": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "2117": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2028": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "2029": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "2758": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36295": {"category_aro_name": "spiramycin", "category_aro_cvterm_id": "36295", "category_aro_accession": "3000156", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spiramycin is a 16-membered macrolide and is natural product produced by Streptomyces ambofaciens. It binds to the 50S subunit of bacterial ribosomes and inhibits peptidyl transfer activity to disrupt protein synthesis."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "2759": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36295": {"category_aro_name": "spiramycin", "category_aro_cvterm_id": "36295", "category_aro_accession": "3000156", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spiramycin is a 16-membered macrolide and is natural product produced by Streptomyces ambofaciens. It binds to the 50S subunit of bacterial ribosomes and inhibits peptidyl transfer activity to disrupt protein synthesis."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "883": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41390": {"category_aro_name": "subclass B3 LRA beta-lactamase", "category_aro_cvterm_id": "41390", "category_aro_accession": "3004226", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Beta-lactamases that are part of the LRA gene family and are classified as B3 (metallo-) beta-lactamases."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "882": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41399": {"category_aro_name": "class A Rhodopseudomonas genus beta-lactamases", "category_aro_cvterm_id": "41399", "category_aro_accession": "3004235", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Class A beta-lactamases that have been discovered in the Rhodobacter genus."}}}}, "881": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "37247": {"category_aro_name": "oleandomycin", "category_aro_cvterm_id": "37247", "category_aro_accession": "3000867", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oleandomycin is a 14-membered macrolide produced by Streptomyces antibioticus. It is ssimilar to erythromycin, and contains a desosamine amino sugar and an oleandrose sugar. It targets the 50S ribosomal subunit to prevent protein synthesis."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35974": {"category_aro_name": "telithromycin", "category_aro_cvterm_id": "35974", "category_aro_accession": "0000057", "category_aro_class_name": "Antibiotic", "category_aro_description": "Telithromycin is a semi-synthetic derivative of erythromycin. It is a 14-membered macrolide and is the first ketolide antibiotic to be used in clinics. Telithromycin binds the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36284": {"category_aro_name": "tylosin", "category_aro_cvterm_id": "36284", "category_aro_accession": "3000145", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tylosin is a 16-membered macrolide, naturally produced by Streptomyces fradiae. It interacts with the bacterial ribosome 50S subunit to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36315": {"category_aro_name": "dirithromycin", "category_aro_cvterm_id": "36315", "category_aro_accession": "3000176", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dirithromycin is an oxazine derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome to inhibit bacterial protein synthesis."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "36699": {"category_aro_name": "Erm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36699", "category_aro_accession": "3000560", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Erm proteins are part of the RNA methyltransferase family and methylate A2058 (E. coli nomenclature) of the 23S ribosomal RNA conferring degrees of resistance to Macrolides, Lincosamides and Streptogramin b. This is called the MLSb phenotype."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35946": {"category_aro_name": "roxithromycin", "category_aro_cvterm_id": "35946", "category_aro_accession": "0000027", "category_aro_class_name": "Antibiotic", "category_aro_description": "Roxithromycin is a semi-synthetic, 14-carbon ring macrolide antibiotic derived from erythromycin. It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36295": {"category_aro_name": "spiramycin", "category_aro_cvterm_id": "36295", "category_aro_accession": "3000156", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spiramycin is a 16-membered macrolide and is natural product produced by Streptomyces ambofaciens. It binds to the 50S subunit of bacterial ribosomes and inhibits peptidyl transfer activity to disrupt protein synthesis."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}, "880": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36290": {"category_aro_name": "APH(6)", "category_aro_cvterm_id": "36290", "category_aro_accession": "3000151", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of streptomycin on the hydroxyl group at position 6"}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "887": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "886": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36199": {"category_aro_name": "IND beta-lactamase", "category_aro_cvterm_id": "36199", "category_aro_accession": "3000060", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "IND beta-lactamases are class B carbapenem-hydrolyzing beta-lactamases"}}}}, "885": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "884": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "889": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "888": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "37247": {"category_aro_name": "oleandomycin", "category_aro_cvterm_id": "37247", "category_aro_accession": "3000867", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oleandomycin is a 14-membered macrolide produced by Streptomyces antibioticus. It is ssimilar to erythromycin, and contains a desosamine amino sugar and an oleandrose sugar. It targets the 50S ribosomal subunit to prevent protein synthesis."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35974": {"category_aro_name": "telithromycin", "category_aro_cvterm_id": "35974", "category_aro_accession": "0000057", "category_aro_class_name": "Antibiotic", "category_aro_description": "Telithromycin is a semi-synthetic derivative of erythromycin. It is a 14-membered macrolide and is the first ketolide antibiotic to be used in clinics. Telithromycin binds the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36284": {"category_aro_name": "tylosin", "category_aro_cvterm_id": "36284", "category_aro_accession": "3000145", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tylosin is a 16-membered macrolide, naturally produced by Streptomyces fradiae. It interacts with the bacterial ribosome 50S subunit to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36315": {"category_aro_name": "dirithromycin", "category_aro_cvterm_id": "36315", "category_aro_accession": "3000176", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dirithromycin is an oxazine derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome to inhibit bacterial protein synthesis."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "36699": {"category_aro_name": "Erm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36699", "category_aro_accession": "3000560", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Erm proteins are part of the RNA methyltransferase family and methylate A2058 (E. coli nomenclature) of the 23S ribosomal RNA conferring degrees of resistance to Macrolides, Lincosamides and Streptogramin b. This is called the MLSb phenotype."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35946": {"category_aro_name": "roxithromycin", "category_aro_cvterm_id": "35946", "category_aro_accession": "0000027", "category_aro_class_name": "Antibiotic", "category_aro_description": "Roxithromycin is a semi-synthetic, 14-carbon ring macrolide antibiotic derived from erythromycin. It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36295": {"category_aro_name": "spiramycin", "category_aro_cvterm_id": "36295", "category_aro_accession": "3000156", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spiramycin is a 16-membered macrolide and is natural product produced by Streptomyces ambofaciens. It binds to the 50S subunit of bacterial ribosomes and inhibits peptidyl transfer activity to disrupt protein synthesis."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}, "1503": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36236": {"category_aro_name": "LEN beta-lactamase", "category_aro_cvterm_id": "36236", "category_aro_accession": "3000097", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "LEN beta-lactamases are chromosomal class A beta-lactamases that confer resistance to ampicillin, amoxicillin, carbenicillin, and ticarcillin but not to extended-spectrum beta-lactams."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}}}}, "775": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "774": {"$update": {"ARO_category": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36176": {"category_aro_name": "tetracycline inactivation enzyme", "category_aro_cvterm_id": "36176", "category_aro_accession": "3000036", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Enzymes or other gene products which hydroxylate tetracycline and other tetracycline derivatives. Hydroxylation inactivates tetracycline-like antibiotics, thus conferring resistance to these compounds."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}, "776": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36176": {"category_aro_name": "tetracycline inactivation enzyme", "category_aro_cvterm_id": "36176", "category_aro_accession": "3000036", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Enzymes or other gene products which hydroxylate tetracycline and other tetracycline derivatives. Hydroxylation inactivates tetracycline-like antibiotics, thus conferring resistance to these compounds."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}, "771": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "770": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "773": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36233": {"category_aro_name": "OCH beta-lactamase", "category_aro_cvterm_id": "36233", "category_aro_accession": "3000094", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OCH beta-lactamases are Ambler class C chromosomal-encoded beta-lactamases in Ochrobactrum anthropi"}}}}, "772": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36236": {"category_aro_name": "LEN beta-lactamase", "category_aro_cvterm_id": "36236", "category_aro_accession": "3000097", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "LEN beta-lactamases are chromosomal class A beta-lactamases that confer resistance to ampicillin, amoxicillin, carbenicillin, and ticarcillin but not to extended-spectrum beta-lactams."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}}}}, "779": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "778": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "77": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "76": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "75": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "37139": {"category_aro_name": "fusidic acid", "category_aro_cvterm_id": "37139", "category_aro_accession": "3000759", "category_aro_class_name": "Drug Class", "category_aro_description": "Fusidic acid is the only commercially available fusidane, a group of steroid-like antibiotics. It is most active against Gram-positive bacteria, and acts by inhibiting elongation factor G to block protein synthesis."}, "39459": {"category_aro_name": "fusidic acid inactivation enzyme", "category_aro_cvterm_id": "39459", "category_aro_accession": "3003025", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Enzymes that confer resistance to fusidic acid by inactivation"}}}}, "74": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "73": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "72": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "71": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "70": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36196": {"category_aro_name": "NDM beta-lactamase", "category_aro_cvterm_id": "36196", "category_aro_accession": "3000057", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "NDM beta-lactamases or New Delhi metallo-beta-lactamases are class B beta-lactamases that confer resistance to a broad range of antibiotics including carbapenems, cephalosporins and penicillins."}}}}, "79": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "78": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1043": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1042": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "36261": {"category_aro_name": "chloramphenicol acetyltransferase (CAT)", "category_aro_cvterm_id": "36261", "category_aro_accession": "3000122", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Inactivates chloramphenicol by addition of an acyl group. cat is used to describe many variants of the chloramphenicol acetyltransferase gene in a range of organisms including Acinetobacter calcoaceticus, Agrobacterium tumefaciens, Bacillus clausii, Bacillus subtilis, Campylobacter coli, Enterococcus faecalis, Enterococcus faecium, Lactococcus lactis, Listeria monocytogenes, Listonella anguillarum Morganella morganii, Photobacterium damselae subsp. piscicida, Proteus mirabilis, Salmonella typhi, Serratia marcescens, Shigella flexneri, Staphylococcus aureus, Staphylococcus haemolyticus, Staphylococcus intermedius, Streptococcus agalactiae, Streptococcus suis and Streptomyces acrimycini"}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "1041": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "1040": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1047": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "36261": {"category_aro_name": "chloramphenicol acetyltransferase (CAT)", "category_aro_cvterm_id": "36261", "category_aro_accession": "3000122", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Inactivates chloramphenicol by addition of an acyl group. cat is used to describe many variants of the chloramphenicol acetyltransferase gene in a range of organisms including Acinetobacter calcoaceticus, Agrobacterium tumefaciens, Bacillus clausii, Bacillus subtilis, Campylobacter coli, Enterococcus faecalis, Enterococcus faecium, Lactococcus lactis, Listeria monocytogenes, Listonella anguillarum Morganella morganii, Photobacterium damselae subsp. piscicida, Proteus mirabilis, Salmonella typhi, Serratia marcescens, Shigella flexneri, Staphylococcus aureus, Staphylococcus haemolyticus, Staphylococcus intermedius, Streptococcus agalactiae, Streptococcus suis and Streptomyces acrimycini"}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "1046": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37716": {"category_aro_name": "pleuromutilin", "category_aro_cvterm_id": "37716", "category_aro_accession": "3001317", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pleuromutilin is a natural product antibiotic produced by Clitopilus passeckerianus. Related antibiotics of clinical significance, such as tiamulin and retapamulin, are semi-synthetic derivatives of this compound."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}}}}}, "1045": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36699": {"category_aro_name": "Erm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36699", "category_aro_accession": "3000560", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Erm proteins are part of the RNA methyltransferase family and methylate A2058 (E. coli nomenclature) of the 23S ribosomal RNA conferring degrees of resistance to Macrolides, Lincosamides and Streptogramin b. This is called the MLSb phenotype."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}, "1044": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1049": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36222": {"category_aro_name": "MOX beta-lactamase", "category_aro_cvterm_id": "36222", "category_aro_accession": "3000083", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "MOX beta-lactamases are plasmid-mediated AmpC-type beta-lactamases."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1048": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1681": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36294": {"category_aro_name": "APH(4)", "category_aro_cvterm_id": "36294", "category_aro_accession": "3000155", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of hygromycin on the hydroxyl group at position 4"}}}}, "1680": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "1683": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1682": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "41439": {"category_aro_name": "ANT(3'')", "category_aro_cvterm_id": "41439", "category_aro_accession": "3004275", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotidylylation of streptomycin at the hydroxyl group at position 3''"}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1685": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1684": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36236": {"category_aro_name": "LEN beta-lactamase", "category_aro_cvterm_id": "36236", "category_aro_accession": "3000097", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "LEN beta-lactamases are chromosomal class A beta-lactamases that confer resistance to ampicillin, amoxicillin, carbenicillin, and ticarcillin but not to extended-spectrum beta-lactams."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}}}}, "1687": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36720": {"category_aro_name": "CphA beta-lactamase", "category_aro_cvterm_id": "36720", "category_aro_accession": "3000581", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CphA is an Ambler Class B MBL; subclass B2 originally isolated from Aeromonas hydrophilia. This enzyme has specific activity against carbapenems and is active as a mono-zinc protein."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "1686": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1689": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36713": {"category_aro_name": "vanR", "category_aro_cvterm_id": "36713", "category_aro_accession": "3000574", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanR is a OmpR-family transcriptional activator in the VanSR regulatory system. When activated by VanS, it promotes cotranscription of VanA, VanH, and VanX."}, "35947": {"category_aro_name": "vancomycin", "category_aro_cvterm_id": "35947", "category_aro_accession": "0000028", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vancomycin is a glycopeptide antibiotic used in the prophylaxis and treatment of infections caused by Gram-positive bacteria. Vancomycin inhibits the synthesis of peptidoglycan, the major component of the cell wall of gram-positive bacteria. Its mechanism of action is unusual in that it acts by binding precursors of peptidoglycan, rather than by interacting with an enzyme."}}}}, "1688": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1269": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1268": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "669": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36197": {"category_aro_name": "MIR beta-lactamase", "category_aro_cvterm_id": "36197", "category_aro_accession": "3000058", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "MIR beta-lactamases are plasmid-mediated beta-lactamases that confer resistance to oxyimino- and alpha-methoxy beta-lactams"}}}}, "668": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "667": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36211": {"category_aro_name": "ACT beta-lactamase", "category_aro_cvterm_id": "36211", "category_aro_accession": "3000072", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1262": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "665": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "664": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "663": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36211": {"category_aro_name": "ACT beta-lactamase", "category_aro_cvterm_id": "36211", "category_aro_accession": "3000072", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "662": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1265": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36197": {"category_aro_name": "MIR beta-lactamase", "category_aro_cvterm_id": "36197", "category_aro_accession": "3000058", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "MIR beta-lactamases are plasmid-mediated beta-lactamases that confer resistance to oxyimino- and alpha-methoxy beta-lactams"}}}}, "1264": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}}, "640": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "1469": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$delete": ["37710"], "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37618": {"category_aro_name": "elfamycin antibiotic", "category_aro_cvterm_id": "37618", "category_aro_accession": "3001219", "category_aro_class_name": "Drug Class", "category_aro_description": "Elfamycins are molecules that inhibit bacterial elongation factor Tu (EF-Tu), a key protein which brings aminoacyl-tRNA (aa-tRNA) to the ribosome during protein synthesis. Elfamycins defined by their target (EF-Tu), rather than a conserved chemical backbone. Elfamycins follow two mechanisms to disrupt protein synthesis: 1. kirromycins and enacyloxin fix EF-Tu in the GTP bound conformation and lock EF-Tu onto the ribosome, and 2. pulvomycin and GE2270 cover the binding site of aa-tRNA disallowing EF-Tu from being charged with aa-tRNA. All elfamycins cause increased the affinity of EF-Tu for GTP."}, "37619": {"category_aro_name": "factumycin", "category_aro_cvterm_id": "37619", "category_aro_accession": "3001220", "category_aro_class_name": "Antibiotic", "category_aro_description": "Factumycin is a kirromycin-like antibiotic produced by Kitasatospora setae and Streptomyces strains. Its biosynthetic cluster has been characterized which has interesting acetyl transferase domains in trans, or outside of the polyketide synthase domains. Factumycin has specific, rather than broad spectrum, antibacterial properties, especially targeting various Acinetobacter baumanii strains."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}}}}}, "1468": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "520": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "1467": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36236": {"category_aro_name": "LEN beta-lactamase", "category_aro_cvterm_id": "36236", "category_aro_accession": "3000097", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "LEN beta-lactamases are chromosomal class A beta-lactamases that confer resistance to ampicillin, amoxicillin, carbenicillin, and ticarcillin but not to extended-spectrum beta-lactams."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}}}}, "1466": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1461": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1460": {"$update": {"ARO_category": {"35944": {"category_aro_name": "fosfomycin", "category_aro_cvterm_id": "35944", "category_aro_accession": "0000025", "category_aro_class_name": "Drug Class", "category_aro_description": "Fosfomycin (also known as phosphomycin and phosphonomycin) is a broad-spectrum antibiotic produced by certain Streptomyces species. It is effective on gram positive and negative bacteria as it targets the cell wall, an essential feature shared by both bacteria. Its specific target is MurA (MurZ in E.coli), which attaches phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine, a step of commitment to cell wall synthesis. In the active site of MurA, the active cysteine molecule is alkylated which stops the catalytic reaction."}, "36272": {"category_aro_name": "fosfomycin thiol transferase", "category_aro_cvterm_id": "36272", "category_aro_accession": "3000133", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Catalyzes the addition of a thiol group from a nucleophilic molecule to fosfomycin."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "1463": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36205": {"category_aro_name": "GES beta-lactamase", "category_aro_cvterm_id": "36205", "category_aro_accession": "3000066", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "GES beta-lactamases or Guiana extended-spectrum beta-lactamases are related to the other plasmid-located class A beta-lactamases"}}}}, "1019": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1317": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35979": {"category_aro_name": "ceftriaxone", "category_aro_cvterm_id": "35979", "category_aro_accession": "0000062", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftriaxone is a third-generation cephalosporin antibiotic. The presence of an aminothiazolyl sidechain increases ceftriazone's resistance to beta-lactamases. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1316": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "36261": {"category_aro_name": "chloramphenicol acetyltransferase (CAT)", "category_aro_cvterm_id": "36261", "category_aro_accession": "3000122", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Inactivates chloramphenicol by addition of an acyl group. cat is used to describe many variants of the chloramphenicol acetyltransferase gene in a range of organisms including Acinetobacter calcoaceticus, Agrobacterium tumefaciens, Bacillus clausii, Bacillus subtilis, Campylobacter coli, Enterococcus faecalis, Enterococcus faecium, Lactococcus lactis, Listeria monocytogenes, Listonella anguillarum Morganella morganii, Photobacterium damselae subsp. piscicida, Proteus mirabilis, Salmonella typhi, Serratia marcescens, Shigella flexneri, Staphylococcus aureus, Staphylococcus haemolyticus, Staphylococcus intermedius, Streptococcus agalactiae, Streptococcus suis and Streptomyces acrimycini"}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "1315": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}}}}}, "1314": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1313": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "1312": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1311": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "38788": {"category_aro_name": "OXY beta-lactamase", "category_aro_cvterm_id": "38788", "category_aro_accession": "3002388", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXY beta-lactamases are chromosomal class A beta-lactamases that are found in Klebsiella oxytoca. At constitutive low levels, OXY beta-lactamases confer resistance to aminopenicillins and carboxypenicillins. At high induced levels, OXY beta-lactamases confer resistance to penicillins, cephalosporins and aztreonam."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1310": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1319": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1318": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35973": {"category_aro_name": "oxacillin", "category_aro_cvterm_id": "35973", "category_aro_accession": "0000056", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxacillin is a penicillinase-resistant beta-lactam. It is similar to methicillin, and has replaced methicillin in clinical use. Oxacillin, especially in combination with other antibiotics, is effective against many penicillinase-producing strains of Staphylococcus aureus and Staphylococcus epidermidis."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35930": {"category_aro_name": "cloxacillin", "category_aro_cvterm_id": "35930", "category_aro_accession": "0000011", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cloxacillin is a semisynthetic, isoxazolyl penicillin derivative in the beta-lactam class of antibiotics. It interferes with peptidogylcan synthesis and is commonly used for treating penicillin-resistant Staphylococcus aureus infections."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "1010": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "464": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36196": {"category_aro_name": "NDM beta-lactamase", "category_aro_cvterm_id": "36196", "category_aro_accession": "3000057", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "NDM beta-lactamases or New Delhi metallo-beta-lactamases are class B beta-lactamases that confer resistance to a broad range of antibiotics including carbapenems, cephalosporins and penicillins."}}}}, "1011": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "319": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "318": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "313": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "312": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "311": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36199": {"category_aro_name": "IND beta-lactamase", "category_aro_cvterm_id": "36199", "category_aro_accession": "3000060", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "IND beta-lactamases are class B carbapenem-hydrolyzing beta-lactamases"}}}}, "310": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "317": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "316": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "315": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36207": {"category_aro_name": "DHA beta-lactamase", "category_aro_cvterm_id": "36207", "category_aro_accession": "3000068", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DHA beta-lactamases are plasmid-mediated AmpC \u03b2-lactamases that confer resistance to cephamycins and oxyimino-cephalosporins."}}}}, "314": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "2756": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36196": {"category_aro_name": "NDM beta-lactamase", "category_aro_cvterm_id": "36196", "category_aro_accession": "3000057", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "NDM beta-lactamases or New Delhi metallo-beta-lactamases are class B beta-lactamases that confer resistance to a broad range of antibiotics including carbapenems, cephalosporins and penicillins."}}}}, "2754": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41439": {"category_aro_name": "ANT(3'')", "category_aro_cvterm_id": "41439", "category_aro_accession": "3004275", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotidylylation of streptomycin at the hydroxyl group at position 3''"}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1335": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "2755": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41439": {"category_aro_name": "ANT(3'')", "category_aro_cvterm_id": "41439", "category_aro_accession": "3004275", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotidylylation of streptomycin at the hydroxyl group at position 3''"}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1334": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "2752": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41439": {"category_aro_name": "ANT(3'')", "category_aro_cvterm_id": "41439", "category_aro_accession": "3004275", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotidylylation of streptomycin at the hydroxyl group at position 3''"}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1337": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}}}}}, "2753": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41373": {"category_aro_name": "HMB beta-lactamase", "category_aro_cvterm_id": "41373", "category_aro_accession": "3004209", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "First identified from a multi-drug resistant Pseudomonas aeruginosa clinical isolate in 2012, HMB type beta-lactamases can be encoded in transposons and hydrolyze carbapenems."}}}}, "1336": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36716": {"category_aro_name": "Bc beta-lactamase", "category_aro_cvterm_id": "36716", "category_aro_accession": "3000577", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Bacillus cereus beta-lactamases are zinc metallo-beta-lactamases that hydrolyze a large number of penicillins and cephalosporins."}}}}, "2750": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36265": {"category_aro_name": "APH(3')", "category_aro_cvterm_id": "36265", "category_aro_accession": "3000126", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of 2-deoxystreptamine aminoglycosides on the hydroxyl group at position 3'"}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1331": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "2751": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36265": {"category_aro_name": "APH(3')", "category_aro_cvterm_id": "36265", "category_aro_accession": "3000126", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of 2-deoxystreptamine aminoglycosides on the hydroxyl group at position 3'"}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1330": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}}}}}, "1333": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "36015": {"category_aro_name": "vanH", "category_aro_cvterm_id": "36015", "category_aro_accession": "3000006", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanH is a D-specific alpha-ketoacid dehydrogenase that synthesizes D-lactate. D-lactate is incorporated into the end of the peptidoglycan subunits, decreasing vancomycin binding affinity."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "1332": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36265": {"category_aro_name": "APH(3')", "category_aro_cvterm_id": "36265", "category_aro_accession": "3000126", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of 2-deoxystreptamine aminoglycosides on the hydroxyl group at position 3'"}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "37045": {"category_aro_name": "lividomycin B", "category_aro_cvterm_id": "37045", "category_aro_accession": "3000701", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lividomycin B is a derivative of lividomycin A with a removed mannose group (demannosyllividomycin A). Livodomycins interfere with bacterial protein synthesis."}, "37044": {"category_aro_name": "lividomycin A", "category_aro_cvterm_id": "37044", "category_aro_accession": "3000700", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lividomycin A is a pentasaccharide antibiotic which interferes with bacterial protein synthesis."}}}}, "2324": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35973": {"category_aro_name": "oxacillin", "category_aro_cvterm_id": "35973", "category_aro_accession": "0000056", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxacillin is a penicillinase-resistant beta-lactam. It is similar to methicillin, and has replaced methicillin in clinical use. Oxacillin, especially in combination with other antibiotics, is effective against many penicillinase-producing strains of Staphylococcus aureus and Staphylococcus epidermidis."}, "35930": {"category_aro_name": "cloxacillin", "category_aro_cvterm_id": "35930", "category_aro_accession": "0000011", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cloxacillin is a semisynthetic, isoxazolyl penicillin derivative in the beta-lactam class of antibiotics. It interferes with peptidogylcan synthesis and is commonly used for treating penicillin-resistant Staphylococcus aureus infections."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "630": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36309": {"category_aro_name": "imipenem", "category_aro_cvterm_id": "36309", "category_aro_accession": "3000170", "category_aro_class_name": "Antibiotic", "category_aro_description": "Imipenem is a broad-spectrum antibiotic and is usually taken with cilastatin, which prevents hydrolysis of imipenem by renal dehydropeptidase-I. It is resistant to hydrolysis by most other beta-lactamases. Notable exceptions are the KPC beta-lactamases and Ambler Class B enzymes."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "40523": {"category_aro_name": "ticarcillin", "category_aro_cvterm_id": "40523", "category_aro_accession": "3003832", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ticarcillin is a carboxypenicillin used for the treatment of Gram-negative bacteria, particularly P. aeruginosa. Ticarcillin's antibiotic properties arise from its ability to prevent cross-linking of peptidoglycan during cell wall synthesis, when the bacteria try to divide, causing cell death."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "2298": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36719": {"category_aro_name": "SPM beta-lactamase", "category_aro_cvterm_id": "36719", "category_aro_accession": "3000580", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Sao Paulo metallo-beta-lactamase (SPM-1) confers resistance to carbapenem in Pseudomonas aeruginosa"}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "2292": {"$update": {"ARO_category": {"40472": {"category_aro_name": "aminocoumarin self resistant parY", "category_aro_cvterm_id": "40472", "category_aro_accession": "3003787", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Inherent ParY resistant to aminocoumarin from an antibiotic producer. The presence of these genes confers self resistance to the antibiotic it produces"}, "36271": {"category_aro_name": "clorobiocin", "category_aro_cvterm_id": "36271", "category_aro_accession": "3000132", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clorobiocin is an aminocoumarin antibiotic produced by Streptomyces roseochromogenes, and binds DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "36289": {"category_aro_name": "coumermycin A1", "category_aro_cvterm_id": "36289", "category_aro_accession": "3000150", "category_aro_class_name": "Antibiotic", "category_aro_description": "Coumermycin A1 is an antibiotic produced by Streptomyces rishiriensis, and binds DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36619": {"category_aro_name": "aminocoumarin resistant parY", "category_aro_cvterm_id": "36619", "category_aro_accession": "3000480", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Expression of parY(R), which encodes an aminocoumarin resistant topoisomerase IV, can confer aminocoumarin resistance."}}}}, "2291": {"$update": {"ARO_category": {"35944": {"category_aro_name": "fosfomycin", "category_aro_cvterm_id": "35944", "category_aro_accession": "0000025", "category_aro_class_name": "Drug Class", "category_aro_description": "Fosfomycin (also known as phosphomycin and phosphonomycin) is a broad-spectrum antibiotic produced by certain Streptomyces species. It is effective on gram positive and negative bacteria as it targets the cell wall, an essential feature shared by both bacteria. Its specific target is MurA (MurZ in E.coli), which attaches phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine, a step of commitment to cell wall synthesis. In the active site of MurA, the active cysteine molecule is alkylated which stops the catalytic reaction."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "39245": {"category_aro_name": "murA transferase", "category_aro_cvterm_id": "39245", "category_aro_accession": "3002811", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "murA or UDP-N-acetylglucosamine enolpyruvyl transferase catalyses the initial step in peptidoglycan biosynthesis and is inhibited by fosfomycin. Overexpression of murA through mutations confers fosfomycin resistance."}}}}, "2290": {"$update": {"model_type": "protein variant model", "model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: \"strict\" and \"loose\". A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "ARO_category": {"35944": {"category_aro_name": "fosfomycin", "category_aro_cvterm_id": "35944", "category_aro_accession": "0000025", "category_aro_class_name": "Drug Class", "category_aro_description": "Fosfomycin (also known as phosphomycin and phosphonomycin) is a broad-spectrum antibiotic produced by certain Streptomyces species. It is effective on gram positive and negative bacteria as it targets the cell wall, an essential feature shared by both bacteria. Its specific target is MurA (MurZ in E.coli), which attaches phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine, a step of commitment to cell wall synthesis. In the active site of MurA, the active cysteine molecule is alkylated which stops the catalytic reaction."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "39245": {"category_aro_name": "murA transferase", "category_aro_cvterm_id": "39245", "category_aro_accession": "3002811", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "murA or UDP-N-acetylglucosamine enolpyruvyl transferase catalyses the initial step in peptidoglycan biosynthesis and is inhibited by fosfomycin. Overexpression of murA through mutations confers fosfomycin resistance."}}, "model_param": {"$insert": {"snp": {"param_type": "single resistance variant", "param_value": {"8298": "C117D"}, "clinical": {"8298": "C117D"}, "param_type_id": "36301", "param_description": "A nucleotide or amino acid substitution that confers elevated resistance to antibiotic(s) relative to wild type. The most common type encoded in the CARD is an amino acid substitution gleaned from the literature with format [wild-type][position][mutation], e.g. R184Q. When present in the associated gene or protein, a single resistance variant confers resistance to an antibiotic drug or drug class. Single resistance variants are used by the protein variant and rRNA mutation models to detect antibiotic resistance from submitted sequences."}}}, "model_type_id": "40293"}}, "2294": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "40463": {"category_aro_name": "nybomycin", "category_aro_cvterm_id": "40463", "category_aro_accession": "3003780", "category_aro_class_name": "Drug Class", "category_aro_description": "A heterocyclic antibiotic that targets mutant gyrA (type II topoisomerase) containing an S84L substitution, counteracting acquired quinolone resistance. It is effective against quinolone-resistant Gram-positive bacteria including S. aureus and E. faecalis. Due to its ability to counteract quinolone resistance by targeting the mutant form of the gyrA protein, it is classified as a reverse antibiotic (RA)."}, "39876": {"category_aro_name": "fluoroquinolone resistant gyrA", "category_aro_cvterm_id": "39876", "category_aro_accession": "3003292", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DNA gyrase is responsible for DNA supercoiling and consists of two alpha and two beta subunits. GyrA point mutations confer resistance by preventing fluoroquinolone antibiotics from binding the alpha-subunit."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}}}}, "403": {"$update": {"ARO_category": {"36476": {"category_aro_name": "iclaprim", "category_aro_cvterm_id": "36476", "category_aro_accession": "3000337", "category_aro_class_name": "Antibiotic", "category_aro_description": "Iclaprim is a bactericidal compound that inhibits dihydrofolate reductase. It is used against clinically important Gram-positive pathogens, including methicillin-sensitive Staphylococcus aureus and methicillin-resistant S. aureus."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36408": {"category_aro_name": "brodimoprim", "category_aro_cvterm_id": "36408", "category_aro_accession": "3000269", "category_aro_class_name": "Antibiotic", "category_aro_description": "Brodimoprim is a structural derivative of trimethoprim and an inhibitor of bacterial dihydrofolate reductase. The 4-methoxy group of trimethoprim is replaced with a bromine atom."}, "37617": {"category_aro_name": "trimethoprim resistant dihydrofolate reductase dfr", "category_aro_cvterm_id": "37617", "category_aro_accession": "3001218", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Alternative dihydropteroate synthase dfr present on plasmids produces alternate proteins that are less sensitive to trimethoprim from inhibiting its role in folate synthesis, thus conferring trimethoprim resistance."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36423": {"category_aro_name": "tetroxoprim", "category_aro_cvterm_id": "36423", "category_aro_accession": "3000284", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetroxoprim is a trimethoprim derivative that inhibits bacterial dihydrofolate reductase."}}}}, "1521": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "659": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1612": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "37247": {"category_aro_name": "oleandomycin", "category_aro_cvterm_id": "37247", "category_aro_accession": "3000867", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oleandomycin is a 14-membered macrolide produced by Streptomyces antibioticus. It is ssimilar to erythromycin, and contains a desosamine amino sugar and an oleandrose sugar. It targets the 50S ribosomal subunit to prevent protein synthesis."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35974": {"category_aro_name": "telithromycin", "category_aro_cvterm_id": "35974", "category_aro_accession": "0000057", "category_aro_class_name": "Antibiotic", "category_aro_description": "Telithromycin is a semi-synthetic derivative of erythromycin. It is a 14-membered macrolide and is the first ketolide antibiotic to be used in clinics. Telithromycin binds the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36284": {"category_aro_name": "tylosin", "category_aro_cvterm_id": "36284", "category_aro_accession": "3000145", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tylosin is a 16-membered macrolide, naturally produced by Streptomyces fradiae. It interacts with the bacterial ribosome 50S subunit to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36315": {"category_aro_name": "dirithromycin", "category_aro_cvterm_id": "36315", "category_aro_accession": "3000176", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dirithromycin is an oxazine derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome to inhibit bacterial protein synthesis."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "36699": {"category_aro_name": "Erm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36699", "category_aro_accession": "3000560", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Erm proteins are part of the RNA methyltransferase family and methylate A2058 (E. coli nomenclature) of the 23S ribosomal RNA conferring degrees of resistance to Macrolides, Lincosamides and Streptogramin b. This is called the MLSb phenotype."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35946": {"category_aro_name": "roxithromycin", "category_aro_cvterm_id": "35946", "category_aro_accession": "0000027", "category_aro_class_name": "Antibiotic", "category_aro_description": "Roxithromycin is a semi-synthetic, 14-carbon ring macrolide antibiotic derived from erythromycin. It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36295": {"category_aro_name": "spiramycin", "category_aro_cvterm_id": "36295", "category_aro_accession": "3000156", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spiramycin is a 16-membered macrolide and is natural product produced by Streptomyces ambofaciens. It binds to the 50S subunit of bacterial ribosomes and inhibits peptidyl transfer activity to disrupt protein synthesis."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}, "1861": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36236": {"category_aro_name": "LEN beta-lactamase", "category_aro_cvterm_id": "36236", "category_aro_accession": "3000097", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "LEN beta-lactamases are chromosomal class A beta-lactamases that confer resistance to ampicillin, amoxicillin, carbenicillin, and ticarcillin but not to extended-spectrum beta-lactams."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}}}}, "1860": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1863": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "1862": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1865": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36212": {"category_aro_name": "ACC beta-lactamase", "category_aro_cvterm_id": "36212", "category_aro_accession": "3000073", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACC beta-lactamases or Ambler class C beta-lactamases are AmpC beta-lactamases. They possess an interesting resistance phenotype due to their low activity against cephamycins."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "1864": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1867": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1866": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36198": {"category_aro_name": "KPC beta-lactamase", "category_aro_cvterm_id": "36198", "category_aro_accession": "3000059", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Klebsiella pneumoniae carbapenem resistant (KPC) beta-lactamases are notorious for their ability to efficiently hydrolyze carbapenems, unlike other Ambler Class A beta-lactamases. There are currently 9 variants reported worldwide. These enzymes were first isolated from Klebsiella pneumoniae strains in 2001 in the United States. Hospital outbreaks have since been reported in Greece and Israel and KPC carrying strains are now endemic to New York facilities. KPC-1 and KPC-2 have been shown to be identical and are now referred to as KPC-2."}}}}, "1869": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "38788": {"category_aro_name": "OXY beta-lactamase", "category_aro_cvterm_id": "38788", "category_aro_accession": "3002388", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXY beta-lactamases are chromosomal class A beta-lactamases that are found in Klebsiella oxytoca. At constitutive low levels, OXY beta-lactamases confer resistance to aminopenicillins and carboxypenicillins. At high induced levels, OXY beta-lactamases confer resistance to penicillins, cephalosporins and aztreonam."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1868": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "964": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "965": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "966": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36210": {"category_aro_name": "vanS", "category_aro_cvterm_id": "36210", "category_aro_accession": "3000071", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanS is similar to histidine protein kinases like EnvZ and acts as a response regulator by activating VanR. VanS is required for high level transcription of other van glycopeptide resistance genes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35947": {"category_aro_name": "vancomycin", "category_aro_cvterm_id": "35947", "category_aro_accession": "0000028", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vancomycin is a glycopeptide antibiotic used in the prophylaxis and treatment of infections caused by Gram-positive bacteria. Vancomycin inhibits the synthesis of peptidoglycan, the major component of the cell wall of gram-positive bacteria. Its mechanism of action is unusual in that it acts by binding precursors of peptidoglycan, rather than by interacting with an enzyme."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}}}}, "967": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "960": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "961": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "962": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "963": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "401": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36211": {"category_aro_name": "ACT beta-lactamase", "category_aro_cvterm_id": "36211", "category_aro_accession": "3000072", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "968": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36197": {"category_aro_name": "MIR beta-lactamase", "category_aro_cvterm_id": "36197", "category_aro_accession": "3000058", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "MIR beta-lactamases are plasmid-mediated beta-lactamases that confer resistance to oxyimino- and alpha-methoxy beta-lactams"}}}}, "969": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36182": {"category_aro_name": "VEB beta-lactamase", "category_aro_cvterm_id": "36182", "category_aro_accession": "3000043", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VEB beta-lactamases or Vietnamese extended-spectrum beta-lactamases are class A beta-lactamases that confer high-level resistance to oxyimino cephalosporins and to aztreonam"}}}}, "2109": {"$update": {"ARO_category": {"37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}, "37244": {"category_aro_name": "fluoroquinolone resistant gyrB", "category_aro_cvterm_id": "37244", "category_aro_accession": "3000864", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in DNA gyrase subunit B (gyrB) observed in Mycobacterium tuberculosis can result in resistance to fluoroquinolones."}, "37009": {"category_aro_name": "grepafloxacin", "category_aro_cvterm_id": "37009", "category_aro_accession": "3000665", "category_aro_class_name": "Antibiotic", "category_aro_description": "Grepafloxacin is a broad-spectrum antibacterial quinoline. It is no longer taken due to its high toxicity."}, "37008": {"category_aro_name": "trovafloxacin", "category_aro_cvterm_id": "37008", "category_aro_accession": "3000664", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trovafloxacin is a trifluoroquinalone with a broad spectrum of activity that acts by inhibiting the uncoiling of supercoiled DNA. While potent against many Gram-positive and Gram-negative bacteria, it is less active against pseudomonads and Cl. difficile. It is usually taken as the prodrug trovafloxacin mesylate or alatrofloxacin mesylate for oral or intravenous administration, respectively."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "37004": {"category_aro_name": "lomefloxacin", "category_aro_cvterm_id": "37004", "category_aro_accession": "3000660", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lomefloxacin is a difluoropiperazinyl quinolone, sharing similar activities with other fluoroquinolones. It is used to treat urinary tract infections. Relative to other fluoroquinolones, it has a longer half life and has higher serum concentrations."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36289": {"category_aro_name": "coumermycin A1", "category_aro_cvterm_id": "36289", "category_aro_accession": "3000150", "category_aro_class_name": "Antibiotic", "category_aro_description": "Coumermycin A1 is an antibiotic produced by Streptomyces rishiriensis, and binds DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "40940": {"category_aro_name": "fleroxacin", "category_aro_cvterm_id": "40940", "category_aro_accession": "3004013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Fleroxacin is a broad spectrum fluoroquinolone antibiotic that inhibits the DNA supercoiling activity of bacterial DNA gyrase, resulting in double-stranded DNA breaks and subsequent cell death."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "36271": {"category_aro_name": "clorobiocin", "category_aro_cvterm_id": "36271", "category_aro_accession": "3000132", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clorobiocin is an aminocoumarin antibiotic produced by Streptomyces roseochromogenes, and binds DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "40939": {"category_aro_name": "Clofazimine", "category_aro_cvterm_id": "40939", "category_aro_accession": "3004012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clofazimine is a fluoroquinolone-class phenazine dye used for the treatment of leprosy. Clofazimine binds to DNA and disrupts bacterial DNA gyrase, thereby causing double-stranded DNA breaks, and subsequent cell death."}, "40938": {"category_aro_name": "clinafloxacin", "category_aro_cvterm_id": "40938", "category_aro_accession": "3004011", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clinafloxacin is a fluoroquinolone antibiotic and gyrase (DNA topoisomerase II) inhibitor. It binds to DNA gyrase and disrupts replication by causing double-stranded DNA breaks, resulting in cell death."}, "40937": {"category_aro_name": "cinoxacin", "category_aro_cvterm_id": "40937", "category_aro_accession": "3004010", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cinoxacin is a fluoroquinolone antibiotic primarily used for the treatment of urinary tract infections in adults. Cinoxacin binds to DNA gyrase, resulting in double-stranded DNA breaks and cell death."}, "37142": {"category_aro_name": "pefloxacin", "category_aro_cvterm_id": "37142", "category_aro_accession": "3000762", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pefloxacin is structurally and functionally similar to norfloxacin. It is poorly active against mycobacteria, while anaerobes are resistant."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35942": {"category_aro_name": "enoxacin", "category_aro_cvterm_id": "35942", "category_aro_accession": "0000023", "category_aro_class_name": "Antibiotic", "category_aro_description": "Enoxacin belongs to a group called fluoroquinolones. Its mode of action depends upon blocking bacterial DNA replication by binding itself to DNA gyrase and causing double-stranded breaks in the bacterial chromosome."}}, "model_param": {"$update": {"snp": {"$update": {"param_value": {"$insert": {"3508": "N538K", "3513": "E540V", "3504": "T539N", "3505": "T539P", "3507": "E540D"}}}, "$insert": {"experimental": {"3508": "N538K", "3513": "E540V", "3504": "T539N", "3505": "T539P", "3507": "E540D"}}}}}}}, "2108": {"$update": {"ARO_category": {"36725": {"category_aro_name": "pulvomycin", "category_aro_cvterm_id": "36725", "category_aro_accession": "3000586", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pulvomycin is a polyketide antibiotic that binds elongation factor Tu (EF-Tu) to inhibit protein biosynthesis by preventing the formation of the ternary complex (EF-Tu*GTP*aa-tRNA). Phenotypically, it was shown that pulvomycin sensitivity is dominant over resistance."}, "37711": {"category_aro_name": "elfamycin resistant EF-Tu", "category_aro_cvterm_id": "37711", "category_aro_accession": "3001312", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Sequence variants of elongation factor Tu that confer resistance to elfamycin antibiotics."}, "37636": {"category_aro_name": "GE2270A", "category_aro_cvterm_id": "37636", "category_aro_accession": "3001237", "category_aro_class_name": "Antibiotic", "category_aro_description": "GE2270A is the model molecule of cyclic thiazolyl peptide elfamycins. GE2270A is produced by Planobispora rosea. Biosynthesis of the molecule has been shown to originate as a ribosomally synthesized peptide that undergoes significant post-translational modification. Clinical use of cyclic thiazolyl peptides is hindered by their low water solubility and bioavailability."}, "39998": {"category_aro_name": "LFF571", "category_aro_cvterm_id": "39998", "category_aro_accession": "3003414", "category_aro_class_name": "Antibiotic", "category_aro_description": "LFF571 is a novel semi-synthetic thiopeptide antibiotic derived from GE2270. It has been shown to possess potent in vitro and in vivo activity against Gram-positive bacteria. It is hypothesized that it a translation inhibitor leading to cell death."}, "37618": {"category_aro_name": "elfamycin antibiotic", "category_aro_cvterm_id": "37618", "category_aro_accession": "3001219", "category_aro_class_name": "Drug Class", "category_aro_description": "Elfamycins are molecules that inhibit bacterial elongation factor Tu (EF-Tu), a key protein which brings aminoacyl-tRNA (aa-tRNA) to the ribosome during protein synthesis. Elfamycins defined by their target (EF-Tu), rather than a conserved chemical backbone. Elfamycins follow two mechanisms to disrupt protein synthesis: 1. kirromycins and enacyloxin fix EF-Tu in the GTP bound conformation and lock EF-Tu onto the ribosome, and 2. pulvomycin and GE2270 cover the binding site of aa-tRNA disallowing EF-Tu from being charged with aa-tRNA. All elfamycins cause increased the affinity of EF-Tu for GTP."}, "37641": {"category_aro_name": "enacyloxin IIa", "category_aro_cvterm_id": "37641", "category_aro_accession": "3001242", "category_aro_class_name": "Antibiotic", "category_aro_description": "Enacyloxin IIa is structurally distinct but acts in a similar mechanism to kirromycin-like elfamycins. It prohibits the transfer of the amino acid at the A site to the elongating peptide chain. It is most likely that the mechanism of action is that EF-Tu*GDP is locked in the EF-Tu*GTP form, and EF-Tu*GDP*aa-tRNA is immobilized on the ribosome. It is an open question whether enacyloxin IIa actually belongs to the kirromycin-like group of elfamycins due to their high similarity."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "2103": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "2102": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2100": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2106": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2105": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2104": {"$update": {"ARO_category": {"40471": {"category_aro_name": "fluoroquinolone self resistant parC", "category_aro_cvterm_id": "40471", "category_aro_accession": "3003786", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Inherent parC resistance to fluoroquinolone from an antibiotic producer. The presence of these genes confers self-resistance to the antibiotic it produces."}, "37009": {"category_aro_name": "grepafloxacin", "category_aro_cvterm_id": "37009", "category_aro_accession": "3000665", "category_aro_class_name": "Antibiotic", "category_aro_description": "Grepafloxacin is a broad-spectrum antibacterial quinoline. It is no longer taken due to its high toxicity."}, "37008": {"category_aro_name": "trovafloxacin", "category_aro_cvterm_id": "37008", "category_aro_accession": "3000664", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trovafloxacin is a trifluoroquinalone with a broad spectrum of activity that acts by inhibiting the uncoiling of supercoiled DNA. While potent against many Gram-positive and Gram-negative bacteria, it is less active against pseudomonads and Cl. difficile. It is usually taken as the prodrug trovafloxacin mesylate or alatrofloxacin mesylate for oral or intravenous administration, respectively."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "37004": {"category_aro_name": "lomefloxacin", "category_aro_cvterm_id": "37004", "category_aro_accession": "3000660", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lomefloxacin is a difluoropiperazinyl quinolone, sharing similar activities with other fluoroquinolones. It is used to treat urinary tract infections. Relative to other fluoroquinolones, it has a longer half life and has higher serum concentrations."}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37142": {"category_aro_name": "pefloxacin", "category_aro_cvterm_id": "37142", "category_aro_accession": "3000762", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pefloxacin is structurally and functionally similar to norfloxacin. It is poorly active against mycobacteria, while anaerobes are resistant."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36913": {"category_aro_name": "fluoroquinolone resistant parC", "category_aro_cvterm_id": "36913", "category_aro_accession": "3000619", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ParC is a subunit of topoisomerase IV, which decatenates and relaxes DNA to allow access to genes for transcription or translation. Point mutations in ParC prevent fluoroquinolone antibiotics from inhibiting DNA synthesis, and confer low-level resistance. Higher-level resistance results from both gyrA and parC mutations."}, "35942": {"category_aro_name": "enoxacin", "category_aro_cvterm_id": "35942", "category_aro_accession": "0000023", "category_aro_class_name": "Antibiotic", "category_aro_description": "Enoxacin belongs to a group called fluoroquinolones. Its mode of action depends upon blocking bacterial DNA replication by binding itself to DNA gyrase and causing double-stranded breaks in the bacterial chromosome."}}}}, "1560": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38817": {"category_aro_name": "OKP beta-lactamase", "category_aro_cvterm_id": "38817", "category_aro_accession": "3002417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OKP beta-lactamases are chromosomal class A beta-lactamase that confer resistance to penicillins and early cephalosporins in Klebsiella pneumoniae. OKP beta-lactamases can be subdivided into two groups: OKP-A and OKP-B which diverge by about 4.2%"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "641": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36230": {"category_aro_name": "CARB beta-lactamase", "category_aro_cvterm_id": "36230", "category_aro_accession": "3000091", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CARB beta-lactamases are class A lactamases that can hydrolyze carbenicillin. Many of the PSE beta-lactamases have been renamed as CARB-lactamases with the notable exception of PSE-2 which is now OXA-10."}}}}, "878": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "879": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "876": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "877": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "875": {"$update": {"ARO_category": {"36476": {"category_aro_name": "iclaprim", "category_aro_cvterm_id": "36476", "category_aro_accession": "3000337", "category_aro_class_name": "Antibiotic", "category_aro_description": "Iclaprim is a bactericidal compound that inhibits dihydrofolate reductase. It is used against clinically important Gram-positive pathogens, including methicillin-sensitive Staphylococcus aureus and methicillin-resistant S. aureus."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36408": {"category_aro_name": "brodimoprim", "category_aro_cvterm_id": "36408", "category_aro_accession": "3000269", "category_aro_class_name": "Antibiotic", "category_aro_description": "Brodimoprim is a structural derivative of trimethoprim and an inhibitor of bacterial dihydrofolate reductase. The 4-methoxy group of trimethoprim is replaced with a bromine atom."}, "37617": {"category_aro_name": "trimethoprim resistant dihydrofolate reductase dfr", "category_aro_cvterm_id": "37617", "category_aro_accession": "3001218", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Alternative dihydropteroate synthase dfr present on plasmids produces alternate proteins that are less sensitive to trimethoprim from inhibiting its role in folate synthesis, thus conferring trimethoprim resistance."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36423": {"category_aro_name": "tetroxoprim", "category_aro_cvterm_id": "36423", "category_aro_accession": "3000284", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetroxoprim is a trimethoprim derivative that inhibits bacterial dihydrofolate reductase."}}}}, "872": {"$update": {"ARO_category": {"37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36592": {"category_aro_name": "streptogramin vat acetyltransferase", "category_aro_cvterm_id": "36592", "category_aro_accession": "3000453", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "vat (Virginiamycin acetyltransferases) enzymes catalyze the transfer of an acetyl group from acetyl-CoA to the secondary alcohol of streptogramin A compounds, thus inactivating virginiamycin-like antibiotics and conferring resistance to these compounds."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}}}}, "643": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "38788": {"category_aro_name": "OXY beta-lactamase", "category_aro_cvterm_id": "38788", "category_aro_accession": "3002388", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXY beta-lactamases are chromosomal class A beta-lactamases that are found in Klebsiella oxytoca. At constitutive low levels, OXY beta-lactamases confer resistance to aminopenicillins and carboxypenicillins. At high induced levels, OXY beta-lactamases confer resistance to penicillins, cephalosporins and aztreonam."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "870": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "871": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41367": {"category_aro_name": "CGB beta-lactamase", "category_aro_cvterm_id": "41367", "category_aro_accession": "3004203", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CGB beta-lactamases are Class B beta-lactamases found in Chryseobacterium gleu that can hydrolyze penicillins; narrow- and expanded-spectrum cephalosporins; and carbapenems."}}}}, "2037": {"$update": {"ARO_category": {"36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35921": {"category_aro_name": "tetracycline-resistant ribosomal protection protein", "category_aro_cvterm_id": "35921", "category_aro_accession": "0000002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "A family of proteins known to bind to the 30S ribosomal subunit. This interaction prevents tetracycline and tetracycline derivatives from inhibiting ribosomal function. Thus, these proteins confer elevated resistance to tetracycline derivatives as a ribosomal protection protein."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}, "2036": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "2035": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35979": {"category_aro_name": "ceftriaxone", "category_aro_cvterm_id": "35979", "category_aro_accession": "0000062", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftriaxone is a third-generation cephalosporin antibiotic. The presence of an aminothiazolyl sidechain increases ceftriazone's resistance to beta-lactamases. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1242": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "41439": {"category_aro_name": "ANT(3'')", "category_aro_cvterm_id": "41439", "category_aro_accession": "3004275", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotidylylation of streptomycin at the hydroxyl group at position 3''"}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2745": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "2744": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "2031": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "2030": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36461": {"category_aro_name": "AAC(3)", "category_aro_cvterm_id": "36461", "category_aro_accession": "3000322", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 3."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "9": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36211": {"category_aro_name": "ACT beta-lactamase", "category_aro_cvterm_id": "36211", "category_aro_accession": "3000072", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "2748": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "41240": {"category_aro_name": "nitrofuran antibiotic", "category_aro_cvterm_id": "41240", "category_aro_accession": "3004116", "category_aro_class_name": "Drug Class", "category_aro_description": "Nitrofurans are chemotherapeutic agents with antibacterial and antiprotozoal activity."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35992": {"category_aro_name": "nitrofurantoin", "category_aro_cvterm_id": "35992", "category_aro_accession": "0000075", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nitrofurantoin is an antibiotic used to treat urinary tract infections. It inhibits enzyme synthesis by inhibiting essential enzymes involved in the citric acid cycle, as well as those involved in DNA, RNA, and protein synthesis. It is marketed under the following brand names: Furadantin, Macrobid, Macrodantin, Nitro Macro and Urantoin."}}}}}, "2039": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36230": {"category_aro_name": "CARB beta-lactamase", "category_aro_cvterm_id": "36230", "category_aro_accession": "3000091", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CARB beta-lactamases are class A lactamases that can hydrolyze carbenicillin. Many of the PSE beta-lactamases have been renamed as CARB-lactamases with the notable exception of PSE-2 which is now OXA-10."}}}}, "644": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "38788": {"category_aro_name": "OXY beta-lactamase", "category_aro_cvterm_id": "38788", "category_aro_accession": "3002388", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXY beta-lactamases are chromosomal class A beta-lactamases that are found in Klebsiella oxytoca. At constitutive low levels, OXY beta-lactamases confer resistance to aminopenicillins and carboxypenicillins. At high induced levels, OXY beta-lactamases confer resistance to penicillins, cephalosporins and aztreonam."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "890": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "891": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "892": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36290": {"category_aro_name": "APH(6)", "category_aro_cvterm_id": "36290", "category_aro_accession": "3000151", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of streptomycin on the hydroxyl group at position 6"}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "894": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "895": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "896": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "897": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "898": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36182": {"category_aro_name": "VEB beta-lactamase", "category_aro_cvterm_id": "36182", "category_aro_accession": "3000043", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VEB beta-lactamases or Vietnamese extended-spectrum beta-lactamases are class A beta-lactamases that confer high-level resistance to oxyimino cephalosporins and to aztreonam"}}}}, "899": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "646": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1249": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36206": {"category_aro_name": "FOX beta-lactamase", "category_aro_cvterm_id": "36206", "category_aro_accession": "3000067", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "FOX beta-lactamases are plasmid-encoded AmpC-type beta-lactamase which conferred resistance to broad-spectrum cephalosporins and cephamycins"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "648": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36205": {"category_aro_name": "GES beta-lactamase", "category_aro_cvterm_id": "36205", "category_aro_accession": "3000066", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "GES beta-lactamases or Guiana extended-spectrum beta-lactamases are related to the other plasmid-located class A beta-lactamases"}}}}, "1964": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1965": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36236": {"category_aro_name": "LEN beta-lactamase", "category_aro_cvterm_id": "36236", "category_aro_accession": "3000097", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "LEN beta-lactamases are chromosomal class A beta-lactamases that confer resistance to ampicillin, amoxicillin, carbenicillin, and ticarcillin but not to extended-spectrum beta-lactams."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}}}}, "1966": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$delete": ["35950"], "$insert": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}}, "1788": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36211": {"category_aro_name": "ACT beta-lactamase", "category_aro_cvterm_id": "36211", "category_aro_accession": "3000072", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1789": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "768": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "769": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36198": {"category_aro_name": "KPC beta-lactamase", "category_aro_cvterm_id": "36198", "category_aro_accession": "3000059", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Klebsiella pneumoniae carbapenem resistant (KPC) beta-lactamases are notorious for their ability to efficiently hydrolyze carbapenems, unlike other Ambler Class A beta-lactamases. There are currently 9 variants reported worldwide. These enzymes were first isolated from Klebsiella pneumoniae strains in 2001 in the United States. Hospital outbreaks have since been reported in Greece and Israel and KPC carrying strains are now endemic to New York facilities. KPC-1 and KPC-2 have been shown to be identical and are now referred to as KPC-2."}}}}, "1780": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1781": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36480": {"category_aro_name": "AAC(2')", "category_aro_cvterm_id": "36480", "category_aro_accession": "3000341", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 2'."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "760": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "761": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36205": {"category_aro_name": "GES beta-lactamase", "category_aro_cvterm_id": "36205", "category_aro_accession": "3000066", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "GES beta-lactamases or Guiana extended-spectrum beta-lactamases are related to the other plasmid-located class A beta-lactamases"}}}}, "766": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "767": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "764": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36206": {"category_aro_name": "FOX beta-lactamase", "category_aro_cvterm_id": "36206", "category_aro_accession": "3000067", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "FOX beta-lactamases are plasmid-encoded AmpC-type beta-lactamase which conferred resistance to broad-spectrum cephalosporins and cephamycins"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "765": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1962": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1963": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1078": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "1079": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1076": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1077": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1074": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36236": {"category_aro_name": "LEN beta-lactamase", "category_aro_cvterm_id": "36236", "category_aro_accession": "3000097", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "LEN beta-lactamases are chromosomal class A beta-lactamases that confer resistance to ampicillin, amoxicillin, carbenicillin, and ticarcillin but not to extended-spectrum beta-lactams."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}}}}, "1075": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1072": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1073": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38817": {"category_aro_name": "OKP beta-lactamase", "category_aro_cvterm_id": "38817", "category_aro_accession": "3002417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OKP beta-lactamases are chromosomal class A beta-lactamase that confer resistance to penicillins and early cephalosporins in Klebsiella pneumoniae. OKP beta-lactamases can be subdivided into two groups: OKP-A and OKP-B which diverge by about 4.2%"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1070": {"$update": {"ARO_category": {"36463": {"category_aro_name": "sulfadiazine", "category_aro_cvterm_id": "36463", "category_aro_accession": "3000324", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfadiazine is a potent inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids."}, "36466": {"category_aro_name": "sulfadoxine", "category_aro_cvterm_id": "36466", "category_aro_accession": "3000327", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfadoxine is an inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids."}, "37027": {"category_aro_name": "sulfacetamide", "category_aro_cvterm_id": "37027", "category_aro_accession": "3000683", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfacetamide is a very soluable sulfonamide antibiotic previously used to treat urinary tract infections. Its relatively low activity and toxicity to those with Stevens-Johnson syndrome have reduced its use and availability."}, "36464": {"category_aro_name": "sulfadimidine", "category_aro_cvterm_id": "36464", "category_aro_accession": "3000325", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfadimidine is an alkaline sulfonamide antibiotic that inhibits dihydropteroate synthase, and enzyme in the tetrahydrofolic acid biosynthesis pathway. This interferes with the production of folate, which is a precursor to many amino acids and nucleotides."}, "37028": {"category_aro_name": "mafenide", "category_aro_cvterm_id": "37028", "category_aro_accession": "3000684", "category_aro_class_name": "Antibiotic", "category_aro_description": "Mafenide is a sulfonamide used topically for treating burns."}, "36468": {"category_aro_name": "sulfamethoxazole", "category_aro_cvterm_id": "36468", "category_aro_accession": "3000329", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfamethoxazole is a sulfonamide antibiotic usually taken with trimethoprim, a diaminopyrimidine antibiotic. Sulfamethoxazole inhibits dihydropteroate synthase, essential to tetrahydrofolic acid biosynthesis. This pathway generates compounds used in the synthesis of many amino acids and nucleotides."}, "36469": {"category_aro_name": "sulfisoxazole", "category_aro_cvterm_id": "36469", "category_aro_accession": "3000330", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfisoxazole is an inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids."}, "41402": {"category_aro_name": "sulfonamide resistant sul", "category_aro_cvterm_id": "41402", "category_aro_accession": "3004238", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The sul genes encode forms of dihydropteroate synthase that confer resistance to sulfonamide."}, "39996": {"category_aro_name": "dapsone", "category_aro_cvterm_id": "39996", "category_aro_accession": "3003412", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dapsone is a sulfone in which it inhibits folic acid synthesis, such as the dihydropteroate synthase."}, "39985": {"category_aro_name": "sulfone antibiotic", "category_aro_cvterm_id": "39985", "category_aro_accession": "3003401", "category_aro_class_name": "Drug Class", "category_aro_description": "A sulfone active against a wide range of bacteria but mainly employed for its actions against mycobacterium laprae. Its mechanism of action involves inhibition of folic acid synthesis in susceptible organisms."}, "37043": {"category_aro_name": "sulfamethizole", "category_aro_cvterm_id": "37043", "category_aro_accession": "3000699", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfamethizole is a short-acting sulfonamide that inhibits dihydropteroate synthetase."}, "37042": {"category_aro_name": "sulfasalazine", "category_aro_cvterm_id": "37042", "category_aro_accession": "3000698", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfasalazine is a derivative of the early sulfonamide sulfapyridine (salicylazosulfapyridine). It was developed to increase water solubility and is taken orally for ulcerative colitis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36421": {"category_aro_name": "sulfonamide antibiotic", "category_aro_cvterm_id": "36421", "category_aro_accession": "3000282", "category_aro_class_name": "Drug Class", "category_aro_description": "Sulfonamides are broad spectrum, synthetic antibiotics that contain the sulfonamide group. Sulfonamides inhibit dihydropteroate synthase, which catalyzes the conversion of p-aminobenzoic acid to dihydropteroic acid as part of the tetrahydrofolic acid biosynthetic pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor of many nucleotides and amino acids. Many sulfamides are taken with trimethoprim, an inhibitor of dihydrofolate reductase, also disturbing the trihydrofolic acid synthesis pathway."}}}}, "1071": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36207": {"category_aro_name": "DHA beta-lactamase", "category_aro_cvterm_id": "36207", "category_aro_accession": "3000068", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DHA beta-lactamases are plasmid-mediated AmpC \u03b2-lactamases that confer resistance to cephamycins and oxyimino-cephalosporins."}}}}, "1678": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1679": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1674": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1675": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1676": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36205": {"category_aro_name": "GES beta-lactamase", "category_aro_cvterm_id": "36205", "category_aro_accession": "3000066", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "GES beta-lactamases or Guiana extended-spectrum beta-lactamases are related to the other plasmid-located class A beta-lactamases"}}}}, "1677": {"$update": {"ARO_category": {"41356": {"category_aro_name": "cepA beta-lactamase", "category_aro_cvterm_id": "41356", "category_aro_accession": "3004192", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "cepA beta-lactamases are Class A beta-lactamases found in Bateroides fragilis and have the ability to hydrolyze cephalosporin."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1670": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36421": {"category_aro_name": "sulfonamide antibiotic", "category_aro_cvterm_id": "36421", "category_aro_accession": "3000282", "category_aro_class_name": "Drug Class", "category_aro_description": "Sulfonamides are broad spectrum, synthetic antibiotics that contain the sulfonamide group. Sulfonamides inhibit dihydropteroate synthase, which catalyzes the conversion of p-aminobenzoic acid to dihydropteroic acid as part of the tetrahydrofolic acid biosynthetic pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor of many nucleotides and amino acids. Many sulfamides are taken with trimethoprim, an inhibitor of dihydrofolate reductase, also disturbing the trihydrofolic acid synthesis pathway."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "40362": {"category_aro_name": "panipenem", "category_aro_cvterm_id": "40362", "category_aro_accession": "3003708", "category_aro_class_name": "Antibiotic", "category_aro_description": "Panipenem is a carbapenem antibacterial agent with a broad spectrum of in vitro activity covering a wide range of Gram-negative and Gram-positive aerobic and anaerobic bacterial. It is used in combination with betamipron to inhibit panipenem uptake into the renal tubule and prevent nephrotoxicity."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35996": {"category_aro_name": "clavulanate", "category_aro_cvterm_id": "35996", "category_aro_accession": "0000079", "category_aro_class_name": "Adjuvant", "category_aro_description": "Clavulanic acid is a beta-lactamase inhibitor (marketed by GlaxoSmithKline, formerly Beecham) combined with penicillin group antibiotics to overcome certain types of antibiotic resistance. It is used to overcome resistance in bacteria that secrete beta-lactamase, which otherwise inactivates most penicillins."}, "35990": {"category_aro_name": "meropenem", "category_aro_cvterm_id": "35990", "category_aro_accession": "0000073", "category_aro_class_name": "Antibiotic", "category_aro_description": "Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36689": {"category_aro_name": "aztreonam", "category_aro_cvterm_id": "36689", "category_aro_accession": "3000550", "category_aro_class_name": "Antibiotic", "category_aro_description": "Aztreonam was the first monobactam discovered, and is greatly effective against Gram-negative bacteria while inactive against Gram-positive bacteria. Artreonam is a poor substrate for beta-lactamases, and may even act as an inhibitor. In Gram-negative bacteria, Aztreonam interferes with filamentation, inhibiting cell division and leading to cell death."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35979": {"category_aro_name": "ceftriaxone", "category_aro_cvterm_id": "35979", "category_aro_accession": "0000062", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftriaxone is a third-generation cephalosporin antibiotic. The presence of an aminothiazolyl sidechain increases ceftriazone's resistance to beta-lactamases. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36468": {"category_aro_name": "sulfamethoxazole", "category_aro_cvterm_id": "36468", "category_aro_accession": "3000329", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfamethoxazole is a sulfonamide antibiotic usually taken with trimethoprim, a diaminopyrimidine antibiotic. Sulfamethoxazole inhibits dihydropteroate synthase, essential to tetrahydrofolic acid biosynthesis. This pathway generates compounds used in the synthesis of many amino acids and nucleotides."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "40957": {"category_aro_name": "trimethoprim-sulfamethoxazole", "category_aro_cvterm_id": "40957", "category_aro_accession": "3004024", "category_aro_class_name": "Antibiotic", "category_aro_description": "An antibiotic cocktail containing the diaminopyrimidine antibiotic Trimethoprim and the sulfonamide antibiotic sulfamethoxazole (1 TMP:5 SMX)."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "1671": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$delete": ["35950", "36409"], "$insert": {"40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36383": {"category_aro_name": "reduced permeability to antibiotic", "category_aro_cvterm_id": "36383", "category_aro_accession": "3000244", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Reduction in permeability to antibiotic, generally through reduced production of porins, can provide resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "41445": {"category_aro_name": "General Bacterial Porin with reduced permeability to beta-lactams", "category_aro_cvterm_id": "41445", "category_aro_accession": "3004281", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These are GBPs that are associated with decreased susceptibility to beta-lactams either through mutations in the porin protein, absence of the porin protein, or expression of the porin protein."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}}}}}, "1672": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1673": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1094": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36230": {"category_aro_name": "CARB beta-lactamase", "category_aro_cvterm_id": "36230", "category_aro_accession": "3000091", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CARB beta-lactamases are class A lactamases that can hydrolyze carbenicillin. Many of the PSE beta-lactamases have been renamed as CARB-lactamases with the notable exception of PSE-2 which is now OXA-10."}}}}, "1095": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1096": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1097": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "37247": {"category_aro_name": "oleandomycin", "category_aro_cvterm_id": "37247", "category_aro_accession": "3000867", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oleandomycin is a 14-membered macrolide produced by Streptomyces antibioticus. It is ssimilar to erythromycin, and contains a desosamine amino sugar and an oleandrose sugar. It targets the 50S ribosomal subunit to prevent protein synthesis."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35974": {"category_aro_name": "telithromycin", "category_aro_cvterm_id": "35974", "category_aro_accession": "0000057", "category_aro_class_name": "Antibiotic", "category_aro_description": "Telithromycin is a semi-synthetic derivative of erythromycin. It is a 14-membered macrolide and is the first ketolide antibiotic to be used in clinics. Telithromycin binds the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36284": {"category_aro_name": "tylosin", "category_aro_cvterm_id": "36284", "category_aro_accession": "3000145", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tylosin is a 16-membered macrolide, naturally produced by Streptomyces fradiae. It interacts with the bacterial ribosome 50S subunit to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36315": {"category_aro_name": "dirithromycin", "category_aro_cvterm_id": "36315", "category_aro_accession": "3000176", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dirithromycin is an oxazine derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome to inhibit bacterial protein synthesis."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "36699": {"category_aro_name": "Erm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36699", "category_aro_accession": "3000560", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Erm proteins are part of the RNA methyltransferase family and methylate A2058 (E. coli nomenclature) of the 23S ribosomal RNA conferring degrees of resistance to Macrolides, Lincosamides and Streptogramin b. This is called the MLSb phenotype."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35946": {"category_aro_name": "roxithromycin", "category_aro_cvterm_id": "35946", "category_aro_accession": "0000027", "category_aro_class_name": "Antibiotic", "category_aro_description": "Roxithromycin is a semi-synthetic, 14-carbon ring macrolide antibiotic derived from erythromycin. It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36295": {"category_aro_name": "spiramycin", "category_aro_cvterm_id": "36295", "category_aro_accession": "3000156", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spiramycin is a 16-membered macrolide and is natural product produced by Streptomyces ambofaciens. It binds to the 50S subunit of bacterial ribosomes and inhibits peptidyl transfer activity to disrupt protein synthesis."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}, "1090": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1091": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1092": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "1093": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "674": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "675": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "676": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "677": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1098": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "39340": {"category_aro_name": "van ligase", "category_aro_cvterm_id": "39340", "category_aro_accession": "3002906", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "van ligases synthesize alternative substrates for peptidoglycan synthesis that reduce vancomycin binding affinity."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "1099": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40522": {"category_aro_name": "temocillin", "category_aro_cvterm_id": "40522", "category_aro_accession": "3003831", "category_aro_class_name": "Antibiotic", "category_aro_description": "Temocillin is a beta-lactamase resistant carboxypenicillin. It is primarily used for the treatment of multiple drug resistant, Gram-negative bacteria, specifically Enterobacteriaceae."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "672": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "673": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1997": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}}}}}, "1533": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1418": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36207": {"category_aro_name": "DHA beta-lactamase", "category_aro_cvterm_id": "36207", "category_aro_accession": "3000068", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DHA beta-lactamases are plasmid-mediated AmpC \u03b2-lactamases that confer resistance to cephamycins and oxyimino-cephalosporins."}}}}, "1419": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1410": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1411": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1412": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1413": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1414": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1415": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36480": {"category_aro_name": "AAC(2')", "category_aro_cvterm_id": "36480", "category_aro_accession": "3000341", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 2'."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1416": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1417": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1322": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1323": {"$update": {"ARO_category": {"39897": {"category_aro_name": "fluoroquinolone resistant parE", "category_aro_cvterm_id": "39897", "category_aro_accession": "3003313", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ParE is a subunit of topoisomerase IV, necessary for cell survival. Point mutations in ParE prevent fluoroquinolones from inhibiting DNA synthesis, thus conferring resistance."}, "37009": {"category_aro_name": "grepafloxacin", "category_aro_cvterm_id": "37009", "category_aro_accession": "3000665", "category_aro_class_name": "Antibiotic", "category_aro_description": "Grepafloxacin is a broad-spectrum antibacterial quinoline. It is no longer taken due to its high toxicity."}, "37008": {"category_aro_name": "trovafloxacin", "category_aro_cvterm_id": "37008", "category_aro_accession": "3000664", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trovafloxacin is a trifluoroquinalone with a broad spectrum of activity that acts by inhibiting the uncoiling of supercoiled DNA. While potent against many Gram-positive and Gram-negative bacteria, it is less active against pseudomonads and Cl. difficile. It is usually taken as the prodrug trovafloxacin mesylate or alatrofloxacin mesylate for oral or intravenous administration, respectively."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "37004": {"category_aro_name": "lomefloxacin", "category_aro_cvterm_id": "37004", "category_aro_accession": "3000660", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lomefloxacin is a difluoropiperazinyl quinolone, sharing similar activities with other fluoroquinolones. It is used to treat urinary tract infections. Relative to other fluoroquinolones, it has a longer half life and has higher serum concentrations."}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37142": {"category_aro_name": "pefloxacin", "category_aro_cvterm_id": "37142", "category_aro_accession": "3000762", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pefloxacin is structurally and functionally similar to norfloxacin. It is poorly active against mycobacteria, while anaerobes are resistant."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35942": {"category_aro_name": "enoxacin", "category_aro_cvterm_id": "35942", "category_aro_accession": "0000023", "category_aro_class_name": "Antibiotic", "category_aro_description": "Enoxacin belongs to a group called fluoroquinolones. Its mode of action depends upon blocking bacterial DNA replication by binding itself to DNA gyrase and causing double-stranded breaks in the bacterial chromosome."}}}}, "1320": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$delete": ["39418", "35950", "40190"], "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "41433": {"category_aro_name": "pmr phosphoethanolamine transferase", "category_aro_cvterm_id": "41433", "category_aro_accession": "3004269", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "This family of phosphoethanolamine transferase catalyze the addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) and phosphoethanolamine to lipid A, which impedes the binding of colistin to the cell membrane."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "1321": {"$update": {"ARO_category": {"37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35980": {"category_aro_name": "cefuroxime", "category_aro_cvterm_id": "35980", "category_aro_accession": "0000063", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefuroxime is a second-generation cephalosporin antibiotic with increased stability with beta-lactamases than first-generation cephalosporins. Cefuroxime is active against Gram-positive organisms but less active against methicillin-resistant strains."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36992": {"category_aro_name": "ceftibuten", "category_aro_cvterm_id": "36992", "category_aro_accession": "3000648", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftibuten is a semisynthetic cephalosporin active against Gram-negative bacilli. It is resistant against many plasmid-mediated beta-lactamases."}, "36993": {"category_aro_name": "cefditoren", "category_aro_cvterm_id": "36993", "category_aro_accession": "3000649", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefditoren is a semisynthetic cephalosporin active against staphylococci, streptococci, and and most enterobacteria. It is resistant to staphylococcal and most enterobacterial beta-lactamases, and is usually taken as the prodrug cefditoren pivoxil."}, "35995": {"category_aro_name": "piperacillin", "category_aro_cvterm_id": "35995", "category_aro_accession": "0000078", "category_aro_class_name": "Antibiotic", "category_aro_description": "Piperacillin is an acetylureidopenicillin and has an extended spectrum of targets relative to other beta-lactam antibiotics. It inhibits cell wall synthesis in bacteria, and is usually taken with the beta-lactamase inhibitor tazobactam to overcome penicillin-resistant bacteria."}, "36991": {"category_aro_name": "cefpodoxime", "category_aro_cvterm_id": "36991", "category_aro_accession": "3000647", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefpodoxime is a semisynthetic cephalosporin that acts similarly to cefotaxime with broad-spectrum activity. It is stable to many plasmid-mediated beta-lactamses. Cefpodoxime is consumed as the prodrug cefpodoxime proxetil."}, "36990": {"category_aro_name": "cefixime", "category_aro_cvterm_id": "36990", "category_aro_accession": "3000646", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefixime is a cephalosporin resistant to most beta-lactamases. It is active against many enterobacteria, but activity against staphylococci is poor."}, "36994": {"category_aro_name": "cefdinir", "category_aro_cvterm_id": "36994", "category_aro_accession": "3000650", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefdinir is similar to cefixime with a modified side-chain at its 7-amino position. It also shares similar activity with cefixime but is more active against staphylococci. It has also be shown to enhance phagocytosis."}, "35990": {"category_aro_name": "meropenem", "category_aro_cvterm_id": "35990", "category_aro_accession": "0000073", "category_aro_class_name": "Antibiotic", "category_aro_description": "Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36309": {"category_aro_name": "imipenem", "category_aro_cvterm_id": "36309", "category_aro_accession": "3000170", "category_aro_class_name": "Antibiotic", "category_aro_description": "Imipenem is a broad-spectrum antibiotic and is usually taken with cilastatin, which prevents hydrolysis of imipenem by renal dehydropeptidase-I. It is resistant to hydrolysis by most other beta-lactamases. Notable exceptions are the KPC beta-lactamases and Ambler Class B enzymes."}, "35927": {"category_aro_name": "cefoxitin", "category_aro_cvterm_id": "35927", "category_aro_accession": "0000008", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefoxitin is a cephamycin antibiotic often grouped with the second generation cephalosporins. Cefoxitin is bactericidal and acts by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. Cefoxitin's 7-alpha-methoxy group and 3' leaving group make it a poor substrate for most beta-lactamases."}, "36689": {"category_aro_name": "aztreonam", "category_aro_cvterm_id": "36689", "category_aro_accession": "3000550", "category_aro_class_name": "Antibiotic", "category_aro_description": "Aztreonam was the first monobactam discovered, and is greatly effective against Gram-negative bacteria while inactive against Gram-positive bacteria. Artreonam is a poor substrate for beta-lactamases, and may even act as an inhibitor. In Gram-negative bacteria, Aztreonam interferes with filamentation, inhibiting cell division and leading to cell death."}, "37085": {"category_aro_name": "isopenicillin N", "category_aro_cvterm_id": "37085", "category_aro_accession": "3000705", "category_aro_class_name": "Antibiotic", "category_aro_description": "Isopenicillin N is a natural penicillin derivative produced by Penicillium chrysogenum with activity similar to penicillin N."}, "35975": {"category_aro_name": "cefazolin", "category_aro_cvterm_id": "35975", "category_aro_accession": "0000058", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefazolin (INN), also known as cefazoline or cephazolin, is a first generation cephalosporin antibiotic. It is administered parenterally, and is active against a broad spectrum of bacteria."}, "37086": {"category_aro_name": "penicillin N", "category_aro_cvterm_id": "37086", "category_aro_accession": "3000706", "category_aro_class_name": "Antibiotic", "category_aro_description": "Penicillin N is a penicillin derivative produced by Cephalosporium acremonium."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35976": {"category_aro_name": "cefepime", "category_aro_cvterm_id": "35976", "category_aro_accession": "0000059", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefepime (INN) is a fourth-generation cephalosporin antibiotic developed in 1994. It contains an aminothiazolyl group that decreases its affinity with beta-lactamases. Cefepime shows high binding affinity with penicillin-binding proteins and has an extended spectrum of activity against Gram-positive and Gram-negative bacteria, with greater activity against both Gram-negative and Gram-positive organisms than third-generation agents."}, "35971": {"category_aro_name": "penicillin", "category_aro_cvterm_id": "35971", "category_aro_accession": "0000054", "category_aro_class_name": "Antibiotic", "category_aro_description": "Penicillin (sometimes abbreviated PCN) is a beta-lactam antibiotic used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms. It works by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35973": {"category_aro_name": "oxacillin", "category_aro_cvterm_id": "35973", "category_aro_accession": "0000056", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxacillin is a penicillinase-resistant beta-lactam. It is similar to methicillin, and has replaced methicillin in clinical use. Oxacillin, especially in combination with other antibiotics, is effective against many penicillinase-producing strains of Staphylococcus aureus and Staphylococcus epidermidis."}, "40928": {"category_aro_name": "cefmetazole", "category_aro_cvterm_id": "40928", "category_aro_accession": "3004001", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefmetazole is a semi-synthetic cephamycin antibiotic with broad spectrum antibiotic activity against both gram-positive and gram-negative bacteria, that disrupt cell wall synthesis through binding to PBPs causing cell lysis."}, "40944": {"category_aro_name": "moxalactam", "category_aro_cvterm_id": "40944", "category_aro_accession": "3004017", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxalactam (Latamoxef) is a broad spectrum cephalosporin (oxacephem) and beta-lactam antibiotic. Moxalactam binding to PBPs inhibits peptidoglycan cross-linkage in the cell wall, resulting in cell death. Moxalactam is proposed to be effective against meningitides as it passes the blood-brain barrier."}, "35930": {"category_aro_name": "cloxacillin", "category_aro_cvterm_id": "35930", "category_aro_accession": "0000011", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cloxacillin is a semisynthetic, isoxazolyl penicillin derivative in the beta-lactam class of antibiotics. It interferes with peptidogylcan synthesis and is commonly used for treating penicillin-resistant Staphylococcus aureus infections."}, "36995": {"category_aro_name": "ceftaroline", "category_aro_cvterm_id": "36995", "category_aro_accession": "3000651", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftaroline is a novel cephalosporin active against methicillin resistant Staphylococcus aureus. Like other cephalosporins it binds penicillin-binding proteins to inhibit cell wall synthesis. It strongly binds with PBP2a, associated with methicillin resistance. It is taken orally as the prodrug ceftaroline fosamil."}, "35979": {"category_aro_name": "ceftriaxone", "category_aro_cvterm_id": "35979", "category_aro_accession": "0000062", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftriaxone is a third-generation cephalosporin antibiotic. The presence of an aminothiazolyl sidechain increases ceftriazone's resistance to beta-lactamases. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria."}, "35934": {"category_aro_name": "methicillin", "category_aro_cvterm_id": "35934", "category_aro_accession": "0000015", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derived from penicillin to combat penicillin-resistance, methicillin is insensitive to beta-lactamases (also known as penicillinases) secreted by many penicillin-resistant bacteria. Methicillin is bactericidal, and acts by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40943": {"category_aro_name": "loracarbef", "category_aro_cvterm_id": "40943", "category_aro_accession": "3004016", "category_aro_class_name": "Antibiotic", "category_aro_description": "Loracarbef is a second-generation cephalosporin (carbacephem) and broad spectrum beta-lactam antibiotic. Loracarbef inhibits PBPs through binding, disrupting peptidoglycan cell wall cross-linkage and resulting in cell death."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36989": {"category_aro_name": "cefotaxime", "category_aro_cvterm_id": "36989", "category_aro_accession": "3000645", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefotaxime is a semisynthetic cephalosporin taken parenterally. It is resistant to most beta-lactamases and active against Gram-negative rods and cocci due to its aminothiazoyl and methoximino functional groups."}, "36988": {"category_aro_name": "cefaclor", "category_aro_cvterm_id": "36988", "category_aro_accession": "3000644", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefaclor is a semisynthetic cephalosporin derived from cephalexin. It has broad-spectrum antibiotic activity."}, "37589": {"category_aro_name": "methicillin resistant PBP2", "category_aro_cvterm_id": "37589", "category_aro_accession": "3001208", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "In methicillin sensitive S. aureus (MSSA), beta-lactams bind to native penicillin-binding proteins (PBPs) and disrupt synthesis of the cell membrane's peptidoglycan layer. In methicillin resistant S. aureus (MRSA), foreign PBP2a acquired by lateral gene transfer is able to perform peptidoglycan synthesis in the presence of beta-lactams."}, "40929": {"category_aro_name": "cefonicid", "category_aro_cvterm_id": "40929", "category_aro_accession": "3004002", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefonicid is a second-generation cephalosporin-class beta-lactam antibiotic with broad spectrum activity. Particularly used against urinary tract infections and lower respiratory infections. Causes cell lysis by inactivation of PBPs through binding, inhibiting peptidoglycan synthesis."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "36980": {"category_aro_name": "flucloxacillin", "category_aro_cvterm_id": "36980", "category_aro_accession": "3000636", "category_aro_class_name": "Antibiotic", "category_aro_description": "Flucloxacillin is similar to cloxacillin, with an extra additional fluorine atom."}, "36983": {"category_aro_name": "mezlocillin", "category_aro_cvterm_id": "36983", "category_aro_accession": "3000639", "category_aro_class_name": "Antibiotic", "category_aro_description": "Mezlocillin is a penicillin derivative taken parenterally."}, "36982": {"category_aro_name": "azlocillin", "category_aro_cvterm_id": "36982", "category_aro_accession": "3000638", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azlocillin is a semisynthetic derivative of penicillin that is notably active against Ps. aeruginosa and other Gram-negative bacteria."}, "36985": {"category_aro_name": "cefalexin", "category_aro_cvterm_id": "36985", "category_aro_accession": "3000641", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalexin is a cephalosporin antibiotic that causes filamentation. It is resistant to staphylococcal beta-lactamase, but degraded by enterobacterial beta-lactamases."}, "36984": {"category_aro_name": "doripenem", "category_aro_cvterm_id": "36984", "category_aro_accession": "3000640", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doripenem is a carbapenem with a broad range of activity against Gram-positive and Gram-negative bacteria, and along with meropenem, it is the most active beta-lactam antibiotic against Pseudomonas aeruginosa. It inhibits bacterial cell wall synthesis."}, "36987": {"category_aro_name": "cefotiam", "category_aro_cvterm_id": "36987", "category_aro_accession": "3000643", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefotiam is a cephalosporin antibiotic with similar activity to cefuroxime but more active against enterobacteria. It is consumed orally as the prodrug cefotiam hexetil."}, "36986": {"category_aro_name": "cefadroxil", "category_aro_cvterm_id": "36986", "category_aro_accession": "3000642", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefadroxil, or p-hydroxycephalexin, is an cephalosporin antibiotic similar to cefalexin."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "37141": {"category_aro_name": "mecillinam", "category_aro_cvterm_id": "37141", "category_aro_accession": "3000761", "category_aro_class_name": "Antibiotic", "category_aro_description": "Mecillinam is a broad-spectrum beta-lactam antibiotic that was semi-synthetically derived to have a different drug centre, being a 6-alpha-amidinopenicillanate instead of a 6-alpha-acylaminopenicillanate. Contrasting most beta-lactam drugs, mecillinam is most active against Gram-negative bacteria. It binds specifically to penicillin binding protein 2 (PBP2)."}, "36979": {"category_aro_name": "dicloxacillin", "category_aro_cvterm_id": "36979", "category_aro_accession": "3000635", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dicloxacillin is a penicillin derivative that has an extra chlorine atom in comparison to cloxacillin. While more active than cloxacillin, its high affinity for serum protein reduces its activity in human serum in vitro."}, "36978": {"category_aro_name": "propicillin", "category_aro_cvterm_id": "36978", "category_aro_accession": "3000634", "category_aro_class_name": "Antibiotic", "category_aro_description": "Propicillin is an orally taken penicillin derivative that has high absorption but poor activity."}, "35978": {"category_aro_name": "ceftobiprole", "category_aro_cvterm_id": "35978", "category_aro_accession": "0000061", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftobiprole (Zeftera/Zevtera) is a next generation (5th generation) cephalosporin antibiotic with activity against methicillin-resistant Staphylococcus aureus, penicillin-resistant Streptococcus pneumoniae, Pseudomonas aeruginosa, and Enterococci. Ceftobiprole inhibits transpeptidases essential to building cell walls, and is a poor substrate for most beta-lactamases."}, "36976": {"category_aro_name": "benzylpenicillin", "category_aro_cvterm_id": "36976", "category_aro_accession": "3000632", "category_aro_class_name": "Antibiotic", "category_aro_description": "Benzylpenicillin, commonly referred to as penicillin G, is effective against both Gram-positive and Gram-negative bacteria. It is unstable in acid."}, "36977": {"category_aro_name": "phenoxymethylpenicillin", "category_aro_cvterm_id": "36977", "category_aro_accession": "3000633", "category_aro_class_name": "Antibiotic", "category_aro_description": "Phenoxymethylpenicillin, or penicillin V, is a penicillin derivative that is acid stable but less active than benzylpenicillin (penicillin G)."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35961": {"category_aro_name": "carbenicillin", "category_aro_cvterm_id": "35961", "category_aro_accession": "0000043", "category_aro_class_name": "Antibiotic", "category_aro_description": "Carbenicillin is a semi-synthetic antibiotic belonging to the carboxypenicillin subgroup of the penicillins. It has gram-negative coverage which includes Pseudomonas aeruginosa but limited gram-positive coverage. The carboxypenicillins are susceptible to degradation by beta-lactamase enzymes. Carbenicillin antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40933": {"category_aro_name": "ceftiofur", "category_aro_cvterm_id": "40933", "category_aro_accession": "3004006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftiofur is a third-generation broad spectrum cephalosporin and beta-lactam antibiotic. It causes cell lysis by disrupting peptidoglycan cross-linkage and cell wall formation by binding to PBPs."}, "40932": {"category_aro_name": "cefprozil", "category_aro_cvterm_id": "40932", "category_aro_accession": "3004005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefprozil is a cephalosporin and beta-lactam antibiotic with bactericidal activity. It selectively binds to PBPs and inhibits peptidoglycan synthesis, a major cell wall component, resulting in cell lysis."}, "40935": {"category_aro_name": "cephapirin", "category_aro_cvterm_id": "40935", "category_aro_accession": "3004008", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cephapirin is a first-generation cephalosporin and broad spectrum beta-lactam antibiotic. Inactivation of penicillin-binding proteins through cephapirin binding disrupts peptidoglycan cross-linking, resulting in cell lysis."}, "40934": {"category_aro_name": "ceftizoxime", "category_aro_cvterm_id": "40934", "category_aro_accession": "3004007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftizoxime is a third-generation cephalosporin and broad spectrum beta-lactam antibiotic. Ceftizoxime causes bacterial cell lysis through peptidoglycan cross-linking inhibition by binding to PBPs."}, "35987": {"category_aro_name": "ertapenem", "category_aro_cvterm_id": "35987", "category_aro_accession": "0000070", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ertapenem is a carbapenem antibiotic and is highly resistant to beta-lactamases like other carbapenems. It inhibits bacterial cell wall synthesis."}, "40936": {"category_aro_name": "cefradine", "category_aro_cvterm_id": "40936", "category_aro_accession": "3004009", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefradine is a first-generation cephalosporin and broad spectrum beta-lactam antibiotic. Cefradine binding to penicillin-binding proteins disrupts cell wall peptidoglycan cross-linkage, resulting in cell lysis."}}}}, "1326": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1327": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1324": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41390": {"category_aro_name": "subclass B3 LRA beta-lactamase", "category_aro_cvterm_id": "41390", "category_aro_accession": "3004226", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Beta-lactamases that are part of the LRA gene family and are classified as B3 (metallo-) beta-lactamases."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1325": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1328": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36210": {"category_aro_name": "vanS", "category_aro_cvterm_id": "36210", "category_aro_accession": "3000071", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanS is similar to histidine protein kinases like EnvZ and acts as a response regulator by activating VanR. VanS is required for high level transcription of other van glycopeptide resistance genes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35947": {"category_aro_name": "vancomycin", "category_aro_cvterm_id": "35947", "category_aro_accession": "0000028", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vancomycin is a glycopeptide antibiotic used in the prophylaxis and treatment of infections caused by Gram-positive bacteria. Vancomycin inhibits the synthesis of peptidoglycan, the major component of the cell wall of gram-positive bacteria. Its mechanism of action is unusual in that it acts by binding precursors of peptidoglycan, rather than by interacting with an enzyme."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}}}}, "1329": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36368": {"category_aro_name": "ANT(4')", "category_aro_cvterm_id": "36368", "category_aro_accession": "3000229", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotidylylation of 2-deoxystreptamine aminoglycosides at the hydroxyl group at position 4'"}, "35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "5": {"$update": {"ARO_category": {"36476": {"category_aro_name": "iclaprim", "category_aro_cvterm_id": "36476", "category_aro_accession": "3000337", "category_aro_class_name": "Antibiotic", "category_aro_description": "Iclaprim is a bactericidal compound that inhibits dihydrofolate reductase. It is used against clinically important Gram-positive pathogens, including methicillin-sensitive Staphylococcus aureus and methicillin-resistant S. aureus."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36408": {"category_aro_name": "brodimoprim", "category_aro_cvterm_id": "36408", "category_aro_accession": "3000269", "category_aro_class_name": "Antibiotic", "category_aro_description": "Brodimoprim is a structural derivative of trimethoprim and an inhibitor of bacterial dihydrofolate reductase. The 4-methoxy group of trimethoprim is replaced with a bromine atom."}, "37617": {"category_aro_name": "trimethoprim resistant dihydrofolate reductase dfr", "category_aro_cvterm_id": "37617", "category_aro_accession": "3001218", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Alternative dihydropteroate synthase dfr present on plasmids produces alternate proteins that are less sensitive to trimethoprim from inhibiting its role in folate synthesis, thus conferring trimethoprim resistance."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36423": {"category_aro_name": "tetroxoprim", "category_aro_cvterm_id": "36423", "category_aro_accession": "3000284", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetroxoprim is a trimethoprim derivative that inhibits bacterial dihydrofolate reductase."}}}}, "1531": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1256": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}, "35965": {"category_aro_name": "puromycin", "category_aro_cvterm_id": "35965", "category_aro_accession": "0000047", "category_aro_class_name": "Antibiotic", "category_aro_description": "Puromycin is an aminonucleoside antibiotic, derived from Streptomyces alboniger, that causes premature chain termination during ribosomal protein translation."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "1257": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1254": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1255": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1520": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1253": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36205": {"category_aro_name": "GES beta-lactamase", "category_aro_cvterm_id": "36205", "category_aro_accession": "3000066", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "GES beta-lactamases or Guiana extended-spectrum beta-lactamases are related to the other plasmid-located class A beta-lactamases"}}}}, "1250": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1251": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1528": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1529": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1258": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1259": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "308": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "309": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "300": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "301": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "302": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "303": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "37247": {"category_aro_name": "oleandomycin", "category_aro_cvterm_id": "37247", "category_aro_accession": "3000867", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oleandomycin is a 14-membered macrolide produced by Streptomyces antibioticus. It is ssimilar to erythromycin, and contains a desosamine amino sugar and an oleandrose sugar. It targets the 50S ribosomal subunit to prevent protein synthesis."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35974": {"category_aro_name": "telithromycin", "category_aro_cvterm_id": "35974", "category_aro_accession": "0000057", "category_aro_class_name": "Antibiotic", "category_aro_description": "Telithromycin is a semi-synthetic derivative of erythromycin. It is a 14-membered macrolide and is the first ketolide antibiotic to be used in clinics. Telithromycin binds the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36284": {"category_aro_name": "tylosin", "category_aro_cvterm_id": "36284", "category_aro_accession": "3000145", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tylosin is a 16-membered macrolide, naturally produced by Streptomyces fradiae. It interacts with the bacterial ribosome 50S subunit to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36315": {"category_aro_name": "dirithromycin", "category_aro_cvterm_id": "36315", "category_aro_accession": "3000176", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dirithromycin is an oxazine derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome to inhibit bacterial protein synthesis."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "36699": {"category_aro_name": "Erm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36699", "category_aro_accession": "3000560", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Erm proteins are part of the RNA methyltransferase family and methylate A2058 (E. coli nomenclature) of the 23S ribosomal RNA conferring degrees of resistance to Macrolides, Lincosamides and Streptogramin b. This is called the MLSb phenotype."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35946": {"category_aro_name": "roxithromycin", "category_aro_cvterm_id": "35946", "category_aro_accession": "0000027", "category_aro_class_name": "Antibiotic", "category_aro_description": "Roxithromycin is a semi-synthetic, 14-carbon ring macrolide antibiotic derived from erythromycin. It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36295": {"category_aro_name": "spiramycin", "category_aro_cvterm_id": "36295", "category_aro_accession": "3000156", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spiramycin is a 16-membered macrolide and is natural product produced by Streptomyces ambofaciens. It binds to the 50S subunit of bacterial ribosomes and inhibits peptidyl transfer activity to disrupt protein synthesis."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}, "304": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36199": {"category_aro_name": "IND beta-lactamase", "category_aro_cvterm_id": "36199", "category_aro_accession": "3000060", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "IND beta-lactamases are class B carbapenem-hydrolyzing beta-lactamases"}}}}, "305": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37697": {"category_aro_name": "non-erm 23S ribosomal RNA methyltransferase (G748)", "category_aro_cvterm_id": "37697", "category_aro_accession": "3001298", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Non-erm 23S ribosomal RNA methyltransferases modify guanosine 748 (E. coli numbering) to confer resistance to some macrolides and lincosamides"}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}, "306": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "307": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1792": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36207": {"category_aro_name": "DHA beta-lactamase", "category_aro_cvterm_id": "36207", "category_aro_accession": "3000068", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DHA beta-lactamases are plasmid-mediated AmpC \u03b2-lactamases that confer resistance to cephamycins and oxyimino-cephalosporins."}}}}, "473": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36472": {"category_aro_name": "macrolide phosphotransferase (MPH)", "category_aro_cvterm_id": "36472", "category_aro_accession": "3000333", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Macrolide phosphotransferases (MPH) are enzymes encoded by macrolide phosphotransferase genes (mph genes). These enzymes phosphorylate macrolides in GTP dependent manner at 2'-OH of desosamine sugar thereby inactivating them. Characterized MPH's are differentiated based on their substrate specificity."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}}}}, "_timestamp": "2018-01-03T15:15:46+00:00", "2478": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "40280": {"category_aro_name": "16S rRNA with mutation conferring resistance to tetracycline derivatives", "category_aro_cvterm_id": "40280", "category_aro_accession": "3003669", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the bacterial 16S rRNA region shown clinically to confer resistance to tetracycline and tetracycline derivatives (polyketide antibiotics)."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "470": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "471": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1898": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1899": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36216": {"category_aro_name": "vanY", "category_aro_cvterm_id": "36216", "category_aro_accession": "3000077", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanY is a D,D-carboxypeptidase that cleaves removes the terminal D-Ala from peptidoglycan for the addition of D-Lactate. The D-Ala-D-Lac peptidoglycan subunits have reduced binding affinity with vancomycin compared to D-Ala-D-Ala."}}}}, "1894": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$delete": ["35950"], "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "1895": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "39434": {"category_aro_name": "CfxA beta-lactamase", "category_aro_cvterm_id": "39434", "category_aro_accession": "3003000", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "cfxA beta-lactamases are class A beta-lactamases"}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1896": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36196": {"category_aro_name": "NDM beta-lactamase", "category_aro_cvterm_id": "36196", "category_aro_accession": "3000057", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "NDM beta-lactamases or New Delhi metallo-beta-lactamases are class B beta-lactamases that confer resistance to a broad range of antibiotics including carbapenems, cephalosporins and penicillins."}}}}, "1897": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "1890": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1891": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1892": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1893": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "959": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "958": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "2134": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "2135": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36211": {"category_aro_name": "ACT beta-lactamase", "category_aro_cvterm_id": "36211", "category_aro_accession": "3000072", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "2132": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2133": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35937": {"category_aro_name": "viomycin", "category_aro_cvterm_id": "35937", "category_aro_accession": "0000018", "category_aro_class_name": "Antibiotic", "category_aro_description": "Viomycin sulfate (Viocin) is an polypeptide antibiotic used in the treatment of tuberculosis. It is produced by the actinomycete Streptomyces puniceus and binds to the bacterial ribosome, inhibiting prokaryotic protein synthesis and certain forms of RNA splicing."}, "36629": {"category_aro_name": "tuberactinomycin", "category_aro_cvterm_id": "36629", "category_aro_accession": "3000490", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tuberactinomycins are a family of cyclic peptide antibiotics that are important in the treatment of tuberculosis. Tuberactinomycins contain nonproteinogenic amino acids and inhibit group I self-splicing RNA to disrupt prokaryotic protein synthesis."}, "40278": {"category_aro_name": "16s rRNA with mutation conferring resistance to peptide antibiotics", "category_aro_cvterm_id": "40278", "category_aro_accession": "3003667", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to peptide antibiotics."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2130": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}}}}}, "2131": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "951": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36211": {"category_aro_name": "ACT beta-lactamase", "category_aro_cvterm_id": "36211", "category_aro_accession": "3000072", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "950": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "37247": {"category_aro_name": "oleandomycin", "category_aro_cvterm_id": "37247", "category_aro_accession": "3000867", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oleandomycin is a 14-membered macrolide produced by Streptomyces antibioticus. It is ssimilar to erythromycin, and contains a desosamine amino sugar and an oleandrose sugar. It targets the 50S ribosomal subunit to prevent protein synthesis."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35974": {"category_aro_name": "telithromycin", "category_aro_cvterm_id": "35974", "category_aro_accession": "0000057", "category_aro_class_name": "Antibiotic", "category_aro_description": "Telithromycin is a semi-synthetic derivative of erythromycin. It is a 14-membered macrolide and is the first ketolide antibiotic to be used in clinics. Telithromycin binds the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36284": {"category_aro_name": "tylosin", "category_aro_cvterm_id": "36284", "category_aro_accession": "3000145", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tylosin is a 16-membered macrolide, naturally produced by Streptomyces fradiae. It interacts with the bacterial ribosome 50S subunit to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36315": {"category_aro_name": "dirithromycin", "category_aro_cvterm_id": "36315", "category_aro_accession": "3000176", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dirithromycin is an oxazine derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome to inhibit bacterial protein synthesis."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "36699": {"category_aro_name": "Erm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36699", "category_aro_accession": "3000560", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Erm proteins are part of the RNA methyltransferase family and methylate A2058 (E. coli nomenclature) of the 23S ribosomal RNA conferring degrees of resistance to Macrolides, Lincosamides and Streptogramin b. This is called the MLSb phenotype."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35946": {"category_aro_name": "roxithromycin", "category_aro_cvterm_id": "35946", "category_aro_accession": "0000027", "category_aro_class_name": "Antibiotic", "category_aro_description": "Roxithromycin is a semi-synthetic, 14-carbon ring macrolide antibiotic derived from erythromycin. It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36295": {"category_aro_name": "spiramycin", "category_aro_cvterm_id": "36295", "category_aro_accession": "3000156", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spiramycin is a 16-membered macrolide and is natural product produced by Streptomyces ambofaciens. It binds to the 50S subunit of bacterial ribosomes and inhibits peptidyl transfer activity to disrupt protein synthesis."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}, "952": {"$update": {"ARO_category": {"36463": {"category_aro_name": "sulfadiazine", "category_aro_cvterm_id": "36463", "category_aro_accession": "3000324", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfadiazine is a potent inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids."}, "36466": {"category_aro_name": "sulfadoxine", "category_aro_cvterm_id": "36466", "category_aro_accession": "3000327", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfadoxine is an inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids."}, "37027": {"category_aro_name": "sulfacetamide", "category_aro_cvterm_id": "37027", "category_aro_accession": "3000683", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfacetamide is a very soluable sulfonamide antibiotic previously used to treat urinary tract infections. Its relatively low activity and toxicity to those with Stevens-Johnson syndrome have reduced its use and availability."}, "36464": {"category_aro_name": "sulfadimidine", "category_aro_cvterm_id": "36464", "category_aro_accession": "3000325", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfadimidine is an alkaline sulfonamide antibiotic that inhibits dihydropteroate synthase, and enzyme in the tetrahydrofolic acid biosynthesis pathway. This interferes with the production of folate, which is a precursor to many amino acids and nucleotides."}, "37028": {"category_aro_name": "mafenide", "category_aro_cvterm_id": "37028", "category_aro_accession": "3000684", "category_aro_class_name": "Antibiotic", "category_aro_description": "Mafenide is a sulfonamide used topically for treating burns."}, "36468": {"category_aro_name": "sulfamethoxazole", "category_aro_cvterm_id": "36468", "category_aro_accession": "3000329", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfamethoxazole is a sulfonamide antibiotic usually taken with trimethoprim, a diaminopyrimidine antibiotic. Sulfamethoxazole inhibits dihydropteroate synthase, essential to tetrahydrofolic acid biosynthesis. This pathway generates compounds used in the synthesis of many amino acids and nucleotides."}, "36469": {"category_aro_name": "sulfisoxazole", "category_aro_cvterm_id": "36469", "category_aro_accession": "3000330", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfisoxazole is an inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids."}, "41402": {"category_aro_name": "sulfonamide resistant sul", "category_aro_cvterm_id": "41402", "category_aro_accession": "3004238", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The sul genes encode forms of dihydropteroate synthase that confer resistance to sulfonamide."}, "39996": {"category_aro_name": "dapsone", "category_aro_cvterm_id": "39996", "category_aro_accession": "3003412", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dapsone is a sulfone in which it inhibits folic acid synthesis, such as the dihydropteroate synthase."}, "39985": {"category_aro_name": "sulfone antibiotic", "category_aro_cvterm_id": "39985", "category_aro_accession": "3003401", "category_aro_class_name": "Drug Class", "category_aro_description": "A sulfone active against a wide range of bacteria but mainly employed for its actions against mycobacterium laprae. Its mechanism of action involves inhibition of folic acid synthesis in susceptible organisms."}, "37043": {"category_aro_name": "sulfamethizole", "category_aro_cvterm_id": "37043", "category_aro_accession": "3000699", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfamethizole is a short-acting sulfonamide that inhibits dihydropteroate synthetase."}, "37042": {"category_aro_name": "sulfasalazine", "category_aro_cvterm_id": "37042", "category_aro_accession": "3000698", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfasalazine is a derivative of the early sulfonamide sulfapyridine (salicylazosulfapyridine). It was developed to increase water solubility and is taken orally for ulcerative colitis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36421": {"category_aro_name": "sulfonamide antibiotic", "category_aro_cvterm_id": "36421", "category_aro_accession": "3000282", "category_aro_class_name": "Drug Class", "category_aro_description": "Sulfonamides are broad spectrum, synthetic antibiotics that contain the sulfonamide group. Sulfonamides inhibit dihydropteroate synthase, which catalyzes the conversion of p-aminobenzoic acid to dihydropteroic acid as part of the tetrahydrofolic acid biosynthetic pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor of many nucleotides and amino acids. Many sulfamides are taken with trimethoprim, an inhibitor of dihydrofolate reductase, also disturbing the trihydrofolic acid synthesis pathway."}}}}, "955": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "954": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36265": {"category_aro_name": "APH(3')", "category_aro_cvterm_id": "36265", "category_aro_accession": "3000126", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of 2-deoxystreptamine aminoglycosides on the hydroxyl group at position 3'"}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "957": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "956": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "477": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "36261": {"category_aro_name": "chloramphenicol acetyltransferase (CAT)", "category_aro_cvterm_id": "36261", "category_aro_accession": "3000122", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Inactivates chloramphenicol by addition of an acyl group. cat is used to describe many variants of the chloramphenicol acetyltransferase gene in a range of organisms including Acinetobacter calcoaceticus, Agrobacterium tumefaciens, Bacillus clausii, Bacillus subtilis, Campylobacter coli, Enterococcus faecalis, Enterococcus faecium, Lactococcus lactis, Listeria monocytogenes, Listonella anguillarum Morganella morganii, Photobacterium damselae subsp. piscicida, Proteus mirabilis, Salmonella typhi, Serratia marcescens, Shigella flexneri, Staphylococcus aureus, Staphylococcus haemolyticus, Staphylococcus intermedius, Streptococcus agalactiae, Streptococcus suis and Streptomyces acrimycini"}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "2643": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "2644": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "2645": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "2646": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "2002": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "36261": {"category_aro_name": "chloramphenicol acetyltransferase (CAT)", "category_aro_cvterm_id": "36261", "category_aro_accession": "3000122", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Inactivates chloramphenicol by addition of an acyl group. cat is used to describe many variants of the chloramphenicol acetyltransferase gene in a range of organisms including Acinetobacter calcoaceticus, Agrobacterium tumefaciens, Bacillus clausii, Bacillus subtilis, Campylobacter coli, Enterococcus faecalis, Enterococcus faecium, Lactococcus lactis, Listeria monocytogenes, Listonella anguillarum Morganella morganii, Photobacterium damselae subsp. piscicida, Proteus mirabilis, Salmonella typhi, Serratia marcescens, Shigella flexneri, Staphylococcus aureus, Staphylococcus haemolyticus, Staphylococcus intermedius, Streptococcus agalactiae, Streptococcus suis and Streptomyces acrimycini"}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "2003": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}}}}}, "2000": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "2001": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "2006": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "2007": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "2004": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "2005": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "2008": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "2009": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "41439": {"category_aro_name": "ANT(3'')", "category_aro_cvterm_id": "41439", "category_aro_accession": "3004275", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotidylylation of streptomycin at the hydroxyl group at position 3''"}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2034": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1263": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "666": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "2176": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}, "model_param": {"$update": {"40297": {"$update": {"param_description": "The gene order model parameter describes the relative order of a set of genes or other genetic elements on a chromosome, a plasmid or within an operon. Antibiotic resistance is only conferred when the detected set of genes appears in the indicated order; otherwise, no resistance phenotype is produced. This parameter is part of the gene cluster meta-model, and may be attached to detection models with the following notation: [[cvterm_id 1],[cvterm_id 2],...,[cvterm_id n]], where the cvterm_id denotes a gene-associated AMR term and an attached model id. This parameter currently (August 2017) lacks an algorithm for detection."}}}}}}, "1261": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}}}}}, "2177": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35947": {"category_aro_name": "vancomycin", "category_aro_cvterm_id": "35947", "category_aro_accession": "0000028", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vancomycin is a glycopeptide antibiotic used in the prophylaxis and treatment of infections caused by Gram-positive bacteria. Vancomycin inhibits the synthesis of peptidoglycan, the major component of the cell wall of gram-positive bacteria. Its mechanism of action is unusual in that it acts by binding precursors of peptidoglycan, rather than by interacting with an enzyme."}, "35948": {"category_aro_name": "teicoplanin", "category_aro_cvterm_id": "35948", "category_aro_accession": "0000029", "category_aro_class_name": "Antibiotic", "category_aro_description": "Teicoplanin is a glycopeptide antibiotic used in the prophylaxis and treatment of serious infections caused by Gram-positive bacteria. Teicoplanin has a unique acyl-aliphatic chain, and binds to cell wall precursors to inhibit transglycosylation and transpeptidation."}}, "model_param": {"$update": {"40297": {"$update": {"param_description": "The gene order model parameter describes the relative order of a set of genes or other genetic elements on a chromosome, a plasmid or within an operon. Antibiotic resistance is only conferred when the detected set of genes appears in the indicated order; otherwise, no resistance phenotype is produced. This parameter is part of the gene cluster meta-model, and may be attached to detection models with the following notation: [[cvterm_id 1],[cvterm_id 2],...,[cvterm_id n]], where the cvterm_id denotes a gene-associated AMR term and an attached model id. This parameter currently (August 2017) lacks an algorithm for detection."}}}}}}, "1799": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1798": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "719": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "718": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41390": {"category_aro_name": "subclass B3 LRA beta-lactamase", "category_aro_cvterm_id": "41390", "category_aro_accession": "3004226", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Beta-lactamases that are part of the LRA gene family and are classified as B3 (metallo-) beta-lactamases."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "717": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1267": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "715": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36237": {"category_aro_name": "PDC beta-lactamase", "category_aro_cvterm_id": "36237", "category_aro_accession": "3000098", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PDC beta-lactamases are class C beta-lactamases that are found in Pseudomonas aeruginosa."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "714": {"$update": {"ARO_category": {"36476": {"category_aro_name": "iclaprim", "category_aro_cvterm_id": "36476", "category_aro_accession": "3000337", "category_aro_class_name": "Antibiotic", "category_aro_description": "Iclaprim is a bactericidal compound that inhibits dihydrofolate reductase. It is used against clinically important Gram-positive pathogens, including methicillin-sensitive Staphylococcus aureus and methicillin-resistant S. aureus."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36408": {"category_aro_name": "brodimoprim", "category_aro_cvterm_id": "36408", "category_aro_accession": "3000269", "category_aro_class_name": "Antibiotic", "category_aro_description": "Brodimoprim is a structural derivative of trimethoprim and an inhibitor of bacterial dihydrofolate reductase. The 4-methoxy group of trimethoprim is replaced with a bromine atom."}, "37617": {"category_aro_name": "trimethoprim resistant dihydrofolate reductase dfr", "category_aro_cvterm_id": "37617", "category_aro_accession": "3001218", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Alternative dihydropteroate synthase dfr present on plasmids produces alternate proteins that are less sensitive to trimethoprim from inhibiting its role in folate synthesis, thus conferring trimethoprim resistance."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36423": {"category_aro_name": "tetroxoprim", "category_aro_cvterm_id": "36423", "category_aro_accession": "3000284", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetroxoprim is a trimethoprim derivative that inhibits bacterial dihydrofolate reductase."}}}}, "713": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "712": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "36261": {"category_aro_name": "chloramphenicol acetyltransferase (CAT)", "category_aro_cvterm_id": "36261", "category_aro_accession": "3000122", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Inactivates chloramphenicol by addition of an acyl group. cat is used to describe many variants of the chloramphenicol acetyltransferase gene in a range of organisms including Acinetobacter calcoaceticus, Agrobacterium tumefaciens, Bacillus clausii, Bacillus subtilis, Campylobacter coli, Enterococcus faecalis, Enterococcus faecium, Lactococcus lactis, Listeria monocytogenes, Listonella anguillarum Morganella morganii, Photobacterium damselae subsp. piscicida, Proteus mirabilis, Salmonella typhi, Serratia marcescens, Shigella flexneri, Staphylococcus aureus, Staphylococcus haemolyticus, Staphylococcus intermedius, Streptococcus agalactiae, Streptococcus suis and Streptomyces acrimycini"}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "711": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "710": {"$update": {"ARO_category": {"36476": {"category_aro_name": "iclaprim", "category_aro_cvterm_id": "36476", "category_aro_accession": "3000337", "category_aro_class_name": "Antibiotic", "category_aro_description": "Iclaprim is a bactericidal compound that inhibits dihydrofolate reductase. It is used against clinically important Gram-positive pathogens, including methicillin-sensitive Staphylococcus aureus and methicillin-resistant S. aureus."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36408": {"category_aro_name": "brodimoprim", "category_aro_cvterm_id": "36408", "category_aro_accession": "3000269", "category_aro_class_name": "Antibiotic", "category_aro_description": "Brodimoprim is a structural derivative of trimethoprim and an inhibitor of bacterial dihydrofolate reductase. The 4-methoxy group of trimethoprim is replaced with a bromine atom."}, "37617": {"category_aro_name": "trimethoprim resistant dihydrofolate reductase dfr", "category_aro_cvterm_id": "37617", "category_aro_accession": "3001218", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Alternative dihydropteroate synthase dfr present on plasmids produces alternate proteins that are less sensitive to trimethoprim from inhibiting its role in folate synthesis, thus conferring trimethoprim resistance."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36423": {"category_aro_name": "tetroxoprim", "category_aro_cvterm_id": "36423", "category_aro_accession": "3000284", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetroxoprim is a trimethoprim derivative that inhibits bacterial dihydrofolate reductase."}}}}, "661": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "716": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "505": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$delete": ["35950", "40134"], "$insert": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36666": {"category_aro_name": "polyamine antibiotic", "category_aro_cvterm_id": "36666", "category_aro_accession": "3000527", "category_aro_class_name": "Drug Class", "category_aro_description": "Polyamine antibiotics are organic compounds having two or more primary amino groups."}, "40043": {"category_aro_name": "Ethambutol resistant iniC", "category_aro_cvterm_id": "40043", "category_aro_accession": "3003450", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Mutations that occurs on the iniC genes resulting in the resistance to ethambutol"}, "36636": {"category_aro_name": "ethambutol", "category_aro_cvterm_id": "36636", "category_aro_accession": "3000497", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ethambutol is an antimycobacterial drug prescribed to treat tuberculosis. It is usually given in combination with other tuberculosis drugs, such as isoniazid, rifampicin, and pyrazinamide. Ethambutol inhibits arabinosyl biosynthesis, disrupting mycobacterial cell wall formation."}}}, "model_param": {"$update": {"snp": {"$update": {"param_value": {"$insert": {"3352": "W83G"}}}, "$insert": {"experimental": {"3352": "W83G"}}}}}}}, "660": {"$update": {"ARO_category": {"40471": {"category_aro_name": "fluoroquinolone self resistant parC", "category_aro_cvterm_id": "40471", "category_aro_accession": "3003786", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Inherent parC resistance to fluoroquinolone from an antibiotic producer. The presence of these genes confers self-resistance to the antibiotic it produces."}, "37009": {"category_aro_name": "grepafloxacin", "category_aro_cvterm_id": "37009", "category_aro_accession": "3000665", "category_aro_class_name": "Antibiotic", "category_aro_description": "Grepafloxacin is a broad-spectrum antibacterial quinoline. It is no longer taken due to its high toxicity."}, "37008": {"category_aro_name": "trovafloxacin", "category_aro_cvterm_id": "37008", "category_aro_accession": "3000664", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trovafloxacin is a trifluoroquinalone with a broad spectrum of activity that acts by inhibiting the uncoiling of supercoiled DNA. While potent against many Gram-positive and Gram-negative bacteria, it is less active against pseudomonads and Cl. difficile. It is usually taken as the prodrug trovafloxacin mesylate or alatrofloxacin mesylate for oral or intravenous administration, respectively."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "37004": {"category_aro_name": "lomefloxacin", "category_aro_cvterm_id": "37004", "category_aro_accession": "3000660", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lomefloxacin is a difluoropiperazinyl quinolone, sharing similar activities with other fluoroquinolones. It is used to treat urinary tract infections. Relative to other fluoroquinolones, it has a longer half life and has higher serum concentrations."}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37142": {"category_aro_name": "pefloxacin", "category_aro_cvterm_id": "37142", "category_aro_accession": "3000762", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pefloxacin is structurally and functionally similar to norfloxacin. It is poorly active against mycobacteria, while anaerobes are resistant."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36913": {"category_aro_name": "fluoroquinolone resistant parC", "category_aro_cvterm_id": "36913", "category_aro_accession": "3000619", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ParC is a subunit of topoisomerase IV, which decatenates and relaxes DNA to allow access to genes for transcription or translation. Point mutations in ParC prevent fluoroquinolone antibiotics from inhibiting DNA synthesis, and confer low-level resistance. Higher-level resistance results from both gyrA and parC mutations."}, "35942": {"category_aro_name": "enoxacin", "category_aro_cvterm_id": "35942", "category_aro_accession": "0000023", "category_aro_class_name": "Antibiotic", "category_aro_description": "Enoxacin belongs to a group called fluoroquinolones. Its mode of action depends upon blocking bacterial DNA replication by binding itself to DNA gyrase and causing double-stranded breaks in the bacterial chromosome."}}}}, "2178": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}, "model_param": {"$update": {"40297": {"$update": {"param_description": "The gene order model parameter describes the relative order of a set of genes or other genetic elements on a chromosome, a plasmid or within an operon. Antibiotic resistance is only conferred when the detected set of genes appears in the indicated order; otherwise, no resistance phenotype is produced. This parameter is part of the gene cluster meta-model, and may be attached to detection models with the following notation: [[cvterm_id 1],[cvterm_id 2],...,[cvterm_id n]], where the cvterm_id denotes a gene-associated AMR term and an attached model id. This parameter currently (August 2017) lacks an algorithm for detection."}}}}}}, "1069": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1068": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2179": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}, "model_param": {"$update": {"40297": {"$update": {"param_description": "The gene order model parameter describes the relative order of a set of genes or other genetic elements on a chromosome, a plasmid or within an operon. Antibiotic resistance is only conferred when the detected set of genes appears in the indicated order; otherwise, no resistance phenotype is produced. This parameter is part of the gene cluster meta-model, and may be attached to detection models with the following notation: [[cvterm_id 1],[cvterm_id 2],...,[cvterm_id n]], where the cvterm_id denotes a gene-associated AMR term and an attached model id. This parameter currently (August 2017) lacks an algorithm for detection."}}}}}}, "1061": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "38788": {"category_aro_name": "OXY beta-lactamase", "category_aro_cvterm_id": "38788", "category_aro_accession": "3002388", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXY beta-lactamases are chromosomal class A beta-lactamases that are found in Klebsiella oxytoca. At constitutive low levels, OXY beta-lactamases confer resistance to aminopenicillins and carboxypenicillins. At high induced levels, OXY beta-lactamases confer resistance to penicillins, cephalosporins and aztreonam."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1060": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1063": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1062": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1065": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1064": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1067": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "1066": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1669": {"$update": {"ARO_category": {"36255": {"category_aro_name": "vanZ", "category_aro_cvterm_id": "36255", "category_aro_accession": "3000116", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanZ is a teicoplanin resistance gene that is an accessory protein. VanZ prevents the incorporation of the terminal D-Ala into peptidoglycan subunits."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}}}}, "1668": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1667": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1666": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "36020": {"category_aro_name": "vanX", "category_aro_cvterm_id": "36020", "category_aro_accession": "3000011", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanX is a D,D-dipeptidase that cleaves D-Ala-D-Ala but not D-Ala-D-Lac, ensuring that the latter dipeptide that has reduced binding affinity with vancomycin is used to synthesize peptidoglycan substrate."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "1665": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$delete": ["36409"], "$insert": {"40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36383": {"category_aro_name": "reduced permeability to antibiotic", "category_aro_cvterm_id": "36383", "category_aro_accession": "3000244", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Reduction in permeability to antibiotic, generally through reduced production of porins, can provide resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "41445": {"category_aro_name": "General Bacterial Porin with reduced permeability to beta-lactams", "category_aro_cvterm_id": "41445", "category_aro_accession": "3004281", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These are GBPs that are associated with decreased susceptibility to beta-lactams either through mutations in the porin protein, absence of the porin protein, or expression of the porin protein."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}}}}}, "1664": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36309": {"category_aro_name": "imipenem", "category_aro_cvterm_id": "36309", "category_aro_accession": "3000170", "category_aro_class_name": "Antibiotic", "category_aro_description": "Imipenem is a broad-spectrum antibiotic and is usually taken with cilastatin, which prevents hydrolysis of imipenem by renal dehydropeptidase-I. It is resistant to hydrolysis by most other beta-lactamases. Notable exceptions are the KPC beta-lactamases and Ambler Class B enzymes."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "40523": {"category_aro_name": "ticarcillin", "category_aro_cvterm_id": "40523", "category_aro_accession": "3003832", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ticarcillin is a carboxypenicillin used for the treatment of Gram-negative bacteria, particularly P. aeruginosa. Ticarcillin's antibiotic properties arise from its ability to prevent cross-linking of peptidoglycan during cell wall synthesis, when the bacteria try to divide, causing cell death."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "1663": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36212": {"category_aro_name": "ACC beta-lactamase", "category_aro_cvterm_id": "36212", "category_aro_accession": "3000073", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACC beta-lactamases or Ambler class C beta-lactamases are AmpC beta-lactamases. They possess an interesting resistance phenotype due to their low activity against cephamycins."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "1662": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38817": {"category_aro_name": "OKP beta-lactamase", "category_aro_cvterm_id": "38817", "category_aro_accession": "3002417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OKP beta-lactamases are chromosomal class A beta-lactamase that confer resistance to penicillins and early cephalosporins in Klebsiella pneumoniae. OKP beta-lactamases can be subdivided into two groups: OKP-A and OKP-B which diverge by about 4.2%"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1661": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36230": {"category_aro_name": "CARB beta-lactamase", "category_aro_cvterm_id": "36230", "category_aro_accession": "3000091", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CARB beta-lactamases are class A lactamases that can hydrolyze carbenicillin. Many of the PSE beta-lactamases have been renamed as CARB-lactamases with the notable exception of PSE-2 which is now OXA-10."}}}}, "1660": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "591": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "590": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36199": {"category_aro_name": "IND beta-lactamase", "category_aro_cvterm_id": "36199", "category_aro_accession": "3000060", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "IND beta-lactamases are class B carbapenem-hydrolyzing beta-lactamases"}}}}, "593": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36004": {"category_aro_name": "small multidrug resistance (SMR) antibiotic efflux pump", "category_aro_cvterm_id": "36004", "category_aro_accession": "0010003", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Small multidrug resistance (SMR) proteins are a relatively small family of transporters, restricted to prokaryotic cells. They are also the smallest multidrug transporters, with only four transmembrane alpha-helices and no significant extramembrane domain."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "592": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}}, "595": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "594": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "597": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$delete": ["35950"], "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "596": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "39428": {"category_aro_name": "ROB beta-lactamase", "category_aro_cvterm_id": "39428", "category_aro_accession": "3002994", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ROB beta-lactamases are a class A beta-lactamases."}}}}, "599": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38817": {"category_aro_name": "OKP beta-lactamase", "category_aro_cvterm_id": "38817", "category_aro_accession": "3002417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OKP beta-lactamases are chromosomal class A beta-lactamase that confer resistance to penicillins and early cephalosporins in Klebsiella pneumoniae. OKP beta-lactamases can be subdivided into two groups: OKP-A and OKP-B which diverge by about 4.2%"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "598": {"$update": {"ARO_category": {"36476": {"category_aro_name": "iclaprim", "category_aro_cvterm_id": "36476", "category_aro_accession": "3000337", "category_aro_class_name": "Antibiotic", "category_aro_description": "Iclaprim is a bactericidal compound that inhibits dihydrofolate reductase. It is used against clinically important Gram-positive pathogens, including methicillin-sensitive Staphylococcus aureus and methicillin-resistant S. aureus."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36408": {"category_aro_name": "brodimoprim", "category_aro_cvterm_id": "36408", "category_aro_accession": "3000269", "category_aro_class_name": "Antibiotic", "category_aro_description": "Brodimoprim is a structural derivative of trimethoprim and an inhibitor of bacterial dihydrofolate reductase. The 4-methoxy group of trimethoprim is replaced with a bromine atom."}, "37617": {"category_aro_name": "trimethoprim resistant dihydrofolate reductase dfr", "category_aro_cvterm_id": "37617", "category_aro_accession": "3001218", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Alternative dihydropteroate synthase dfr present on plasmids produces alternate proteins that are less sensitive to trimethoprim from inhibiting its role in folate synthesis, thus conferring trimethoprim resistance."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36423": {"category_aro_name": "tetroxoprim", "category_aro_cvterm_id": "36423", "category_aro_accession": "3000284", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetroxoprim is a trimethoprim derivative that inhibits bacterial dihydrofolate reductase."}}}}, "1089": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1088": {"$update": {"ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "39637": {"category_aro_name": "daptomycin resistant beta-subunit of RNA polymerase (rpoB)", "category_aro_cvterm_id": "39637", "category_aro_accession": "3003090", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Daptomycin resistant RNA polymerases include amino acids substitutions which alter expression of the dlt operon, which increases the cell surface positive charge. Known from S. aureus."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35985": {"category_aro_name": "daptomycin", "category_aro_cvterm_id": "35985", "category_aro_accession": "0000068", "category_aro_class_name": "Antibiotic", "category_aro_description": "Daptomycin is a novel lipopeptide antibiotic used in the treatment of certain infections caused by Gram-positive organisms. Daptomycin interferes with the bacterial cell membrane, reducing membrane potential and inhibiting cell wall synthesis."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}}}}, "2828": {"$update": {"ARO_category": {"37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35980": {"category_aro_name": "cefuroxime", "category_aro_cvterm_id": "35980", "category_aro_accession": "0000063", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefuroxime is a second-generation cephalosporin antibiotic with increased stability with beta-lactamases than first-generation cephalosporins. Cefuroxime is active against Gram-positive organisms but less active against methicillin-resistant strains."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36992": {"category_aro_name": "ceftibuten", "category_aro_cvterm_id": "36992", "category_aro_accession": "3000648", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftibuten is a semisynthetic cephalosporin active against Gram-negative bacilli. It is resistant against many plasmid-mediated beta-lactamases."}, "36993": {"category_aro_name": "cefditoren", "category_aro_cvterm_id": "36993", "category_aro_accession": "3000649", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefditoren is a semisynthetic cephalosporin active against staphylococci, streptococci, and and most enterobacteria. It is resistant to staphylococcal and most enterobacterial beta-lactamases, and is usually taken as the prodrug cefditoren pivoxil."}, "35995": {"category_aro_name": "piperacillin", "category_aro_cvterm_id": "35995", "category_aro_accession": "0000078", "category_aro_class_name": "Antibiotic", "category_aro_description": "Piperacillin is an acetylureidopenicillin and has an extended spectrum of targets relative to other beta-lactam antibiotics. It inhibits cell wall synthesis in bacteria, and is usually taken with the beta-lactamase inhibitor tazobactam to overcome penicillin-resistant bacteria."}, "36991": {"category_aro_name": "cefpodoxime", "category_aro_cvterm_id": "36991", "category_aro_accession": "3000647", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefpodoxime is a semisynthetic cephalosporin that acts similarly to cefotaxime with broad-spectrum activity. It is stable to many plasmid-mediated beta-lactamses. Cefpodoxime is consumed as the prodrug cefpodoxime proxetil."}, "36990": {"category_aro_name": "cefixime", "category_aro_cvterm_id": "36990", "category_aro_accession": "3000646", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefixime is a cephalosporin resistant to most beta-lactamases. It is active against many enterobacteria, but activity against staphylococci is poor."}, "36994": {"category_aro_name": "cefdinir", "category_aro_cvterm_id": "36994", "category_aro_accession": "3000650", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefdinir is similar to cefixime with a modified side-chain at its 7-amino position. It also shares similar activity with cefixime but is more active against staphylococci. It has also be shown to enhance phagocytosis."}, "35990": {"category_aro_name": "meropenem", "category_aro_cvterm_id": "35990", "category_aro_accession": "0000073", "category_aro_class_name": "Antibiotic", "category_aro_description": "Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36309": {"category_aro_name": "imipenem", "category_aro_cvterm_id": "36309", "category_aro_accession": "3000170", "category_aro_class_name": "Antibiotic", "category_aro_description": "Imipenem is a broad-spectrum antibiotic and is usually taken with cilastatin, which prevents hydrolysis of imipenem by renal dehydropeptidase-I. It is resistant to hydrolysis by most other beta-lactamases. Notable exceptions are the KPC beta-lactamases and Ambler Class B enzymes."}, "35927": {"category_aro_name": "cefoxitin", "category_aro_cvterm_id": "35927", "category_aro_accession": "0000008", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefoxitin is a cephamycin antibiotic often grouped with the second generation cephalosporins. Cefoxitin is bactericidal and acts by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. Cefoxitin's 7-alpha-methoxy group and 3' leaving group make it a poor substrate for most beta-lactamases."}, "36689": {"category_aro_name": "aztreonam", "category_aro_cvterm_id": "36689", "category_aro_accession": "3000550", "category_aro_class_name": "Antibiotic", "category_aro_description": "Aztreonam was the first monobactam discovered, and is greatly effective against Gram-negative bacteria while inactive against Gram-positive bacteria. Artreonam is a poor substrate for beta-lactamases, and may even act as an inhibitor. In Gram-negative bacteria, Aztreonam interferes with filamentation, inhibiting cell division and leading to cell death."}, "37085": {"category_aro_name": "isopenicillin N", "category_aro_cvterm_id": "37085", "category_aro_accession": "3000705", "category_aro_class_name": "Antibiotic", "category_aro_description": "Isopenicillin N is a natural penicillin derivative produced by Penicillium chrysogenum with activity similar to penicillin N."}, "35975": {"category_aro_name": "cefazolin", "category_aro_cvterm_id": "35975", "category_aro_accession": "0000058", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefazolin (INN), also known as cefazoline or cephazolin, is a first generation cephalosporin antibiotic. It is administered parenterally, and is active against a broad spectrum of bacteria."}, "37086": {"category_aro_name": "penicillin N", "category_aro_cvterm_id": "37086", "category_aro_accession": "3000706", "category_aro_class_name": "Antibiotic", "category_aro_description": "Penicillin N is a penicillin derivative produced by Cephalosporium acremonium."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35976": {"category_aro_name": "cefepime", "category_aro_cvterm_id": "35976", "category_aro_accession": "0000059", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefepime (INN) is a fourth-generation cephalosporin antibiotic developed in 1994. It contains an aminothiazolyl group that decreases its affinity with beta-lactamases. Cefepime shows high binding affinity with penicillin-binding proteins and has an extended spectrum of activity against Gram-positive and Gram-negative bacteria, with greater activity against both Gram-negative and Gram-positive organisms than third-generation agents."}, "35971": {"category_aro_name": "penicillin", "category_aro_cvterm_id": "35971", "category_aro_accession": "0000054", "category_aro_class_name": "Antibiotic", "category_aro_description": "Penicillin (sometimes abbreviated PCN) is a beta-lactam antibiotic used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms. It works by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35973": {"category_aro_name": "oxacillin", "category_aro_cvterm_id": "35973", "category_aro_accession": "0000056", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxacillin is a penicillinase-resistant beta-lactam. It is similar to methicillin, and has replaced methicillin in clinical use. Oxacillin, especially in combination with other antibiotics, is effective against many penicillinase-producing strains of Staphylococcus aureus and Staphylococcus epidermidis."}, "40928": {"category_aro_name": "cefmetazole", "category_aro_cvterm_id": "40928", "category_aro_accession": "3004001", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefmetazole is a semi-synthetic cephamycin antibiotic with broad spectrum antibiotic activity against both gram-positive and gram-negative bacteria, that disrupt cell wall synthesis through binding to PBPs causing cell lysis."}, "40944": {"category_aro_name": "moxalactam", "category_aro_cvterm_id": "40944", "category_aro_accession": "3004017", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxalactam (Latamoxef) is a broad spectrum cephalosporin (oxacephem) and beta-lactam antibiotic. Moxalactam binding to PBPs inhibits peptidoglycan cross-linkage in the cell wall, resulting in cell death. Moxalactam is proposed to be effective against meningitides as it passes the blood-brain barrier."}, "35930": {"category_aro_name": "cloxacillin", "category_aro_cvterm_id": "35930", "category_aro_accession": "0000011", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cloxacillin is a semisynthetic, isoxazolyl penicillin derivative in the beta-lactam class of antibiotics. It interferes with peptidogylcan synthesis and is commonly used for treating penicillin-resistant Staphylococcus aureus infections."}, "36995": {"category_aro_name": "ceftaroline", "category_aro_cvterm_id": "36995", "category_aro_accession": "3000651", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftaroline is a novel cephalosporin active against methicillin resistant Staphylococcus aureus. Like other cephalosporins it binds penicillin-binding proteins to inhibit cell wall synthesis. It strongly binds with PBP2a, associated with methicillin resistance. It is taken orally as the prodrug ceftaroline fosamil."}, "35979": {"category_aro_name": "ceftriaxone", "category_aro_cvterm_id": "35979", "category_aro_accession": "0000062", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftriaxone is a third-generation cephalosporin antibiotic. The presence of an aminothiazolyl sidechain increases ceftriazone's resistance to beta-lactamases. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria."}, "35934": {"category_aro_name": "methicillin", "category_aro_cvterm_id": "35934", "category_aro_accession": "0000015", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derived from penicillin to combat penicillin-resistance, methicillin is insensitive to beta-lactamases (also known as penicillinases) secreted by many penicillin-resistant bacteria. Methicillin is bactericidal, and acts by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40943": {"category_aro_name": "loracarbef", "category_aro_cvterm_id": "40943", "category_aro_accession": "3004016", "category_aro_class_name": "Antibiotic", "category_aro_description": "Loracarbef is a second-generation cephalosporin (carbacephem) and broad spectrum beta-lactam antibiotic. Loracarbef inhibits PBPs through binding, disrupting peptidoglycan cell wall cross-linkage and resulting in cell death."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36989": {"category_aro_name": "cefotaxime", "category_aro_cvterm_id": "36989", "category_aro_accession": "3000645", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefotaxime is a semisynthetic cephalosporin taken parenterally. It is resistant to most beta-lactamases and active against Gram-negative rods and cocci due to its aminothiazoyl and methoximino functional groups."}, "36988": {"category_aro_name": "cefaclor", "category_aro_cvterm_id": "36988", "category_aro_accession": "3000644", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefaclor is a semisynthetic cephalosporin derived from cephalexin. It has broad-spectrum antibiotic activity."}, "37589": {"category_aro_name": "methicillin resistant PBP2", "category_aro_cvterm_id": "37589", "category_aro_accession": "3001208", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "In methicillin sensitive S. aureus (MSSA), beta-lactams bind to native penicillin-binding proteins (PBPs) and disrupt synthesis of the cell membrane's peptidoglycan layer. In methicillin resistant S. aureus (MRSA), foreign PBP2a acquired by lateral gene transfer is able to perform peptidoglycan synthesis in the presence of beta-lactams."}, "40929": {"category_aro_name": "cefonicid", "category_aro_cvterm_id": "40929", "category_aro_accession": "3004002", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefonicid is a second-generation cephalosporin-class beta-lactam antibiotic with broad spectrum activity. Particularly used against urinary tract infections and lower respiratory infections. Causes cell lysis by inactivation of PBPs through binding, inhibiting peptidoglycan synthesis."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "36980": {"category_aro_name": "flucloxacillin", "category_aro_cvterm_id": "36980", "category_aro_accession": "3000636", "category_aro_class_name": "Antibiotic", "category_aro_description": "Flucloxacillin is similar to cloxacillin, with an extra additional fluorine atom."}, "36983": {"category_aro_name": "mezlocillin", "category_aro_cvterm_id": "36983", "category_aro_accession": "3000639", "category_aro_class_name": "Antibiotic", "category_aro_description": "Mezlocillin is a penicillin derivative taken parenterally."}, "36982": {"category_aro_name": "azlocillin", "category_aro_cvterm_id": "36982", "category_aro_accession": "3000638", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azlocillin is a semisynthetic derivative of penicillin that is notably active against Ps. aeruginosa and other Gram-negative bacteria."}, "36985": {"category_aro_name": "cefalexin", "category_aro_cvterm_id": "36985", "category_aro_accession": "3000641", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalexin is a cephalosporin antibiotic that causes filamentation. It is resistant to staphylococcal beta-lactamase, but degraded by enterobacterial beta-lactamases."}, "36984": {"category_aro_name": "doripenem", "category_aro_cvterm_id": "36984", "category_aro_accession": "3000640", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doripenem is a carbapenem with a broad range of activity against Gram-positive and Gram-negative bacteria, and along with meropenem, it is the most active beta-lactam antibiotic against Pseudomonas aeruginosa. It inhibits bacterial cell wall synthesis."}, "36987": {"category_aro_name": "cefotiam", "category_aro_cvterm_id": "36987", "category_aro_accession": "3000643", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefotiam is a cephalosporin antibiotic with similar activity to cefuroxime but more active against enterobacteria. It is consumed orally as the prodrug cefotiam hexetil."}, "36986": {"category_aro_name": "cefadroxil", "category_aro_cvterm_id": "36986", "category_aro_accession": "3000642", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefadroxil, or p-hydroxycephalexin, is an cephalosporin antibiotic similar to cefalexin."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "37141": {"category_aro_name": "mecillinam", "category_aro_cvterm_id": "37141", "category_aro_accession": "3000761", "category_aro_class_name": "Antibiotic", "category_aro_description": "Mecillinam is a broad-spectrum beta-lactam antibiotic that was semi-synthetically derived to have a different drug centre, being a 6-alpha-amidinopenicillanate instead of a 6-alpha-acylaminopenicillanate. Contrasting most beta-lactam drugs, mecillinam is most active against Gram-negative bacteria. It binds specifically to penicillin binding protein 2 (PBP2)."}, "36979": {"category_aro_name": "dicloxacillin", "category_aro_cvterm_id": "36979", "category_aro_accession": "3000635", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dicloxacillin is a penicillin derivative that has an extra chlorine atom in comparison to cloxacillin. While more active than cloxacillin, its high affinity for serum protein reduces its activity in human serum in vitro."}, "36978": {"category_aro_name": "propicillin", "category_aro_cvterm_id": "36978", "category_aro_accession": "3000634", "category_aro_class_name": "Antibiotic", "category_aro_description": "Propicillin is an orally taken penicillin derivative that has high absorption but poor activity."}, "35978": {"category_aro_name": "ceftobiprole", "category_aro_cvterm_id": "35978", "category_aro_accession": "0000061", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftobiprole (Zeftera/Zevtera) is a next generation (5th generation) cephalosporin antibiotic with activity against methicillin-resistant Staphylococcus aureus, penicillin-resistant Streptococcus pneumoniae, Pseudomonas aeruginosa, and Enterococci. Ceftobiprole inhibits transpeptidases essential to building cell walls, and is a poor substrate for most beta-lactamases."}, "36976": {"category_aro_name": "benzylpenicillin", "category_aro_cvterm_id": "36976", "category_aro_accession": "3000632", "category_aro_class_name": "Antibiotic", "category_aro_description": "Benzylpenicillin, commonly referred to as penicillin G, is effective against both Gram-positive and Gram-negative bacteria. It is unstable in acid."}, "36977": {"category_aro_name": "phenoxymethylpenicillin", "category_aro_cvterm_id": "36977", "category_aro_accession": "3000633", "category_aro_class_name": "Antibiotic", "category_aro_description": "Phenoxymethylpenicillin, or penicillin V, is a penicillin derivative that is acid stable but less active than benzylpenicillin (penicillin G)."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35961": {"category_aro_name": "carbenicillin", "category_aro_cvterm_id": "35961", "category_aro_accession": "0000043", "category_aro_class_name": "Antibiotic", "category_aro_description": "Carbenicillin is a semi-synthetic antibiotic belonging to the carboxypenicillin subgroup of the penicillins. It has gram-negative coverage which includes Pseudomonas aeruginosa but limited gram-positive coverage. The carboxypenicillins are susceptible to degradation by beta-lactamase enzymes. Carbenicillin antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40933": {"category_aro_name": "ceftiofur", "category_aro_cvterm_id": "40933", "category_aro_accession": "3004006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftiofur is a third-generation broad spectrum cephalosporin and beta-lactam antibiotic. It causes cell lysis by disrupting peptidoglycan cross-linkage and cell wall formation by binding to PBPs."}, "40932": {"category_aro_name": "cefprozil", "category_aro_cvterm_id": "40932", "category_aro_accession": "3004005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefprozil is a cephalosporin and beta-lactam antibiotic with bactericidal activity. It selectively binds to PBPs and inhibits peptidoglycan synthesis, a major cell wall component, resulting in cell lysis."}, "40935": {"category_aro_name": "cephapirin", "category_aro_cvterm_id": "40935", "category_aro_accession": "3004008", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cephapirin is a first-generation cephalosporin and broad spectrum beta-lactam antibiotic. Inactivation of penicillin-binding proteins through cephapirin binding disrupts peptidoglycan cross-linking, resulting in cell lysis."}, "40934": {"category_aro_name": "ceftizoxime", "category_aro_cvterm_id": "40934", "category_aro_accession": "3004007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftizoxime is a third-generation cephalosporin and broad spectrum beta-lactam antibiotic. Ceftizoxime causes bacterial cell lysis through peptidoglycan cross-linking inhibition by binding to PBPs."}, "35987": {"category_aro_name": "ertapenem", "category_aro_cvterm_id": "35987", "category_aro_accession": "0000070", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ertapenem is a carbapenem antibiotic and is highly resistant to beta-lactamases like other carbapenems. It inhibits bacterial cell wall synthesis."}, "40936": {"category_aro_name": "cefradine", "category_aro_cvterm_id": "40936", "category_aro_accession": "3004009", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefradine is a first-generation cephalosporin and broad spectrum beta-lactam antibiotic. Cefradine binding to penicillin-binding proteins disrupts cell wall peptidoglycan cross-linkage, resulting in cell lysis."}}}}, "2829": {"$update": {"ARO_category": {"36476": {"category_aro_name": "iclaprim", "category_aro_cvterm_id": "36476", "category_aro_accession": "3000337", "category_aro_class_name": "Antibiotic", "category_aro_description": "Iclaprim is a bactericidal compound that inhibits dihydrofolate reductase. It is used against clinically important Gram-positive pathogens, including methicillin-sensitive Staphylococcus aureus and methicillin-resistant S. aureus."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36408": {"category_aro_name": "brodimoprim", "category_aro_cvterm_id": "36408", "category_aro_accession": "3000269", "category_aro_class_name": "Antibiotic", "category_aro_description": "Brodimoprim is a structural derivative of trimethoprim and an inhibitor of bacterial dihydrofolate reductase. The 4-methoxy group of trimethoprim is replaced with a bromine atom."}, "37617": {"category_aro_name": "trimethoprim resistant dihydrofolate reductase dfr", "category_aro_cvterm_id": "37617", "category_aro_accession": "3001218", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Alternative dihydropteroate synthase dfr present on plasmids produces alternate proteins that are less sensitive to trimethoprim from inhibiting its role in folate synthesis, thus conferring trimethoprim resistance."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36423": {"category_aro_name": "tetroxoprim", "category_aro_cvterm_id": "36423", "category_aro_accession": "3000284", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetroxoprim is a trimethoprim derivative that inhibits bacterial dihydrofolate reductase."}}}}, "1526": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2824": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36600": {"category_aro_name": "florfenicol", "category_aro_cvterm_id": "36600", "category_aro_accession": "3000461", "category_aro_class_name": "Antibiotic", "category_aro_description": "Florfenicol is a fluorine derivative of chloramphenicol, where the nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3) and the hydroxyl group (-OH), by a fluorine group (-F). The action mechanism is the same as chloramphenicol's, where the antibiotic binds to the 23S RNA of the 50S subunit of bacterial ribosomes to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "41251": {"category_aro_name": "23S rRNA with mutation conferring resistance to macrolide antibiotics", "category_aro_cvterm_id": "41251", "category_aro_accession": "3004125", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotide point mutations in the 23S rRNA subunit may confer resistance to macrolide antibiotics."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "2825": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36600": {"category_aro_name": "florfenicol", "category_aro_cvterm_id": "36600", "category_aro_accession": "3000461", "category_aro_class_name": "Antibiotic", "category_aro_description": "Florfenicol is a fluorine derivative of chloramphenicol, where the nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3) and the hydroxyl group (-OH), by a fluorine group (-F). The action mechanism is the same as chloramphenicol's, where the antibiotic binds to the 23S RNA of the 50S subunit of bacterial ribosomes to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "41350": {"category_aro_name": "23S rRNA with mutation conferring resistance to phenicol antibiotics", "category_aro_cvterm_id": "41350", "category_aro_accession": "3004188", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 23S rRNA subunit shown clinically to confer resistance to phenicol class antibiotics, including chloramphenicol and florfenicol, by disrupting antibiotic binding-site affinity"}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "2826": {"$update": {"ARO_category": {"37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36600": {"category_aro_name": "florfenicol", "category_aro_cvterm_id": "36600", "category_aro_accession": "3000461", "category_aro_class_name": "Antibiotic", "category_aro_description": "Florfenicol is a fluorine derivative of chloramphenicol, where the nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3) and the hydroxyl group (-OH), by a fluorine group (-F). The action mechanism is the same as chloramphenicol's, where the antibiotic binds to the 23S RNA of the 50S subunit of bacterial ribosomes to inhibit protein synthesis."}, "41335": {"category_aro_name": "23S rRNA with mutation conferring resistance to streptogramins antibiotics", "category_aro_cvterm_id": "41335", "category_aro_accession": "3004182", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotide point mutations in the 23S rRNA subunit may confer resistance to streptogramins antibiotics."}, "36284": {"category_aro_name": "tylosin", "category_aro_cvterm_id": "36284", "category_aro_accession": "3000145", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tylosin is a 16-membered macrolide, naturally produced by Streptomyces fradiae. It interacts with the bacterial ribosome 50S subunit to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "41251": {"category_aro_name": "23S rRNA with mutation conferring resistance to macrolide antibiotics", "category_aro_cvterm_id": "41251", "category_aro_accession": "3004125", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotide point mutations in the 23S rRNA subunit may confer resistance to macrolide antibiotics."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37620": {"category_aro_name": "josamycin", "category_aro_cvterm_id": "37620", "category_aro_accession": "3001221", "category_aro_class_name": "Antibiotic", "category_aro_description": "A macrolide antibiotic from Streptomyces narbonensis\u00a0subsp.\u00a0josamyceticus. The drug has antimicrobial activity against a wide spectrum of pathogens."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "2827": {"$update": {"ARO_category": {"40948": {"category_aro_name": "para-aminosalicylic acid", "category_aro_cvterm_id": "40948", "category_aro_accession": "3004019", "category_aro_class_name": "Drug Class", "category_aro_description": "para-aminosalicylic acid (PAS) is an anti-tubercular antibiotic agent, often used in conjunction with Isoniazid for treatment of M. tuberculosis infections. PAS diminishes bacterial cell growth by limiting folic acid production."}, "41336": {"category_aro_name": "aminosalicylate resistant dihydrofolate reductase", "category_aro_cvterm_id": "41336", "category_aro_accession": "3004183", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Antibiotic target replacement dihydrofolate reductase enzymes or domains with catalytic activity that confer resistance to aminosalicylates, esp. p-aminosalicylic acid."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}}}}, "2820": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36600": {"category_aro_name": "florfenicol", "category_aro_cvterm_id": "36600", "category_aro_accession": "3000461", "category_aro_class_name": "Antibiotic", "category_aro_description": "Florfenicol is a fluorine derivative of chloramphenicol, where the nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3) and the hydroxyl group (-OH), by a fluorine group (-F). The action mechanism is the same as chloramphenicol's, where the antibiotic binds to the 23S RNA of the 50S subunit of bacterial ribosomes to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "41251": {"category_aro_name": "23S rRNA with mutation conferring resistance to macrolide antibiotics", "category_aro_cvterm_id": "41251", "category_aro_accession": "3004125", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotide point mutations in the 23S rRNA subunit may confer resistance to macrolide antibiotics."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "2822": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36600": {"category_aro_name": "florfenicol", "category_aro_cvterm_id": "36600", "category_aro_accession": "3000461", "category_aro_class_name": "Antibiotic", "category_aro_description": "Florfenicol is a fluorine derivative of chloramphenicol, where the nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3) and the hydroxyl group (-OH), by a fluorine group (-F). The action mechanism is the same as chloramphenicol's, where the antibiotic binds to the 23S RNA of the 50S subunit of bacterial ribosomes to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "41251": {"category_aro_name": "23S rRNA with mutation conferring resistance to macrolide antibiotics", "category_aro_cvterm_id": "41251", "category_aro_accession": "3004125", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotide point mutations in the 23S rRNA subunit may confer resistance to macrolide antibiotics."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "2823": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36600": {"category_aro_name": "florfenicol", "category_aro_cvterm_id": "36600", "category_aro_accession": "3000461", "category_aro_class_name": "Antibiotic", "category_aro_description": "Florfenicol is a fluorine derivative of chloramphenicol, where the nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3) and the hydroxyl group (-OH), by a fluorine group (-F). The action mechanism is the same as chloramphenicol's, where the antibiotic binds to the 23S RNA of the 50S subunit of bacterial ribosomes to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "41251": {"category_aro_name": "23S rRNA with mutation conferring resistance to macrolide antibiotics", "category_aro_cvterm_id": "41251", "category_aro_accession": "3004125", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotide point mutations in the 23S rRNA subunit may confer resistance to macrolide antibiotics."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "1409": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1408": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1403": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1402": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1401": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}}}}}, "1400": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1407": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1406": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1405": {"$update": {"ARO_category": {"35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "41435": {"category_aro_name": "16S rRNA methyltransferase (G1405)", "category_aro_cvterm_id": "41435", "category_aro_accession": "3004271", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Methyltransferases that methylate the G1405 position of 16S rRNA, which is part of an aminoglycoside binding site."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1404": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1546": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36699": {"category_aro_name": "Erm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36699", "category_aro_accession": "3000560", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Erm proteins are part of the RNA methyltransferase family and methylate A2058 (E. coli nomenclature) of the 23S ribosomal RNA conferring degrees of resistance to Macrolides, Lincosamides and Streptogramin b. This is called the MLSb phenotype."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}, "449": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "448": {"$update": {"ARO_category": {"36476": {"category_aro_name": "iclaprim", "category_aro_cvterm_id": "36476", "category_aro_accession": "3000337", "category_aro_class_name": "Antibiotic", "category_aro_description": "Iclaprim is a bactericidal compound that inhibits dihydrofolate reductase. It is used against clinically important Gram-positive pathogens, including methicillin-sensitive Staphylococcus aureus and methicillin-resistant S. aureus."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36408": {"category_aro_name": "brodimoprim", "category_aro_cvterm_id": "36408", "category_aro_accession": "3000269", "category_aro_class_name": "Antibiotic", "category_aro_description": "Brodimoprim is a structural derivative of trimethoprim and an inhibitor of bacterial dihydrofolate reductase. The 4-methoxy group of trimethoprim is replaced with a bromine atom."}, "37617": {"category_aro_name": "trimethoprim resistant dihydrofolate reductase dfr", "category_aro_cvterm_id": "37617", "category_aro_accession": "3001218", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Alternative dihydropteroate synthase dfr present on plasmids produces alternate proteins that are less sensitive to trimethoprim from inhibiting its role in folate synthesis, thus conferring trimethoprim resistance."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36423": {"category_aro_name": "tetroxoprim", "category_aro_cvterm_id": "36423", "category_aro_accession": "3000284", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetroxoprim is a trimethoprim derivative that inhibits bacterial dihydrofolate reductase."}}}}, "1339": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "39310": {"category_aro_name": "ethambutol resistant arabinosyltransferase", "category_aro_cvterm_id": "39310", "category_aro_accession": "3002876", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Arabinosyl transferases allow for the polymerization of arabinose to form arabinan. Arabinan is required for formation of mycobacterial cell walls and arabinosyltransferases are targets of the drug ethambutol. Mutations in these genes can confer resistance to ethambutol."}, "36666": {"category_aro_name": "polyamine antibiotic", "category_aro_cvterm_id": "36666", "category_aro_accession": "3000527", "category_aro_class_name": "Drug Class", "category_aro_description": "Polyamine antibiotics are organic compounds having two or more primary amino groups."}, "36636": {"category_aro_name": "ethambutol", "category_aro_cvterm_id": "36636", "category_aro_accession": "3000497", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ethambutol is an antimycobacterial drug prescribed to treat tuberculosis. It is usually given in combination with other tuberculosis drugs, such as isoniazid, rifampicin, and pyrazinamide. Ethambutol inhibits arabinosyl biosynthesis, disrupting mycobacterial cell wall formation."}}}}, "1338": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "41393": {"category_aro_name": "class A Bacillus anthracis Bla beta-lactamase", "category_aro_cvterm_id": "41393", "category_aro_accession": "3004229", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Beta-lactamases belonging to the Bla genes from Bacillus anthracis that are classified as class A beta-lactamases."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "1547": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36713": {"category_aro_name": "vanR", "category_aro_cvterm_id": "36713", "category_aro_accession": "3000574", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanR is a OmpR-family transcriptional activator in the VanSR regulatory system. When activated by VanS, it promotes cotranscription of VanA, VanH, and VanX."}, "35947": {"category_aro_name": "vancomycin", "category_aro_cvterm_id": "35947", "category_aro_accession": "0000028", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vancomycin is a glycopeptide antibiotic used in the prophylaxis and treatment of infections caused by Gram-positive bacteria. Vancomycin inhibits the synthesis of peptidoglycan, the major component of the cell wall of gram-positive bacteria. Its mechanism of action is unusual in that it acts by binding precursors of peptidoglycan, rather than by interacting with an enzyme."}}}}, "443": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38817": {"category_aro_name": "OKP beta-lactamase", "category_aro_cvterm_id": "38817", "category_aro_accession": "3002417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OKP beta-lactamases are chromosomal class A beta-lactamase that confer resistance to penicillins and early cephalosporins in Klebsiella pneumoniae. OKP beta-lactamases can be subdivided into two groups: OKP-A and OKP-B which diverge by about 4.2%"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "442": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "441": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "440": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36421": {"category_aro_name": "sulfonamide antibiotic", "category_aro_cvterm_id": "36421", "category_aro_accession": "3000282", "category_aro_class_name": "Drug Class", "category_aro_description": "Sulfonamides are broad spectrum, synthetic antibiotics that contain the sulfonamide group. Sulfonamides inhibit dihydropteroate synthase, which catalyzes the conversion of p-aminobenzoic acid to dihydropteroic acid as part of the tetrahydrofolic acid biosynthetic pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor of many nucleotides and amino acids. Many sulfamides are taken with trimethoprim, an inhibitor of dihydrofolate reductase, also disturbing the trihydrofolic acid synthesis pathway."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "40362": {"category_aro_name": "panipenem", "category_aro_cvterm_id": "40362", "category_aro_accession": "3003708", "category_aro_class_name": "Antibiotic", "category_aro_description": "Panipenem is a carbapenem antibacterial agent with a broad spectrum of in vitro activity covering a wide range of Gram-negative and Gram-positive aerobic and anaerobic bacterial. It is used in combination with betamipron to inhibit panipenem uptake into the renal tubule and prevent nephrotoxicity."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35996": {"category_aro_name": "clavulanate", "category_aro_cvterm_id": "35996", "category_aro_accession": "0000079", "category_aro_class_name": "Adjuvant", "category_aro_description": "Clavulanic acid is a beta-lactamase inhibitor (marketed by GlaxoSmithKline, formerly Beecham) combined with penicillin group antibiotics to overcome certain types of antibiotic resistance. It is used to overcome resistance in bacteria that secrete beta-lactamase, which otherwise inactivates most penicillins."}, "35990": {"category_aro_name": "meropenem", "category_aro_cvterm_id": "35990", "category_aro_accession": "0000073", "category_aro_class_name": "Antibiotic", "category_aro_description": "Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36689": {"category_aro_name": "aztreonam", "category_aro_cvterm_id": "36689", "category_aro_accession": "3000550", "category_aro_class_name": "Antibiotic", "category_aro_description": "Aztreonam was the first monobactam discovered, and is greatly effective against Gram-negative bacteria while inactive against Gram-positive bacteria. Artreonam is a poor substrate for beta-lactamases, and may even act as an inhibitor. In Gram-negative bacteria, Aztreonam interferes with filamentation, inhibiting cell division and leading to cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35979": {"category_aro_name": "ceftriaxone", "category_aro_cvterm_id": "35979", "category_aro_accession": "0000062", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftriaxone is a third-generation cephalosporin antibiotic. The presence of an aminothiazolyl sidechain increases ceftriazone's resistance to beta-lactamases. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "40523": {"category_aro_name": "ticarcillin", "category_aro_cvterm_id": "40523", "category_aro_accession": "3003832", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ticarcillin is a carboxypenicillin used for the treatment of Gram-negative bacteria, particularly P. aeruginosa. Ticarcillin's antibiotic properties arise from its ability to prevent cross-linking of peptidoglycan during cell wall synthesis, when the bacteria try to divide, causing cell death."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36468": {"category_aro_name": "sulfamethoxazole", "category_aro_cvterm_id": "36468", "category_aro_accession": "3000329", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfamethoxazole is a sulfonamide antibiotic usually taken with trimethoprim, a diaminopyrimidine antibiotic. Sulfamethoxazole inhibits dihydropteroate synthase, essential to tetrahydrofolic acid biosynthesis. This pathway generates compounds used in the synthesis of many amino acids and nucleotides."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "40957": {"category_aro_name": "trimethoprim-sulfamethoxazole", "category_aro_cvterm_id": "40957", "category_aro_accession": "3004024", "category_aro_class_name": "Antibiotic", "category_aro_description": "An antibiotic cocktail containing the diaminopyrimidine antibiotic Trimethoprim and the sulfonamide antibiotic sulfamethoxazole (1 TMP:5 SMX)."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "447": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "446": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "36261": {"category_aro_name": "chloramphenicol acetyltransferase (CAT)", "category_aro_cvterm_id": "36261", "category_aro_accession": "3000122", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Inactivates chloramphenicol by addition of an acyl group. cat is used to describe many variants of the chloramphenicol acetyltransferase gene in a range of organisms including Acinetobacter calcoaceticus, Agrobacterium tumefaciens, Bacillus clausii, Bacillus subtilis, Campylobacter coli, Enterococcus faecalis, Enterococcus faecium, Lactococcus lactis, Listeria monocytogenes, Listonella anguillarum Morganella morganii, Photobacterium damselae subsp. piscicida, Proteus mirabilis, Salmonella typhi, Serratia marcescens, Shigella flexneri, Staphylococcus aureus, Staphylococcus haemolyticus, Staphylococcus intermedius, Streptococcus agalactiae, Streptococcus suis and Streptomyces acrimycini"}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "445": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "444": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1545": {"$update": {"ARO_category": {"40463": {"category_aro_name": "nybomycin", "category_aro_cvterm_id": "40463", "category_aro_accession": "3003780", "category_aro_class_name": "Drug Class", "category_aro_description": "A heterocyclic antibiotic that targets mutant gyrA (type II topoisomerase) containing an S84L substitution, counteracting acquired quinolone resistance. It is effective against quinolone-resistant Gram-positive bacteria including S. aureus and E. faecalis. Due to its ability to counteract quinolone resistance by targeting the mutant form of the gyrA protein, it is classified as a reverse antibiotic (RA)."}, "37009": {"category_aro_name": "grepafloxacin", "category_aro_cvterm_id": "37009", "category_aro_accession": "3000665", "category_aro_class_name": "Antibiotic", "category_aro_description": "Grepafloxacin is a broad-spectrum antibacterial quinoline. It is no longer taken due to its high toxicity."}, "37008": {"category_aro_name": "trovafloxacin", "category_aro_cvterm_id": "37008", "category_aro_accession": "3000664", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trovafloxacin is a trifluoroquinalone with a broad spectrum of activity that acts by inhibiting the uncoiling of supercoiled DNA. While potent against many Gram-positive and Gram-negative bacteria, it is less active against pseudomonads and Cl. difficile. It is usually taken as the prodrug trovafloxacin mesylate or alatrofloxacin mesylate for oral or intravenous administration, respectively."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "37004": {"category_aro_name": "lomefloxacin", "category_aro_cvterm_id": "37004", "category_aro_accession": "3000660", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lomefloxacin is a difluoropiperazinyl quinolone, sharing similar activities with other fluoroquinolones. It is used to treat urinary tract infections. Relative to other fluoroquinolones, it has a longer half life and has higher serum concentrations."}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}, "39876": {"category_aro_name": "fluoroquinolone resistant gyrA", "category_aro_cvterm_id": "39876", "category_aro_accession": "3003292", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DNA gyrase is responsible for DNA supercoiling and consists of two alpha and two beta subunits. GyrA point mutations confer resistance by preventing fluoroquinolone antibiotics from binding the alpha-subunit."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37142": {"category_aro_name": "pefloxacin", "category_aro_cvterm_id": "37142", "category_aro_accession": "3000762", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pefloxacin is structurally and functionally similar to norfloxacin. It is poorly active against mycobacteria, while anaerobes are resistant."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35942": {"category_aro_name": "enoxacin", "category_aro_cvterm_id": "35942", "category_aro_accession": "0000023", "category_aro_class_name": "Antibiotic", "category_aro_description": "Enoxacin belongs to a group called fluoroquinolones. Its mode of action depends upon blocking bacterial DNA replication by binding itself to DNA gyrase and causing double-stranded breaks in the bacterial chromosome."}}, "model_param": {"$update": {"snp": {"$update": {"param_value": {"$insert": {"3398": "G81C", "3405": "A84P", "3404": "A67S", "3397": "Q106H"}}}, "$insert": {"experimental": {"3398": "G81C", "3405": "A84P", "3404": "A67S", "3397": "Q106H"}}}}}}}, "1542": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}}}}}, "1543": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "39": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36461": {"category_aro_name": "AAC(3)", "category_aro_cvterm_id": "36461", "category_aro_accession": "3000322", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 3."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "38": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "36265": {"category_aro_name": "APH(3')", "category_aro_cvterm_id": "36265", "category_aro_accession": "3000126", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of 2-deoxystreptamine aminoglycosides on the hydroxyl group at position 3'"}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1540": {"$update": {"ARO_category": {"35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "41435": {"category_aro_name": "16S rRNA methyltransferase (G1405)", "category_aro_cvterm_id": "41435", "category_aro_accession": "3004271", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Methyltransferases that methylate the G1405 position of 16S rRNA, which is part of an aminoglycoside binding site."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "33": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}}}}}, "32": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36207": {"category_aro_name": "DHA beta-lactamase", "category_aro_cvterm_id": "36207", "category_aro_accession": "3000068", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DHA beta-lactamases are plasmid-mediated AmpC \u03b2-lactamases that confer resistance to cephamycins and oxyimino-cephalosporins."}}}}, "31": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "30": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "37": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "40514": {"category_aro_name": "benzalkonium chloride", "category_aro_cvterm_id": "40514", "category_aro_accession": "3003823", "category_aro_class_name": "Drug Class", "category_aro_description": "Benzalkonium chloride is a type of cationic surfactant. It is an organic salt called a quaternary ammonium compound. It has three main categories of use: as a biocide, a cationic surfactant, and as a phase transfer agent."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "40518": {"category_aro_name": "rhodamine", "category_aro_cvterm_id": "40518", "category_aro_accession": "3003827", "category_aro_class_name": "Drug Class", "category_aro_description": "Rhodamine is a flurone dye that is often used as a tracer due to determine the rate and direction of flow and transport. It permeates the cell membrane of gram negative organisms E. coli and P. aeruginosa."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "36": {"$update": {"ARO_category": {"40463": {"category_aro_name": "nybomycin", "category_aro_cvterm_id": "40463", "category_aro_accession": "3003780", "category_aro_class_name": "Drug Class", "category_aro_description": "A heterocyclic antibiotic that targets mutant gyrA (type II topoisomerase) containing an S84L substitution, counteracting acquired quinolone resistance. It is effective against quinolone-resistant Gram-positive bacteria including S. aureus and E. faecalis. Due to its ability to counteract quinolone resistance by targeting the mutant form of the gyrA protein, it is classified as a reverse antibiotic (RA)."}, "37009": {"category_aro_name": "grepafloxacin", "category_aro_cvterm_id": "37009", "category_aro_accession": "3000665", "category_aro_class_name": "Antibiotic", "category_aro_description": "Grepafloxacin is a broad-spectrum antibacterial quinoline. It is no longer taken due to its high toxicity."}, "37008": {"category_aro_name": "trovafloxacin", "category_aro_cvterm_id": "37008", "category_aro_accession": "3000664", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trovafloxacin is a trifluoroquinalone with a broad spectrum of activity that acts by inhibiting the uncoiling of supercoiled DNA. While potent against many Gram-positive and Gram-negative bacteria, it is less active against pseudomonads and Cl. difficile. It is usually taken as the prodrug trovafloxacin mesylate or alatrofloxacin mesylate for oral or intravenous administration, respectively."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "37004": {"category_aro_name": "lomefloxacin", "category_aro_cvterm_id": "37004", "category_aro_accession": "3000660", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lomefloxacin is a difluoropiperazinyl quinolone, sharing similar activities with other fluoroquinolones. It is used to treat urinary tract infections. Relative to other fluoroquinolones, it has a longer half life and has higher serum concentrations."}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}, "39876": {"category_aro_name": "fluoroquinolone resistant gyrA", "category_aro_cvterm_id": "39876", "category_aro_accession": "3003292", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DNA gyrase is responsible for DNA supercoiling and consists of two alpha and two beta subunits. GyrA point mutations confer resistance by preventing fluoroquinolone antibiotics from binding the alpha-subunit."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37142": {"category_aro_name": "pefloxacin", "category_aro_cvterm_id": "37142", "category_aro_accession": "3000762", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pefloxacin is structurally and functionally similar to norfloxacin. It is poorly active against mycobacteria, while anaerobes are resistant."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35942": {"category_aro_name": "enoxacin", "category_aro_cvterm_id": "35942", "category_aro_accession": "0000023", "category_aro_class_name": "Antibiotic", "category_aro_description": "Enoxacin belongs to a group called fluoroquinolones. Its mode of action depends upon blocking bacterial DNA replication by binding itself to DNA gyrase and causing double-stranded breaks in the bacterial chromosome."}}}}, "35": {"$update": {"ARO_category": {"35944": {"category_aro_name": "fosfomycin", "category_aro_cvterm_id": "35944", "category_aro_accession": "0000025", "category_aro_class_name": "Drug Class", "category_aro_description": "Fosfomycin (also known as phosphomycin and phosphonomycin) is a broad-spectrum antibiotic produced by certain Streptomyces species. It is effective on gram positive and negative bacteria as it targets the cell wall, an essential feature shared by both bacteria. Its specific target is MurA (MurZ in E.coli), which attaches phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine, a step of commitment to cell wall synthesis. In the active site of MurA, the active cysteine molecule is alkylated which stops the catalytic reaction."}, "36272": {"category_aro_name": "fosfomycin thiol transferase", "category_aro_cvterm_id": "36272", "category_aro_accession": "3000133", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Catalyzes the addition of a thiol group from a nucleophilic molecule to fosfomycin."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "34": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "38788": {"category_aro_name": "OXY beta-lactamase", "category_aro_cvterm_id": "38788", "category_aro_accession": "3002388", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXY beta-lactamases are chromosomal class A beta-lactamases that are found in Klebsiella oxytoca. At constitutive low levels, OXY beta-lactamases confer resistance to aminopenicillins and carboxypenicillins. At high induced levels, OXY beta-lactamases confer resistance to penicillins, cephalosporins and aztreonam."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1537": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36205": {"category_aro_name": "GES beta-lactamase", "category_aro_cvterm_id": "36205", "category_aro_accession": "3000066", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "GES beta-lactamases or Guiana extended-spectrum beta-lactamases are related to the other plasmid-located class A beta-lactamases"}}}}, "1536": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1243": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36472": {"category_aro_name": "macrolide phosphotransferase (MPH)", "category_aro_cvterm_id": "36472", "category_aro_accession": "3000333", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Macrolide phosphotransferases (MPH) are enzymes encoded by macrolide phosphotransferase genes (mph genes). These enzymes phosphorylate macrolides in GTP dependent manner at 2'-OH of desosamine sugar thereby inactivating them. Characterized MPH's are differentiated based on their substrate specificity."}, "37247": {"category_aro_name": "oleandomycin", "category_aro_cvterm_id": "37247", "category_aro_accession": "3000867", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oleandomycin is a 14-membered macrolide produced by Streptomyces antibioticus. It is ssimilar to erythromycin, and contains a desosamine amino sugar and an oleandrose sugar. It targets the 50S ribosomal subunit to prevent protein synthesis."}, "35974": {"category_aro_name": "telithromycin", "category_aro_cvterm_id": "35974", "category_aro_accession": "0000057", "category_aro_class_name": "Antibiotic", "category_aro_description": "Telithromycin is a semi-synthetic derivative of erythromycin. It is a 14-membered macrolide and is the first ketolide antibiotic to be used in clinics. Telithromycin binds the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36315": {"category_aro_name": "dirithromycin", "category_aro_cvterm_id": "36315", "category_aro_accession": "3000176", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dirithromycin is an oxazine derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome to inhibit bacterial protein synthesis."}, "35946": {"category_aro_name": "roxithromycin", "category_aro_cvterm_id": "35946", "category_aro_accession": "0000027", "category_aro_class_name": "Antibiotic", "category_aro_description": "Roxithromycin is a semi-synthetic, 14-carbon ring macrolide antibiotic derived from erythromycin. It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}, "642": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "41439": {"category_aro_name": "ANT(3'')", "category_aro_cvterm_id": "41439", "category_aro_accession": "3004275", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotidylylation of streptomycin at the hydroxyl group at position 3''"}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "645": {"$update": {"ARO_category": {"37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35980": {"category_aro_name": "cefuroxime", "category_aro_cvterm_id": "35980", "category_aro_accession": "0000063", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefuroxime is a second-generation cephalosporin antibiotic with increased stability with beta-lactamases than first-generation cephalosporins. Cefuroxime is active against Gram-positive organisms but less active against methicillin-resistant strains."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36992": {"category_aro_name": "ceftibuten", "category_aro_cvterm_id": "36992", "category_aro_accession": "3000648", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftibuten is a semisynthetic cephalosporin active against Gram-negative bacilli. It is resistant against many plasmid-mediated beta-lactamases."}, "36993": {"category_aro_name": "cefditoren", "category_aro_cvterm_id": "36993", "category_aro_accession": "3000649", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefditoren is a semisynthetic cephalosporin active against staphylococci, streptococci, and and most enterobacteria. It is resistant to staphylococcal and most enterobacterial beta-lactamases, and is usually taken as the prodrug cefditoren pivoxil."}, "35995": {"category_aro_name": "piperacillin", "category_aro_cvterm_id": "35995", "category_aro_accession": "0000078", "category_aro_class_name": "Antibiotic", "category_aro_description": "Piperacillin is an acetylureidopenicillin and has an extended spectrum of targets relative to other beta-lactam antibiotics. It inhibits cell wall synthesis in bacteria, and is usually taken with the beta-lactamase inhibitor tazobactam to overcome penicillin-resistant bacteria."}, "36991": {"category_aro_name": "cefpodoxime", "category_aro_cvterm_id": "36991", "category_aro_accession": "3000647", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefpodoxime is a semisynthetic cephalosporin that acts similarly to cefotaxime with broad-spectrum activity. It is stable to many plasmid-mediated beta-lactamses. Cefpodoxime is consumed as the prodrug cefpodoxime proxetil."}, "36990": {"category_aro_name": "cefixime", "category_aro_cvterm_id": "36990", "category_aro_accession": "3000646", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefixime is a cephalosporin resistant to most beta-lactamases. It is active against many enterobacteria, but activity against staphylococci is poor."}, "36994": {"category_aro_name": "cefdinir", "category_aro_cvterm_id": "36994", "category_aro_accession": "3000650", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefdinir is similar to cefixime with a modified side-chain at its 7-amino position. It also shares similar activity with cefixime but is more active against staphylococci. It has also be shown to enhance phagocytosis."}, "35990": {"category_aro_name": "meropenem", "category_aro_cvterm_id": "35990", "category_aro_accession": "0000073", "category_aro_class_name": "Antibiotic", "category_aro_description": "Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36309": {"category_aro_name": "imipenem", "category_aro_cvterm_id": "36309", "category_aro_accession": "3000170", "category_aro_class_name": "Antibiotic", "category_aro_description": "Imipenem is a broad-spectrum antibiotic and is usually taken with cilastatin, which prevents hydrolysis of imipenem by renal dehydropeptidase-I. It is resistant to hydrolysis by most other beta-lactamases. Notable exceptions are the KPC beta-lactamases and Ambler Class B enzymes."}, "35927": {"category_aro_name": "cefoxitin", "category_aro_cvterm_id": "35927", "category_aro_accession": "0000008", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefoxitin is a cephamycin antibiotic often grouped with the second generation cephalosporins. Cefoxitin is bactericidal and acts by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. Cefoxitin's 7-alpha-methoxy group and 3' leaving group make it a poor substrate for most beta-lactamases."}, "36689": {"category_aro_name": "aztreonam", "category_aro_cvterm_id": "36689", "category_aro_accession": "3000550", "category_aro_class_name": "Antibiotic", "category_aro_description": "Aztreonam was the first monobactam discovered, and is greatly effective against Gram-negative bacteria while inactive against Gram-positive bacteria. Artreonam is a poor substrate for beta-lactamases, and may even act as an inhibitor. In Gram-negative bacteria, Aztreonam interferes with filamentation, inhibiting cell division and leading to cell death."}, "37085": {"category_aro_name": "isopenicillin N", "category_aro_cvterm_id": "37085", "category_aro_accession": "3000705", "category_aro_class_name": "Antibiotic", "category_aro_description": "Isopenicillin N is a natural penicillin derivative produced by Penicillium chrysogenum with activity similar to penicillin N."}, "35975": {"category_aro_name": "cefazolin", "category_aro_cvterm_id": "35975", "category_aro_accession": "0000058", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefazolin (INN), also known as cefazoline or cephazolin, is a first generation cephalosporin antibiotic. It is administered parenterally, and is active against a broad spectrum of bacteria."}, "37086": {"category_aro_name": "penicillin N", "category_aro_cvterm_id": "37086", "category_aro_accession": "3000706", "category_aro_class_name": "Antibiotic", "category_aro_description": "Penicillin N is a penicillin derivative produced by Cephalosporium acremonium."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35976": {"category_aro_name": "cefepime", "category_aro_cvterm_id": "35976", "category_aro_accession": "0000059", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefepime (INN) is a fourth-generation cephalosporin antibiotic developed in 1994. It contains an aminothiazolyl group that decreases its affinity with beta-lactamases. Cefepime shows high binding affinity with penicillin-binding proteins and has an extended spectrum of activity against Gram-positive and Gram-negative bacteria, with greater activity against both Gram-negative and Gram-positive organisms than third-generation agents."}, "35971": {"category_aro_name": "penicillin", "category_aro_cvterm_id": "35971", "category_aro_accession": "0000054", "category_aro_class_name": "Antibiotic", "category_aro_description": "Penicillin (sometimes abbreviated PCN) is a beta-lactam antibiotic used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms. It works by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35973": {"category_aro_name": "oxacillin", "category_aro_cvterm_id": "35973", "category_aro_accession": "0000056", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxacillin is a penicillinase-resistant beta-lactam. It is similar to methicillin, and has replaced methicillin in clinical use. Oxacillin, especially in combination with other antibiotics, is effective against many penicillinase-producing strains of Staphylococcus aureus and Staphylococcus epidermidis."}, "40928": {"category_aro_name": "cefmetazole", "category_aro_cvterm_id": "40928", "category_aro_accession": "3004001", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefmetazole is a semi-synthetic cephamycin antibiotic with broad spectrum antibiotic activity against both gram-positive and gram-negative bacteria, that disrupt cell wall synthesis through binding to PBPs causing cell lysis."}, "40944": {"category_aro_name": "moxalactam", "category_aro_cvterm_id": "40944", "category_aro_accession": "3004017", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxalactam (Latamoxef) is a broad spectrum cephalosporin (oxacephem) and beta-lactam antibiotic. Moxalactam binding to PBPs inhibits peptidoglycan cross-linkage in the cell wall, resulting in cell death. Moxalactam is proposed to be effective against meningitides as it passes the blood-brain barrier."}, "35930": {"category_aro_name": "cloxacillin", "category_aro_cvterm_id": "35930", "category_aro_accession": "0000011", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cloxacillin is a semisynthetic, isoxazolyl penicillin derivative in the beta-lactam class of antibiotics. It interferes with peptidogylcan synthesis and is commonly used for treating penicillin-resistant Staphylococcus aureus infections."}, "36995": {"category_aro_name": "ceftaroline", "category_aro_cvterm_id": "36995", "category_aro_accession": "3000651", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftaroline is a novel cephalosporin active against methicillin resistant Staphylococcus aureus. Like other cephalosporins it binds penicillin-binding proteins to inhibit cell wall synthesis. It strongly binds with PBP2a, associated with methicillin resistance. It is taken orally as the prodrug ceftaroline fosamil."}, "35979": {"category_aro_name": "ceftriaxone", "category_aro_cvterm_id": "35979", "category_aro_accession": "0000062", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftriaxone is a third-generation cephalosporin antibiotic. The presence of an aminothiazolyl sidechain increases ceftriazone's resistance to beta-lactamases. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria."}, "35934": {"category_aro_name": "methicillin", "category_aro_cvterm_id": "35934", "category_aro_accession": "0000015", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derived from penicillin to combat penicillin-resistance, methicillin is insensitive to beta-lactamases (also known as penicillinases) secreted by many penicillin-resistant bacteria. Methicillin is bactericidal, and acts by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40943": {"category_aro_name": "loracarbef", "category_aro_cvterm_id": "40943", "category_aro_accession": "3004016", "category_aro_class_name": "Antibiotic", "category_aro_description": "Loracarbef is a second-generation cephalosporin (carbacephem) and broad spectrum beta-lactam antibiotic. Loracarbef inhibits PBPs through binding, disrupting peptidoglycan cell wall cross-linkage and resulting in cell death."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36989": {"category_aro_name": "cefotaxime", "category_aro_cvterm_id": "36989", "category_aro_accession": "3000645", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefotaxime is a semisynthetic cephalosporin taken parenterally. It is resistant to most beta-lactamases and active against Gram-negative rods and cocci due to its aminothiazoyl and methoximino functional groups."}, "36988": {"category_aro_name": "cefaclor", "category_aro_cvterm_id": "36988", "category_aro_accession": "3000644", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefaclor is a semisynthetic cephalosporin derived from cephalexin. It has broad-spectrum antibiotic activity."}, "37589": {"category_aro_name": "methicillin resistant PBP2", "category_aro_cvterm_id": "37589", "category_aro_accession": "3001208", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "In methicillin sensitive S. aureus (MSSA), beta-lactams bind to native penicillin-binding proteins (PBPs) and disrupt synthesis of the cell membrane's peptidoglycan layer. In methicillin resistant S. aureus (MRSA), foreign PBP2a acquired by lateral gene transfer is able to perform peptidoglycan synthesis in the presence of beta-lactams."}, "40929": {"category_aro_name": "cefonicid", "category_aro_cvterm_id": "40929", "category_aro_accession": "3004002", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefonicid is a second-generation cephalosporin-class beta-lactam antibiotic with broad spectrum activity. Particularly used against urinary tract infections and lower respiratory infections. Causes cell lysis by inactivation of PBPs through binding, inhibiting peptidoglycan synthesis."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "36980": {"category_aro_name": "flucloxacillin", "category_aro_cvterm_id": "36980", "category_aro_accession": "3000636", "category_aro_class_name": "Antibiotic", "category_aro_description": "Flucloxacillin is similar to cloxacillin, with an extra additional fluorine atom."}, "36983": {"category_aro_name": "mezlocillin", "category_aro_cvterm_id": "36983", "category_aro_accession": "3000639", "category_aro_class_name": "Antibiotic", "category_aro_description": "Mezlocillin is a penicillin derivative taken parenterally."}, "36982": {"category_aro_name": "azlocillin", "category_aro_cvterm_id": "36982", "category_aro_accession": "3000638", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azlocillin is a semisynthetic derivative of penicillin that is notably active against Ps. aeruginosa and other Gram-negative bacteria."}, "36985": {"category_aro_name": "cefalexin", "category_aro_cvterm_id": "36985", "category_aro_accession": "3000641", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalexin is a cephalosporin antibiotic that causes filamentation. It is resistant to staphylococcal beta-lactamase, but degraded by enterobacterial beta-lactamases."}, "36984": {"category_aro_name": "doripenem", "category_aro_cvterm_id": "36984", "category_aro_accession": "3000640", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doripenem is a carbapenem with a broad range of activity against Gram-positive and Gram-negative bacteria, and along with meropenem, it is the most active beta-lactam antibiotic against Pseudomonas aeruginosa. It inhibits bacterial cell wall synthesis."}, "36987": {"category_aro_name": "cefotiam", "category_aro_cvterm_id": "36987", "category_aro_accession": "3000643", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefotiam is a cephalosporin antibiotic with similar activity to cefuroxime but more active against enterobacteria. It is consumed orally as the prodrug cefotiam hexetil."}, "36986": {"category_aro_name": "cefadroxil", "category_aro_cvterm_id": "36986", "category_aro_accession": "3000642", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefadroxil, or p-hydroxycephalexin, is an cephalosporin antibiotic similar to cefalexin."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "37141": {"category_aro_name": "mecillinam", "category_aro_cvterm_id": "37141", "category_aro_accession": "3000761", "category_aro_class_name": "Antibiotic", "category_aro_description": "Mecillinam is a broad-spectrum beta-lactam antibiotic that was semi-synthetically derived to have a different drug centre, being a 6-alpha-amidinopenicillanate instead of a 6-alpha-acylaminopenicillanate. Contrasting most beta-lactam drugs, mecillinam is most active against Gram-negative bacteria. It binds specifically to penicillin binding protein 2 (PBP2)."}, "36979": {"category_aro_name": "dicloxacillin", "category_aro_cvterm_id": "36979", "category_aro_accession": "3000635", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dicloxacillin is a penicillin derivative that has an extra chlorine atom in comparison to cloxacillin. While more active than cloxacillin, its high affinity for serum protein reduces its activity in human serum in vitro."}, "36978": {"category_aro_name": "propicillin", "category_aro_cvterm_id": "36978", "category_aro_accession": "3000634", "category_aro_class_name": "Antibiotic", "category_aro_description": "Propicillin is an orally taken penicillin derivative that has high absorption but poor activity."}, "35978": {"category_aro_name": "ceftobiprole", "category_aro_cvterm_id": "35978", "category_aro_accession": "0000061", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftobiprole (Zeftera/Zevtera) is a next generation (5th generation) cephalosporin antibiotic with activity against methicillin-resistant Staphylococcus aureus, penicillin-resistant Streptococcus pneumoniae, Pseudomonas aeruginosa, and Enterococci. Ceftobiprole inhibits transpeptidases essential to building cell walls, and is a poor substrate for most beta-lactamases."}, "36976": {"category_aro_name": "benzylpenicillin", "category_aro_cvterm_id": "36976", "category_aro_accession": "3000632", "category_aro_class_name": "Antibiotic", "category_aro_description": "Benzylpenicillin, commonly referred to as penicillin G, is effective against both Gram-positive and Gram-negative bacteria. It is unstable in acid."}, "36977": {"category_aro_name": "phenoxymethylpenicillin", "category_aro_cvterm_id": "36977", "category_aro_accession": "3000633", "category_aro_class_name": "Antibiotic", "category_aro_description": "Phenoxymethylpenicillin, or penicillin V, is a penicillin derivative that is acid stable but less active than benzylpenicillin (penicillin G)."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35961": {"category_aro_name": "carbenicillin", "category_aro_cvterm_id": "35961", "category_aro_accession": "0000043", "category_aro_class_name": "Antibiotic", "category_aro_description": "Carbenicillin is a semi-synthetic antibiotic belonging to the carboxypenicillin subgroup of the penicillins. It has gram-negative coverage which includes Pseudomonas aeruginosa but limited gram-positive coverage. The carboxypenicillins are susceptible to degradation by beta-lactamase enzymes. Carbenicillin antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40933": {"category_aro_name": "ceftiofur", "category_aro_cvterm_id": "40933", "category_aro_accession": "3004006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftiofur is a third-generation broad spectrum cephalosporin and beta-lactam antibiotic. It causes cell lysis by disrupting peptidoglycan cross-linkage and cell wall formation by binding to PBPs."}, "40932": {"category_aro_name": "cefprozil", "category_aro_cvterm_id": "40932", "category_aro_accession": "3004005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefprozil is a cephalosporin and beta-lactam antibiotic with bactericidal activity. It selectively binds to PBPs and inhibits peptidoglycan synthesis, a major cell wall component, resulting in cell lysis."}, "40935": {"category_aro_name": "cephapirin", "category_aro_cvterm_id": "40935", "category_aro_accession": "3004008", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cephapirin is a first-generation cephalosporin and broad spectrum beta-lactam antibiotic. Inactivation of penicillin-binding proteins through cephapirin binding disrupts peptidoglycan cross-linking, resulting in cell lysis."}, "40934": {"category_aro_name": "ceftizoxime", "category_aro_cvterm_id": "40934", "category_aro_accession": "3004007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftizoxime is a third-generation cephalosporin and broad spectrum beta-lactam antibiotic. Ceftizoxime causes bacterial cell lysis through peptidoglycan cross-linking inhibition by binding to PBPs."}, "35987": {"category_aro_name": "ertapenem", "category_aro_cvterm_id": "35987", "category_aro_accession": "0000070", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ertapenem is a carbapenem antibiotic and is highly resistant to beta-lactamases like other carbapenems. It inhibits bacterial cell wall synthesis."}, "40936": {"category_aro_name": "cefradine", "category_aro_cvterm_id": "40936", "category_aro_accession": "3004009", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefradine is a first-generation cephalosporin and broad spectrum beta-lactam antibiotic. Cefradine binding to penicillin-binding proteins disrupts cell wall peptidoglycan cross-linkage, resulting in cell lysis."}}}}, "1244": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "38788": {"category_aro_name": "OXY beta-lactamase", "category_aro_cvterm_id": "38788", "category_aro_accession": "3002388", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXY beta-lactamases are chromosomal class A beta-lactamases that are found in Klebsiella oxytoca. At constitutive low levels, OXY beta-lactamases confer resistance to aminopenicillins and carboxypenicillins. At high induced levels, OXY beta-lactamases confer resistance to penicillins, cephalosporins and aztreonam."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "647": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1246": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36480": {"category_aro_name": "AAC(2')", "category_aro_cvterm_id": "36480", "category_aro_accession": "3000341", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 2'."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "649": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1248": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35973": {"category_aro_name": "oxacillin", "category_aro_cvterm_id": "35973", "category_aro_accession": "0000056", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxacillin is a penicillinase-resistant beta-lactam. It is similar to methicillin, and has replaced methicillin in clinical use. Oxacillin, especially in combination with other antibiotics, is effective against many penicillinase-producing strains of Staphylococcus aureus and Staphylococcus epidermidis."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35930": {"category_aro_name": "cloxacillin", "category_aro_cvterm_id": "35930", "category_aro_accession": "0000011", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cloxacillin is a semisynthetic, isoxazolyl penicillin derivative in the beta-lactam class of antibiotics. It interferes with peptidogylcan synthesis and is commonly used for treating penicillin-resistant Staphylococcus aureus infections."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "1539": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "41439": {"category_aro_name": "ANT(3'')", "category_aro_cvterm_id": "41439", "category_aro_accession": "3004275", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotidylylation of streptomycin at the hydroxyl group at position 3''"}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1538": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "339": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "41439": {"category_aro_name": "ANT(3'')", "category_aro_cvterm_id": "41439", "category_aro_accession": "3004275", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotidylylation of streptomycin at the hydroxyl group at position 3''"}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "338": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "38788": {"category_aro_name": "OXY beta-lactamase", "category_aro_cvterm_id": "38788", "category_aro_accession": "3002388", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXY beta-lactamases are chromosomal class A beta-lactamases that are found in Klebsiella oxytoca. At constitutive low levels, OXY beta-lactamases confer resistance to aminopenicillins and carboxypenicillins. At high induced levels, OXY beta-lactamases confer resistance to penicillins, cephalosporins and aztreonam."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "335": {"$update": {"ARO_category": {"39897": {"category_aro_name": "fluoroquinolone resistant parE", "category_aro_cvterm_id": "39897", "category_aro_accession": "3003313", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ParE is a subunit of topoisomerase IV, necessary for cell survival. Point mutations in ParE prevent fluoroquinolones from inhibiting DNA synthesis, thus conferring resistance."}, "37009": {"category_aro_name": "grepafloxacin", "category_aro_cvterm_id": "37009", "category_aro_accession": "3000665", "category_aro_class_name": "Antibiotic", "category_aro_description": "Grepafloxacin is a broad-spectrum antibacterial quinoline. It is no longer taken due to its high toxicity."}, "37008": {"category_aro_name": "trovafloxacin", "category_aro_cvterm_id": "37008", "category_aro_accession": "3000664", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trovafloxacin is a trifluoroquinalone with a broad spectrum of activity that acts by inhibiting the uncoiling of supercoiled DNA. While potent against many Gram-positive and Gram-negative bacteria, it is less active against pseudomonads and Cl. difficile. It is usually taken as the prodrug trovafloxacin mesylate or alatrofloxacin mesylate for oral or intravenous administration, respectively."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "37004": {"category_aro_name": "lomefloxacin", "category_aro_cvterm_id": "37004", "category_aro_accession": "3000660", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lomefloxacin is a difluoropiperazinyl quinolone, sharing similar activities with other fluoroquinolones. It is used to treat urinary tract infections. Relative to other fluoroquinolones, it has a longer half life and has higher serum concentrations."}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37142": {"category_aro_name": "pefloxacin", "category_aro_cvterm_id": "37142", "category_aro_accession": "3000762", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pefloxacin is structurally and functionally similar to norfloxacin. It is poorly active against mycobacteria, while anaerobes are resistant."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35942": {"category_aro_name": "enoxacin", "category_aro_cvterm_id": "35942", "category_aro_accession": "0000023", "category_aro_class_name": "Antibiotic", "category_aro_description": "Enoxacin belongs to a group called fluoroquinolones. Its mode of action depends upon blocking bacterial DNA replication by binding itself to DNA gyrase and causing double-stranded breaks in the bacterial chromosome."}}}}, "334": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35990": {"category_aro_name": "meropenem", "category_aro_cvterm_id": "35990", "category_aro_accession": "0000073", "category_aro_class_name": "Antibiotic", "category_aro_description": "Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}}, "337": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "336": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37697": {"category_aro_name": "non-erm 23S ribosomal RNA methyltransferase (G748)", "category_aro_cvterm_id": "37697", "category_aro_accession": "3001298", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Non-erm 23S ribosomal RNA methyltransferases modify guanosine 748 (E. coli numbering) to confer resistance to some macrolides and lincosamides"}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}, "331": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "330": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "333": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36230": {"category_aro_name": "CARB beta-lactamase", "category_aro_cvterm_id": "36230", "category_aro_accession": "3000091", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CARB beta-lactamases are class A lactamases that can hydrolyze carbenicillin. Many of the PSE beta-lactamases have been renamed as CARB-lactamases with the notable exception of PSE-2 which is now OXA-10."}}}}, "332": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "41362": {"category_aro_name": "R39 beta-lactamase", "category_aro_cvterm_id": "41362", "category_aro_accession": "3004198", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "R39 beta-lactamases are Class A beta-lactamases encoded in Actinomadura R39 with the ability to hydrolyze penicillins."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "2032": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "8": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36196": {"category_aro_name": "NDM beta-lactamase", "category_aro_cvterm_id": "36196", "category_aro_accession": "3000057", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "NDM beta-lactamases or New Delhi metallo-beta-lactamases are class B beta-lactamases that confer resistance to a broad range of antibiotics including carbapenems, cephalosporins and penicillins."}}}}, "1464": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "41439": {"category_aro_name": "ANT(3'')", "category_aro_cvterm_id": "41439", "category_aro_accession": "3004275", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotidylylation of streptomycin at the hydroxyl group at position 3''"}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2119": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "41395": {"category_aro_name": "class C LRA beta-lactamase", "category_aro_cvterm_id": "41395", "category_aro_accession": "3004231", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Beta-lactamases that are part of the LRA gene family and are classified as Class C beta-lactamases."}}}}, "1462": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41390": {"category_aro_name": "subclass B3 LRA beta-lactamase", "category_aro_cvterm_id": "41390", "category_aro_accession": "3004226", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Beta-lactamases that are part of the LRA gene family and are classified as B3 (metallo-) beta-lactamases."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1889": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "40523": {"category_aro_name": "ticarcillin", "category_aro_cvterm_id": "40523", "category_aro_accession": "3003832", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ticarcillin is a carboxypenicillin used for the treatment of Gram-negative bacteria, particularly P. aeruginosa. Ticarcillin's antibiotic properties arise from its ability to prevent cross-linking of peptidoglycan during cell wall synthesis, when the bacteria try to divide, causing cell death."}, "36196": {"category_aro_name": "NDM beta-lactamase", "category_aro_cvterm_id": "36196", "category_aro_accession": "3000057", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "NDM beta-lactamases or New Delhi metallo-beta-lactamases are class B beta-lactamases that confer resistance to a broad range of antibiotics including carbapenems, cephalosporins and penicillins."}}}}, "1888": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36197": {"category_aro_name": "MIR beta-lactamase", "category_aro_cvterm_id": "36197", "category_aro_accession": "3000058", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "MIR beta-lactamases are plasmid-mediated beta-lactamases that confer resistance to oxyimino- and alpha-methoxy beta-lactams"}}}}, "1887": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1886": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36236": {"category_aro_name": "LEN beta-lactamase", "category_aro_cvterm_id": "36236", "category_aro_accession": "3000097", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "LEN beta-lactamases are chromosomal class A beta-lactamases that confer resistance to ampicillin, amoxicillin, carbenicillin, and ticarcillin but not to extended-spectrum beta-lactams."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}}}}, "1885": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "1884": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1883": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36207": {"category_aro_name": "DHA beta-lactamase", "category_aro_cvterm_id": "36207", "category_aro_accession": "3000068", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DHA beta-lactamases are plasmid-mediated AmpC \u03b2-lactamases that confer resistance to cephamycins and oxyimino-cephalosporins."}}}}, "1882": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1881": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1880": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36309": {"category_aro_name": "imipenem", "category_aro_cvterm_id": "36309", "category_aro_accession": "3000170", "category_aro_class_name": "Antibiotic", "category_aro_description": "Imipenem is a broad-spectrum antibiotic and is usually taken with cilastatin, which prevents hydrolysis of imipenem by renal dehydropeptidase-I. It is resistant to hydrolysis by most other beta-lactamases. Notable exceptions are the KPC beta-lactamases and Ambler Class B enzymes."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "40523": {"category_aro_name": "ticarcillin", "category_aro_cvterm_id": "40523", "category_aro_accession": "3003832", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ticarcillin is a carboxypenicillin used for the treatment of Gram-negative bacteria, particularly P. aeruginosa. Ticarcillin's antibiotic properties arise from its ability to prevent cross-linking of peptidoglycan during cell wall synthesis, when the bacteria try to divide, causing cell death."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "2121": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41390": {"category_aro_name": "subclass B3 LRA beta-lactamase", "category_aro_cvterm_id": "41390", "category_aro_accession": "3004226", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Beta-lactamases that are part of the LRA gene family and are classified as B3 (metallo-) beta-lactamases."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "2123": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37716": {"category_aro_name": "pleuromutilin", "category_aro_cvterm_id": "37716", "category_aro_accession": "3001317", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pleuromutilin is a natural product antibiotic produced by Clitopilus passeckerianus. Related antibiotics of clinical significance, such as tiamulin and retapamulin, are semi-synthetic derivatives of this compound."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}}}}}, "2122": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2124": {"$update": {"ARO_category": {"36725": {"category_aro_name": "pulvomycin", "category_aro_cvterm_id": "36725", "category_aro_accession": "3000586", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pulvomycin is a polyketide antibiotic that binds elongation factor Tu (EF-Tu) to inhibit protein biosynthesis by preventing the formation of the ternary complex (EF-Tu*GTP*aa-tRNA). Phenotypically, it was shown that pulvomycin sensitivity is dominant over resistance."}, "37711": {"category_aro_name": "elfamycin resistant EF-Tu", "category_aro_cvterm_id": "37711", "category_aro_accession": "3001312", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Sequence variants of elongation factor Tu that confer resistance to elfamycin antibiotics."}, "37636": {"category_aro_name": "GE2270A", "category_aro_cvterm_id": "37636", "category_aro_accession": "3001237", "category_aro_class_name": "Antibiotic", "category_aro_description": "GE2270A is the model molecule of cyclic thiazolyl peptide elfamycins. GE2270A is produced by Planobispora rosea. Biosynthesis of the molecule has been shown to originate as a ribosomally synthesized peptide that undergoes significant post-translational modification. Clinical use of cyclic thiazolyl peptides is hindered by their low water solubility and bioavailability."}, "39998": {"category_aro_name": "LFF571", "category_aro_cvterm_id": "39998", "category_aro_accession": "3003414", "category_aro_class_name": "Antibiotic", "category_aro_description": "LFF571 is a novel semi-synthetic thiopeptide antibiotic derived from GE2270. It has been shown to possess potent in vitro and in vivo activity against Gram-positive bacteria. It is hypothesized that it a translation inhibitor leading to cell death."}, "37618": {"category_aro_name": "elfamycin antibiotic", "category_aro_cvterm_id": "37618", "category_aro_accession": "3001219", "category_aro_class_name": "Drug Class", "category_aro_description": "Elfamycins are molecules that inhibit bacterial elongation factor Tu (EF-Tu), a key protein which brings aminoacyl-tRNA (aa-tRNA) to the ribosome during protein synthesis. Elfamycins defined by their target (EF-Tu), rather than a conserved chemical backbone. Elfamycins follow two mechanisms to disrupt protein synthesis: 1. kirromycins and enacyloxin fix EF-Tu in the GTP bound conformation and lock EF-Tu onto the ribosome, and 2. pulvomycin and GE2270 cover the binding site of aa-tRNA disallowing EF-Tu from being charged with aa-tRNA. All elfamycins cause increased the affinity of EF-Tu for GTP."}, "37641": {"category_aro_name": "enacyloxin IIa", "category_aro_cvterm_id": "37641", "category_aro_accession": "3001242", "category_aro_class_name": "Antibiotic", "category_aro_description": "Enacyloxin IIa is structurally distinct but acts in a similar mechanism to kirromycin-like elfamycins. It prohibits the transfer of the amino acid at the A site to the elongating peptide chain. It is most likely that the mechanism of action is that EF-Tu*GDP is locked in the EF-Tu*GTP form, and EF-Tu*GDP*aa-tRNA is immobilized on the ribosome. It is an open question whether enacyloxin IIa actually belongs to the kirromycin-like group of elfamycins due to their high similarity."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "948": {"$update": {"ARO_category": {"37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35980": {"category_aro_name": "cefuroxime", "category_aro_cvterm_id": "35980", "category_aro_accession": "0000063", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefuroxime is a second-generation cephalosporin antibiotic with increased stability with beta-lactamases than first-generation cephalosporins. Cefuroxime is active against Gram-positive organisms but less active against methicillin-resistant strains."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36992": {"category_aro_name": "ceftibuten", "category_aro_cvterm_id": "36992", "category_aro_accession": "3000648", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftibuten is a semisynthetic cephalosporin active against Gram-negative bacilli. It is resistant against many plasmid-mediated beta-lactamases."}, "36993": {"category_aro_name": "cefditoren", "category_aro_cvterm_id": "36993", "category_aro_accession": "3000649", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefditoren is a semisynthetic cephalosporin active against staphylococci, streptococci, and and most enterobacteria. It is resistant to staphylococcal and most enterobacterial beta-lactamases, and is usually taken as the prodrug cefditoren pivoxil."}, "35995": {"category_aro_name": "piperacillin", "category_aro_cvterm_id": "35995", "category_aro_accession": "0000078", "category_aro_class_name": "Antibiotic", "category_aro_description": "Piperacillin is an acetylureidopenicillin and has an extended spectrum of targets relative to other beta-lactam antibiotics. It inhibits cell wall synthesis in bacteria, and is usually taken with the beta-lactamase inhibitor tazobactam to overcome penicillin-resistant bacteria."}, "36991": {"category_aro_name": "cefpodoxime", "category_aro_cvterm_id": "36991", "category_aro_accession": "3000647", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefpodoxime is a semisynthetic cephalosporin that acts similarly to cefotaxime with broad-spectrum activity. It is stable to many plasmid-mediated beta-lactamses. Cefpodoxime is consumed as the prodrug cefpodoxime proxetil."}, "36990": {"category_aro_name": "cefixime", "category_aro_cvterm_id": "36990", "category_aro_accession": "3000646", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefixime is a cephalosporin resistant to most beta-lactamases. It is active against many enterobacteria, but activity against staphylococci is poor."}, "36994": {"category_aro_name": "cefdinir", "category_aro_cvterm_id": "36994", "category_aro_accession": "3000650", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefdinir is similar to cefixime with a modified side-chain at its 7-amino position. It also shares similar activity with cefixime but is more active against staphylococci. It has also be shown to enhance phagocytosis."}, "35990": {"category_aro_name": "meropenem", "category_aro_cvterm_id": "35990", "category_aro_accession": "0000073", "category_aro_class_name": "Antibiotic", "category_aro_description": "Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36309": {"category_aro_name": "imipenem", "category_aro_cvterm_id": "36309", "category_aro_accession": "3000170", "category_aro_class_name": "Antibiotic", "category_aro_description": "Imipenem is a broad-spectrum antibiotic and is usually taken with cilastatin, which prevents hydrolysis of imipenem by renal dehydropeptidase-I. It is resistant to hydrolysis by most other beta-lactamases. Notable exceptions are the KPC beta-lactamases and Ambler Class B enzymes."}, "35927": {"category_aro_name": "cefoxitin", "category_aro_cvterm_id": "35927", "category_aro_accession": "0000008", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefoxitin is a cephamycin antibiotic often grouped with the second generation cephalosporins. Cefoxitin is bactericidal and acts by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. Cefoxitin's 7-alpha-methoxy group and 3' leaving group make it a poor substrate for most beta-lactamases."}, "36689": {"category_aro_name": "aztreonam", "category_aro_cvterm_id": "36689", "category_aro_accession": "3000550", "category_aro_class_name": "Antibiotic", "category_aro_description": "Aztreonam was the first monobactam discovered, and is greatly effective against Gram-negative bacteria while inactive against Gram-positive bacteria. Artreonam is a poor substrate for beta-lactamases, and may even act as an inhibitor. In Gram-negative bacteria, Aztreonam interferes with filamentation, inhibiting cell division and leading to cell death."}, "37085": {"category_aro_name": "isopenicillin N", "category_aro_cvterm_id": "37085", "category_aro_accession": "3000705", "category_aro_class_name": "Antibiotic", "category_aro_description": "Isopenicillin N is a natural penicillin derivative produced by Penicillium chrysogenum with activity similar to penicillin N."}, "35975": {"category_aro_name": "cefazolin", "category_aro_cvterm_id": "35975", "category_aro_accession": "0000058", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefazolin (INN), also known as cefazoline or cephazolin, is a first generation cephalosporin antibiotic. It is administered parenterally, and is active against a broad spectrum of bacteria."}, "37086": {"category_aro_name": "penicillin N", "category_aro_cvterm_id": "37086", "category_aro_accession": "3000706", "category_aro_class_name": "Antibiotic", "category_aro_description": "Penicillin N is a penicillin derivative produced by Cephalosporium acremonium."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35976": {"category_aro_name": "cefepime", "category_aro_cvterm_id": "35976", "category_aro_accession": "0000059", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefepime (INN) is a fourth-generation cephalosporin antibiotic developed in 1994. It contains an aminothiazolyl group that decreases its affinity with beta-lactamases. Cefepime shows high binding affinity with penicillin-binding proteins and has an extended spectrum of activity against Gram-positive and Gram-negative bacteria, with greater activity against both Gram-negative and Gram-positive organisms than third-generation agents."}, "35971": {"category_aro_name": "penicillin", "category_aro_cvterm_id": "35971", "category_aro_accession": "0000054", "category_aro_class_name": "Antibiotic", "category_aro_description": "Penicillin (sometimes abbreviated PCN) is a beta-lactam antibiotic used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms. It works by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35973": {"category_aro_name": "oxacillin", "category_aro_cvterm_id": "35973", "category_aro_accession": "0000056", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxacillin is a penicillinase-resistant beta-lactam. It is similar to methicillin, and has replaced methicillin in clinical use. Oxacillin, especially in combination with other antibiotics, is effective against many penicillinase-producing strains of Staphylococcus aureus and Staphylococcus epidermidis."}, "40928": {"category_aro_name": "cefmetazole", "category_aro_cvterm_id": "40928", "category_aro_accession": "3004001", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefmetazole is a semi-synthetic cephamycin antibiotic with broad spectrum antibiotic activity against both gram-positive and gram-negative bacteria, that disrupt cell wall synthesis through binding to PBPs causing cell lysis."}, "40944": {"category_aro_name": "moxalactam", "category_aro_cvterm_id": "40944", "category_aro_accession": "3004017", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxalactam (Latamoxef) is a broad spectrum cephalosporin (oxacephem) and beta-lactam antibiotic. Moxalactam binding to PBPs inhibits peptidoglycan cross-linkage in the cell wall, resulting in cell death. Moxalactam is proposed to be effective against meningitides as it passes the blood-brain barrier."}, "35930": {"category_aro_name": "cloxacillin", "category_aro_cvterm_id": "35930", "category_aro_accession": "0000011", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cloxacillin is a semisynthetic, isoxazolyl penicillin derivative in the beta-lactam class of antibiotics. It interferes with peptidogylcan synthesis and is commonly used for treating penicillin-resistant Staphylococcus aureus infections."}, "36995": {"category_aro_name": "ceftaroline", "category_aro_cvterm_id": "36995", "category_aro_accession": "3000651", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftaroline is a novel cephalosporin active against methicillin resistant Staphylococcus aureus. Like other cephalosporins it binds penicillin-binding proteins to inhibit cell wall synthesis. It strongly binds with PBP2a, associated with methicillin resistance. It is taken orally as the prodrug ceftaroline fosamil."}, "35979": {"category_aro_name": "ceftriaxone", "category_aro_cvterm_id": "35979", "category_aro_accession": "0000062", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftriaxone is a third-generation cephalosporin antibiotic. The presence of an aminothiazolyl sidechain increases ceftriazone's resistance to beta-lactamases. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria."}, "35934": {"category_aro_name": "methicillin", "category_aro_cvterm_id": "35934", "category_aro_accession": "0000015", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derived from penicillin to combat penicillin-resistance, methicillin is insensitive to beta-lactamases (also known as penicillinases) secreted by many penicillin-resistant bacteria. Methicillin is bactericidal, and acts by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40943": {"category_aro_name": "loracarbef", "category_aro_cvterm_id": "40943", "category_aro_accession": "3004016", "category_aro_class_name": "Antibiotic", "category_aro_description": "Loracarbef is a second-generation cephalosporin (carbacephem) and broad spectrum beta-lactam antibiotic. Loracarbef inhibits PBPs through binding, disrupting peptidoglycan cell wall cross-linkage and resulting in cell death."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36989": {"category_aro_name": "cefotaxime", "category_aro_cvterm_id": "36989", "category_aro_accession": "3000645", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefotaxime is a semisynthetic cephalosporin taken parenterally. It is resistant to most beta-lactamases and active against Gram-negative rods and cocci due to its aminothiazoyl and methoximino functional groups."}, "36988": {"category_aro_name": "cefaclor", "category_aro_cvterm_id": "36988", "category_aro_accession": "3000644", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefaclor is a semisynthetic cephalosporin derived from cephalexin. It has broad-spectrum antibiotic activity."}, "37589": {"category_aro_name": "methicillin resistant PBP2", "category_aro_cvterm_id": "37589", "category_aro_accession": "3001208", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "In methicillin sensitive S. aureus (MSSA), beta-lactams bind to native penicillin-binding proteins (PBPs) and disrupt synthesis of the cell membrane's peptidoglycan layer. In methicillin resistant S. aureus (MRSA), foreign PBP2a acquired by lateral gene transfer is able to perform peptidoglycan synthesis in the presence of beta-lactams."}, "40929": {"category_aro_name": "cefonicid", "category_aro_cvterm_id": "40929", "category_aro_accession": "3004002", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefonicid is a second-generation cephalosporin-class beta-lactam antibiotic with broad spectrum activity. Particularly used against urinary tract infections and lower respiratory infections. Causes cell lysis by inactivation of PBPs through binding, inhibiting peptidoglycan synthesis."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "36980": {"category_aro_name": "flucloxacillin", "category_aro_cvterm_id": "36980", "category_aro_accession": "3000636", "category_aro_class_name": "Antibiotic", "category_aro_description": "Flucloxacillin is similar to cloxacillin, with an extra additional fluorine atom."}, "36983": {"category_aro_name": "mezlocillin", "category_aro_cvterm_id": "36983", "category_aro_accession": "3000639", "category_aro_class_name": "Antibiotic", "category_aro_description": "Mezlocillin is a penicillin derivative taken parenterally."}, "36982": {"category_aro_name": "azlocillin", "category_aro_cvterm_id": "36982", "category_aro_accession": "3000638", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azlocillin is a semisynthetic derivative of penicillin that is notably active against Ps. aeruginosa and other Gram-negative bacteria."}, "36985": {"category_aro_name": "cefalexin", "category_aro_cvterm_id": "36985", "category_aro_accession": "3000641", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalexin is a cephalosporin antibiotic that causes filamentation. It is resistant to staphylococcal beta-lactamase, but degraded by enterobacterial beta-lactamases."}, "36984": {"category_aro_name": "doripenem", "category_aro_cvterm_id": "36984", "category_aro_accession": "3000640", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doripenem is a carbapenem with a broad range of activity against Gram-positive and Gram-negative bacteria, and along with meropenem, it is the most active beta-lactam antibiotic against Pseudomonas aeruginosa. It inhibits bacterial cell wall synthesis."}, "36987": {"category_aro_name": "cefotiam", "category_aro_cvterm_id": "36987", "category_aro_accession": "3000643", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefotiam is a cephalosporin antibiotic with similar activity to cefuroxime but more active against enterobacteria. It is consumed orally as the prodrug cefotiam hexetil."}, "36986": {"category_aro_name": "cefadroxil", "category_aro_cvterm_id": "36986", "category_aro_accession": "3000642", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefadroxil, or p-hydroxycephalexin, is an cephalosporin antibiotic similar to cefalexin."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "37141": {"category_aro_name": "mecillinam", "category_aro_cvterm_id": "37141", "category_aro_accession": "3000761", "category_aro_class_name": "Antibiotic", "category_aro_description": "Mecillinam is a broad-spectrum beta-lactam antibiotic that was semi-synthetically derived to have a different drug centre, being a 6-alpha-amidinopenicillanate instead of a 6-alpha-acylaminopenicillanate. Contrasting most beta-lactam drugs, mecillinam is most active against Gram-negative bacteria. It binds specifically to penicillin binding protein 2 (PBP2)."}, "36979": {"category_aro_name": "dicloxacillin", "category_aro_cvterm_id": "36979", "category_aro_accession": "3000635", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dicloxacillin is a penicillin derivative that has an extra chlorine atom in comparison to cloxacillin. While more active than cloxacillin, its high affinity for serum protein reduces its activity in human serum in vitro."}, "36978": {"category_aro_name": "propicillin", "category_aro_cvterm_id": "36978", "category_aro_accession": "3000634", "category_aro_class_name": "Antibiotic", "category_aro_description": "Propicillin is an orally taken penicillin derivative that has high absorption but poor activity."}, "35978": {"category_aro_name": "ceftobiprole", "category_aro_cvterm_id": "35978", "category_aro_accession": "0000061", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftobiprole (Zeftera/Zevtera) is a next generation (5th generation) cephalosporin antibiotic with activity against methicillin-resistant Staphylococcus aureus, penicillin-resistant Streptococcus pneumoniae, Pseudomonas aeruginosa, and Enterococci. Ceftobiprole inhibits transpeptidases essential to building cell walls, and is a poor substrate for most beta-lactamases."}, "36976": {"category_aro_name": "benzylpenicillin", "category_aro_cvterm_id": "36976", "category_aro_accession": "3000632", "category_aro_class_name": "Antibiotic", "category_aro_description": "Benzylpenicillin, commonly referred to as penicillin G, is effective against both Gram-positive and Gram-negative bacteria. It is unstable in acid."}, "36977": {"category_aro_name": "phenoxymethylpenicillin", "category_aro_cvterm_id": "36977", "category_aro_accession": "3000633", "category_aro_class_name": "Antibiotic", "category_aro_description": "Phenoxymethylpenicillin, or penicillin V, is a penicillin derivative that is acid stable but less active than benzylpenicillin (penicillin G)."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35961": {"category_aro_name": "carbenicillin", "category_aro_cvterm_id": "35961", "category_aro_accession": "0000043", "category_aro_class_name": "Antibiotic", "category_aro_description": "Carbenicillin is a semi-synthetic antibiotic belonging to the carboxypenicillin subgroup of the penicillins. It has gram-negative coverage which includes Pseudomonas aeruginosa but limited gram-positive coverage. The carboxypenicillins are susceptible to degradation by beta-lactamase enzymes. Carbenicillin antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40933": {"category_aro_name": "ceftiofur", "category_aro_cvterm_id": "40933", "category_aro_accession": "3004006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftiofur is a third-generation broad spectrum cephalosporin and beta-lactam antibiotic. It causes cell lysis by disrupting peptidoglycan cross-linkage and cell wall formation by binding to PBPs."}, "40932": {"category_aro_name": "cefprozil", "category_aro_cvterm_id": "40932", "category_aro_accession": "3004005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefprozil is a cephalosporin and beta-lactam antibiotic with bactericidal activity. It selectively binds to PBPs and inhibits peptidoglycan synthesis, a major cell wall component, resulting in cell lysis."}, "40935": {"category_aro_name": "cephapirin", "category_aro_cvterm_id": "40935", "category_aro_accession": "3004008", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cephapirin is a first-generation cephalosporin and broad spectrum beta-lactam antibiotic. Inactivation of penicillin-binding proteins through cephapirin binding disrupts peptidoglycan cross-linking, resulting in cell lysis."}, "40934": {"category_aro_name": "ceftizoxime", "category_aro_cvterm_id": "40934", "category_aro_accession": "3004007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftizoxime is a third-generation cephalosporin and broad spectrum beta-lactam antibiotic. Ceftizoxime causes bacterial cell lysis through peptidoglycan cross-linking inhibition by binding to PBPs."}, "35987": {"category_aro_name": "ertapenem", "category_aro_cvterm_id": "35987", "category_aro_accession": "0000070", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ertapenem is a carbapenem antibiotic and is highly resistant to beta-lactamases like other carbapenems. It inhibits bacterial cell wall synthesis."}, "40936": {"category_aro_name": "cefradine", "category_aro_cvterm_id": "40936", "category_aro_accession": "3004009", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefradine is a first-generation cephalosporin and broad spectrum beta-lactam antibiotic. Cefradine binding to penicillin-binding proteins disrupts cell wall peptidoglycan cross-linkage, resulting in cell lysis."}}}}, "949": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "946": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "947": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "944": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36975": {"category_aro_name": "bacitracin F", "category_aro_cvterm_id": "36975", "category_aro_accession": "3000631", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bacitracin F is a component of bacitracin, an antibiotic mixture that interferes with bacterial cell wall synthesis. It is formed when the thiazoline ring of bacitracin A is oxidatively deaminated."}, "36973": {"category_aro_name": "bacitracin A", "category_aro_cvterm_id": "36973", "category_aro_accession": "3000629", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bacitracin A is the primary component of bacitracin. It contains many uncommon amino acids and interferes with bacterial cell wall synthesis."}, "36974": {"category_aro_name": "bacitracin B", "category_aro_cvterm_id": "36974", "category_aro_accession": "3000630", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bacitracin B is a component of bacitracin, an antibiotic mixture that interferes with bacterial cell wall synthesis. It differs from Bacitracin A with a valine instead of an isoleucine in its peptide."}}}}}, "1084": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36236": {"category_aro_name": "LEN beta-lactamase", "category_aro_cvterm_id": "36236", "category_aro_accession": "3000097", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "LEN beta-lactamases are chromosomal class A beta-lactamases that confer resistance to ampicillin, amoxicillin, carbenicillin, and ticarcillin but not to extended-spectrum beta-lactams."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}}}}, "942": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "943": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36714": {"category_aro_name": "vanU", "category_aro_cvterm_id": "36714", "category_aro_accession": "3000575", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanU is a transcriptional activator of vancomycin resistance genes."}}}}, "940": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "941": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36205": {"category_aro_name": "GES beta-lactamase", "category_aro_cvterm_id": "36205", "category_aro_accession": "3000066", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "GES beta-lactamases or Guiana extended-spectrum beta-lactamases are related to the other plasmid-located class A beta-lactamases"}}}}, "2410": {"$update": {"ARO_category": {"37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "36913": {"category_aro_name": "fluoroquinolone resistant parC", "category_aro_cvterm_id": "36913", "category_aro_accession": "3000619", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ParC is a subunit of topoisomerase IV, which decatenates and relaxes DNA to allow access to genes for transcription or translation. Point mutations in ParC prevent fluoroquinolone antibiotics from inhibiting DNA synthesis, and confer low-level resistance. Higher-level resistance results from both gyrA and parC mutations."}, "37142": {"category_aro_name": "pefloxacin", "category_aro_cvterm_id": "37142", "category_aro_accession": "3000762", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pefloxacin is structurally and functionally similar to norfloxacin. It is poorly active against mycobacteria, while anaerobes are resistant."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}}}}, "2659": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "2653": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}}}}}, "2656": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36004": {"category_aro_name": "small multidrug resistance (SMR) antibiotic efflux pump", "category_aro_cvterm_id": "36004", "category_aro_accession": "0010003", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Small multidrug resistance (SMR) proteins are a relatively small family of transporters, restricted to prokaryotic cells. They are also the smallest multidrug transporters, with only four transmembrane alpha-helices and no significant extramembrane domain."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "2655": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36004": {"category_aro_name": "small multidrug resistance (SMR) antibiotic efflux pump", "category_aro_cvterm_id": "36004", "category_aro_accession": "0010003", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Small multidrug resistance (SMR) proteins are a relatively small family of transporters, restricted to prokaryotic cells. They are also the smallest multidrug transporters, with only four transmembrane alpha-helices and no significant extramembrane domain."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}}, "2654": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "133": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36673": {"category_aro_name": "rifapentine", "category_aro_cvterm_id": "36673", "category_aro_accession": "3000534", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifapentine is a semisynthetic rifamycin that inhibits DNA-dependent RNA synthesis. It is often used in the treatment of tuberculosis and leprosy."}, "36669": {"category_aro_name": "rifabutin", "category_aro_cvterm_id": "36669", "category_aro_accession": "3000530", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifabutin is a semisynthetic rifamycin used in tuberculosis therapy. It inhibits DNA-dependent RNA synthesis."}, "36529": {"category_aro_name": "rifampin ADP-ribosyltransferase (Arr)", "category_aro_cvterm_id": "36529", "category_aro_accession": "3000390", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Enzyme responsible for the ADP-ribosylative inactivation of rifampin at the 23-OH position using NAD+."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "36656": {"category_aro_name": "rifaximin", "category_aro_cvterm_id": "36656", "category_aro_accession": "3000517", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifaximin is a semi-synthetic rifamycin used to treat traveller's diarrhea. Rifaximin inhibits RNA synthesis by binding to the beta subunit of bacterial RNA polymerase."}}}}, "132": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "131": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "130": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "137": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36267": {"category_aro_name": "APH(2'')", "category_aro_cvterm_id": "36267", "category_aro_accession": "3000128", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of 2-deoxystreptamine aminoglycosides on the hydroxyl group at position 2''"}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "136": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "135": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36194": {"category_aro_name": "SME beta-lactamase", "category_aro_cvterm_id": "36194", "category_aro_accession": "3000055", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SME beta-lactamases are chromosome-mediated class A beta-lactamases that hydrolyze carbapenems in Serratia marcescens."}}}}, "134": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36673": {"category_aro_name": "rifapentine", "category_aro_cvterm_id": "36673", "category_aro_accession": "3000534", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifapentine is a semisynthetic rifamycin that inhibits DNA-dependent RNA synthesis. It is often used in the treatment of tuberculosis and leprosy."}, "36582": {"category_aro_name": "rifampin glycosyltransferase", "category_aro_cvterm_id": "36582", "category_aro_accession": "3000443", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The enzymatic inactivation of rifampin by glycosylation at the 23-OH position."}, "36669": {"category_aro_name": "rifabutin", "category_aro_cvterm_id": "36669", "category_aro_accession": "3000530", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifabutin is a semisynthetic rifamycin used in tuberculosis therapy. It inhibits DNA-dependent RNA synthesis."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "36656": {"category_aro_name": "rifaximin", "category_aro_cvterm_id": "36656", "category_aro_accession": "3000517", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifaximin is a semi-synthetic rifamycin used to treat traveller's diarrhea. Rifaximin inhibits RNA synthesis by binding to the beta subunit of bacterial RNA polymerase."}}}}, "139": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "138": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$delete": ["36191"], "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "1354": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "39310": {"category_aro_name": "ethambutol resistant arabinosyltransferase", "category_aro_cvterm_id": "39310", "category_aro_accession": "3002876", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Arabinosyl transferases allow for the polymerization of arabinose to form arabinan. Arabinan is required for formation of mycobacterial cell walls and arabinosyltransferases are targets of the drug ethambutol. Mutations in these genes can confer resistance to ethambutol."}, "36666": {"category_aro_name": "polyamine antibiotic", "category_aro_cvterm_id": "36666", "category_aro_accession": "3000527", "category_aro_class_name": "Drug Class", "category_aro_description": "Polyamine antibiotics are organic compounds having two or more primary amino groups."}, "36636": {"category_aro_name": "ethambutol", "category_aro_cvterm_id": "36636", "category_aro_accession": "3000497", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ethambutol is an antimycobacterial drug prescribed to treat tuberculosis. It is usually given in combination with other tuberculosis drugs, such as isoniazid, rifampicin, and pyrazinamide. Ethambutol inhibits arabinosyl biosynthesis, disrupting mycobacterial cell wall formation."}}}}, "2019": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "2018": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "2015": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36207": {"category_aro_name": "DHA beta-lactamase", "category_aro_cvterm_id": "36207", "category_aro_accession": "3000068", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DHA beta-lactamases are plasmid-mediated AmpC \u03b2-lactamases that confer resistance to cephamycins and oxyimino-cephalosporins."}}}}, "2014": {"$update": {"ARO_category": {"41433": {"category_aro_name": "pmr phosphoethanolamine transferase", "category_aro_cvterm_id": "41433", "category_aro_accession": "3004269", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "This family of phosphoethanolamine transferase catalyze the addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) and phosphoethanolamine to lipid A, which impedes the binding of colistin to the cell membrane."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "2017": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "2016": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "2011": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "2010": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "2013": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "37247": {"category_aro_name": "oleandomycin", "category_aro_cvterm_id": "37247", "category_aro_accession": "3000867", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oleandomycin is a 14-membered macrolide produced by Streptomyces antibioticus. It is ssimilar to erythromycin, and contains a desosamine amino sugar and an oleandrose sugar. It targets the 50S ribosomal subunit to prevent protein synthesis."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35974": {"category_aro_name": "telithromycin", "category_aro_cvterm_id": "35974", "category_aro_accession": "0000057", "category_aro_class_name": "Antibiotic", "category_aro_description": "Telithromycin is a semi-synthetic derivative of erythromycin. It is a 14-membered macrolide and is the first ketolide antibiotic to be used in clinics. Telithromycin binds the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36284": {"category_aro_name": "tylosin", "category_aro_cvterm_id": "36284", "category_aro_accession": "3000145", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tylosin is a 16-membered macrolide, naturally produced by Streptomyces fradiae. It interacts with the bacterial ribosome 50S subunit to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36315": {"category_aro_name": "dirithromycin", "category_aro_cvterm_id": "36315", "category_aro_accession": "3000176", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dirithromycin is an oxazine derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome to inhibit bacterial protein synthesis."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "36699": {"category_aro_name": "Erm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36699", "category_aro_accession": "3000560", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Erm proteins are part of the RNA methyltransferase family and methylate A2058 (E. coli nomenclature) of the 23S ribosomal RNA conferring degrees of resistance to Macrolides, Lincosamides and Streptogramin b. This is called the MLSb phenotype."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35946": {"category_aro_name": "roxithromycin", "category_aro_cvterm_id": "35946", "category_aro_accession": "0000027", "category_aro_class_name": "Antibiotic", "category_aro_description": "Roxithromycin is a semi-synthetic, 14-carbon ring macrolide antibiotic derived from erythromycin. It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36295": {"category_aro_name": "spiramycin", "category_aro_cvterm_id": "36295", "category_aro_accession": "3000156", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spiramycin is a 16-membered macrolide and is natural product produced by Streptomyces ambofaciens. It binds to the 50S subunit of bacterial ribosomes and inhibits peptidyl transfer activity to disrupt protein synthesis."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}, "2012": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1793": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36207": {"category_aro_name": "DHA beta-lactamase", "category_aro_cvterm_id": "36207", "category_aro_accession": "3000068", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DHA beta-lactamases are plasmid-mediated AmpC \u03b2-lactamases that confer resistance to cephamycins and oxyimino-cephalosporins."}}}}, "2112": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}}}}}, "934": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "708": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "709": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "704": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "705": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "706": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36293": {"category_aro_name": "APH(7'')", "category_aro_cvterm_id": "36293", "category_aro_accession": "3000154", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of hygromycin on the hydroxyl group at position 7''"}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "707": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "41380": {"category_aro_name": "AIM beta-lactamase", "category_aro_cvterm_id": "41380", "category_aro_accession": "3004216", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "A subclass B3 family of beta-lactamases that confer resistance to a range of beta-lactam antibiotics including penams, cephamycins, and cephalosporins."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "700": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36211": {"category_aro_name": "ACT beta-lactamase", "category_aro_cvterm_id": "36211", "category_aro_accession": "3000072", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "701": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "702": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "703": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36388": {"category_aro_name": "chloramphenicol phosphotransferase", "category_aro_cvterm_id": "36388", "category_aro_accession": "3000249", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ATP-dependent kinase modifies the C-3 hydroxyl group of chloramphenicol. Source is the chloramphenicol producer Streptomyces venezuelae."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "88": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "89": {"$update": {"ARO_category": {"36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35948": {"category_aro_name": "teicoplanin", "category_aro_cvterm_id": "35948", "category_aro_accession": "0000029", "category_aro_class_name": "Antibiotic", "category_aro_description": "Teicoplanin is a glycopeptide antibiotic used in the prophylaxis and treatment of serious infections caused by Gram-positive bacteria. Teicoplanin has a unique acyl-aliphatic chain, and binds to cell wall precursors to inhibit transglycosylation and transpeptidation."}, "36216": {"category_aro_name": "vanY", "category_aro_cvterm_id": "36216", "category_aro_accession": "3000077", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanY is a D,D-carboxypeptidase that cleaves removes the terminal D-Ala from peptidoglycan for the addition of D-Lactate. The D-Ala-D-Lac peptidoglycan subunits have reduced binding affinity with vancomycin compared to D-Ala-D-Ala."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35947": {"category_aro_name": "vancomycin", "category_aro_cvterm_id": "35947", "category_aro_accession": "0000028", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vancomycin is a glycopeptide antibiotic used in the prophylaxis and treatment of infections caused by Gram-positive bacteria. Vancomycin inhibits the synthesis of peptidoglycan, the major component of the cell wall of gram-positive bacteria. Its mechanism of action is unusual in that it acts by binding precursors of peptidoglycan, rather than by interacting with an enzyme."}}}}, "82": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36195": {"category_aro_name": "PER beta-lactamase", "category_aro_cvterm_id": "36195", "category_aro_accession": "3000056", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PER beta-lactamases are plasmid-mediated extended spectrum beta-lactamases found in the Enterobacteriaceae family."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "83": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "80": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36211": {"category_aro_name": "ACT beta-lactamase", "category_aro_cvterm_id": "36211", "category_aro_accession": "3000072", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "81": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36206": {"category_aro_name": "FOX beta-lactamase", "category_aro_cvterm_id": "36206", "category_aro_accession": "3000067", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "FOX beta-lactamases are plasmid-encoded AmpC-type beta-lactamase which conferred resistance to broad-spectrum cephalosporins and cephamycins"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "86": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "87": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "84": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "39772": {"category_aro_name": "GIM beta-lactamase", "category_aro_cvterm_id": "39772", "category_aro_accession": "3003195", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The GIM beta-lactamases are isolated from Pseudomonas aeruginosa. They are located in a distinct integron structure. They confers high broad spectrum resistant, including all \u00df-lactams, aminoglycosides and quinolones."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "85": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "762": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35979": {"category_aro_name": "ceftriaxone", "category_aro_cvterm_id": "35979", "category_aro_accession": "0000062", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftriaxone is a third-generation cephalosporin antibiotic. The presence of an aminothiazolyl sidechain increases ceftriazone's resistance to beta-lactamases. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1658": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38817": {"category_aro_name": "OKP beta-lactamase", "category_aro_cvterm_id": "38817", "category_aro_accession": "3002417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OKP beta-lactamases are chromosomal class A beta-lactamase that confer resistance to penicillins and early cephalosporins in Klebsiella pneumoniae. OKP beta-lactamases can be subdivided into two groups: OKP-A and OKP-B which diverge by about 4.2%"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1659": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1652": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1388": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "37247": {"category_aro_name": "oleandomycin", "category_aro_cvterm_id": "37247", "category_aro_accession": "3000867", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oleandomycin is a 14-membered macrolide produced by Streptomyces antibioticus. It is ssimilar to erythromycin, and contains a desosamine amino sugar and an oleandrose sugar. It targets the 50S ribosomal subunit to prevent protein synthesis."}}}}}, "1650": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1651": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1656": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1657": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1654": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1655": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "586": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "587": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "584": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "41439": {"category_aro_name": "ANT(3'')", "category_aro_cvterm_id": "41439", "category_aro_accession": "3004275", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotidylylation of streptomycin at the hydroxyl group at position 3''"}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "585": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36196": {"category_aro_name": "NDM beta-lactamase", "category_aro_cvterm_id": "36196", "category_aro_accession": "3000057", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "NDM beta-lactamases or New Delhi metallo-beta-lactamases are class B beta-lactamases that confer resistance to a broad range of antibiotics including carbapenems, cephalosporins and penicillins."}}}}, "763": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "36261": {"category_aro_name": "chloramphenicol acetyltransferase (CAT)", "category_aro_cvterm_id": "36261", "category_aro_accession": "3000122", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Inactivates chloramphenicol by addition of an acyl group. cat is used to describe many variants of the chloramphenicol acetyltransferase gene in a range of organisms including Acinetobacter calcoaceticus, Agrobacterium tumefaciens, Bacillus clausii, Bacillus subtilis, Campylobacter coli, Enterococcus faecalis, Enterococcus faecium, Lactococcus lactis, Listeria monocytogenes, Listonella anguillarum Morganella morganii, Photobacterium damselae subsp. piscicida, Proteus mirabilis, Salmonella typhi, Serratia marcescens, Shigella flexneri, Staphylococcus aureus, Staphylococcus haemolyticus, Staphylococcus intermedius, Streptococcus agalactiae, Streptococcus suis and Streptomyces acrimycini"}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "583": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "580": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "581": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1984": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "588": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38817": {"category_aro_name": "OKP beta-lactamase", "category_aro_cvterm_id": "38817", "category_aro_accession": "3002417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OKP beta-lactamases are chromosomal class A beta-lactamase that confer resistance to penicillins and early cephalosporins in Klebsiella pneumoniae. OKP beta-lactamases can be subdivided into two groups: OKP-A and OKP-B which diverge by about 4.2%"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "589": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1985": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "2839": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "41376": {"category_aro_name": "GOB beta-lactamase", "category_aro_cvterm_id": "41376", "category_aro_accession": "3004212", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The GOB family of beta-lactamases have been discovered in the Elizabethkingia meningoseptica and are classified as subclass B3 beta-lactamase. They confer resistance to cephalosporins, penicillins, and carbapenems."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "2838": {"$update": {"ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "41432": {"category_aro_name": "MCR phosphoethanolamine transferase", "category_aro_cvterm_id": "41432", "category_aro_accession": "3004268", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "A group of mobile colistin resistance genes encode the MCR family of phosphoethanolamine transferases, which catalyze the addition of phosphoethanolamine onto lipid A, thus interfering with the binding of colistin to the cell membrane."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36968": {"category_aro_name": "colistin B", "category_aro_cvterm_id": "36968", "category_aro_accession": "3000624", "category_aro_class_name": "Antibiotic", "category_aro_description": "Colistin B, or polymyxin E2, has a 6-heptanoic acid lipid tail. Polymyxins disrupt the cell membrane of Gram-negative bacteria."}, "36966": {"category_aro_name": "colistin A", "category_aro_cvterm_id": "36966", "category_aro_accession": "3000622", "category_aro_class_name": "Antibiotic", "category_aro_description": "Colistin A, or polymyxin E1, has a 6-octanoic acid lipid tail. Polymyxins disrupt the cell membrane of Gram-negative bacteria."}}}}, "2837": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36267": {"category_aro_name": "APH(2'')", "category_aro_cvterm_id": "36267", "category_aro_accession": "3000128", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of 2-deoxystreptamine aminoglycosides on the hydroxyl group at position 2''"}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "40942": {"category_aro_name": "gentamicin A", "category_aro_cvterm_id": "40942", "category_aro_accession": "3004015", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin A is part of a complex of broad spectrum aminoglycoside antibiotics. Gentamicin inhibits protein synthesis, resulting in bacterial cell death."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2836": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41394": {"category_aro_name": "subclass B1 Bacillus anthracis Bla beta-lactamase", "category_aro_cvterm_id": "41394", "category_aro_accession": "3004230", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Beta-lactamases belonging to the Bla genes from Bacillus anthracis that are classified as subclass B1 beta-lactamases."}}}}, "2835": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}}}}}, "2834": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$delete": ["35950", "40134"], "$insert": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "41263": {"category_aro_name": "Ethambutol resistant iniB", "category_aro_cvterm_id": "41263", "category_aro_accession": "3004136", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations occurring in the iniB region of the iniBAC operon shown to confer resistance to ethambutol"}, "36666": {"category_aro_name": "polyamine antibiotic", "category_aro_cvterm_id": "36666", "category_aro_accession": "3000527", "category_aro_class_name": "Drug Class", "category_aro_description": "Polyamine antibiotics are organic compounds having two or more primary amino groups."}, "36636": {"category_aro_name": "ethambutol", "category_aro_cvterm_id": "36636", "category_aro_accession": "3000497", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ethambutol is an antimycobacterial drug prescribed to treat tuberculosis. It is usually given in combination with other tuberculosis drugs, such as isoniazid, rifampicin, and pyrazinamide. Ethambutol inhibits arabinosyl biosynthesis, disrupting mycobacterial cell wall formation."}}}}}, "2833": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36600": {"category_aro_name": "florfenicol", "category_aro_cvterm_id": "36600", "category_aro_accession": "3000461", "category_aro_class_name": "Antibiotic", "category_aro_description": "Florfenicol is a fluorine derivative of chloramphenicol, where the nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3) and the hydroxyl group (-OH), by a fluorine group (-F). The action mechanism is the same as chloramphenicol's, where the antibiotic binds to the 23S RNA of the 50S subunit of bacterial ribosomes to inhibit protein synthesis."}, "36284": {"category_aro_name": "tylosin", "category_aro_cvterm_id": "36284", "category_aro_accession": "3000145", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tylosin is a 16-membered macrolide, naturally produced by Streptomyces fradiae. It interacts with the bacterial ribosome 50S subunit to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "41251": {"category_aro_name": "23S rRNA with mutation conferring resistance to macrolide antibiotics", "category_aro_cvterm_id": "41251", "category_aro_accession": "3004125", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotide point mutations in the 23S rRNA subunit may confer resistance to macrolide antibiotics."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "2832": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36480": {"category_aro_name": "AAC(2')", "category_aro_cvterm_id": "36480", "category_aro_accession": "3000341", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 2'."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2831": {"$update": {"ARO_category": {"36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36673": {"category_aro_name": "rifapentine", "category_aro_cvterm_id": "36673", "category_aro_accession": "3000534", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifapentine is a semisynthetic rifamycin that inhibits DNA-dependent RNA synthesis. It is often used in the treatment of tuberculosis and leprosy."}, "36669": {"category_aro_name": "rifabutin", "category_aro_cvterm_id": "36669", "category_aro_accession": "3000530", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifabutin is a semisynthetic rifamycin used in tuberculosis therapy. It inhibits DNA-dependent RNA synthesis."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36349": {"category_aro_name": "rifamycin-resistant beta-subunit of RNA polymerase (rpoB)", "category_aro_cvterm_id": "36349", "category_aro_accession": "3000210", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Rifampin resistant RNA polymerases include amino acids substitutions which disrupt the affinity of rifampin for its binding site. These mutations are frequently concentrated in the rif I region of the beta-subunit and most often involve amino acids which make direct interactions with rifampin. However, mutations which also confer resistance can occur outside this region and may involve amino acids which do not directly make contact with rifampin."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36656": {"category_aro_name": "rifaximin", "category_aro_cvterm_id": "36656", "category_aro_accession": "3000517", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifaximin is a semi-synthetic rifamycin used to treat traveller's diarrhea. Rifaximin inhibits RNA synthesis by binding to the beta subunit of bacterial RNA polymerase."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}}}}, "1983": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36511": {"category_aro_name": "vanT", "category_aro_cvterm_id": "36511", "category_aro_accession": "3000372", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanT is a membrane bound serine racemase, converting L-serine to D-serine. It is associated with VanC, which incorporated D-serine into D-Ala-D-Ser terminal end of peptidoglycan subunits that have a decreased binding affinity with vancomycin. It was isolated from Enterococcus gallinarum."}}}}, "1436": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1437": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}}}}}, "1434": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "37247": {"category_aro_name": "oleandomycin", "category_aro_cvterm_id": "37247", "category_aro_accession": "3000867", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oleandomycin is a 14-membered macrolide produced by Streptomyces antibioticus. It is ssimilar to erythromycin, and contains a desosamine amino sugar and an oleandrose sugar. It targets the 50S ribosomal subunit to prevent protein synthesis."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35974": {"category_aro_name": "telithromycin", "category_aro_cvterm_id": "35974", "category_aro_accession": "0000057", "category_aro_class_name": "Antibiotic", "category_aro_description": "Telithromycin is a semi-synthetic derivative of erythromycin. It is a 14-membered macrolide and is the first ketolide antibiotic to be used in clinics. Telithromycin binds the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36284": {"category_aro_name": "tylosin", "category_aro_cvterm_id": "36284", "category_aro_accession": "3000145", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tylosin is a 16-membered macrolide, naturally produced by Streptomyces fradiae. It interacts with the bacterial ribosome 50S subunit to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36315": {"category_aro_name": "dirithromycin", "category_aro_cvterm_id": "36315", "category_aro_accession": "3000176", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dirithromycin is an oxazine derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome to inhibit bacterial protein synthesis."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "36699": {"category_aro_name": "Erm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36699", "category_aro_accession": "3000560", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Erm proteins are part of the RNA methyltransferase family and methylate A2058 (E. coli nomenclature) of the 23S ribosomal RNA conferring degrees of resistance to Macrolides, Lincosamides and Streptogramin b. This is called the MLSb phenotype."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35946": {"category_aro_name": "roxithromycin", "category_aro_cvterm_id": "35946", "category_aro_accession": "0000027", "category_aro_class_name": "Antibiotic", "category_aro_description": "Roxithromycin is a semi-synthetic, 14-carbon ring macrolide antibiotic derived from erythromycin. It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36295": {"category_aro_name": "spiramycin", "category_aro_cvterm_id": "36295", "category_aro_accession": "3000156", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spiramycin is a 16-membered macrolide and is natural product produced by Streptomyces ambofaciens. It binds to the 50S subunit of bacterial ribosomes and inhibits peptidyl transfer activity to disrupt protein synthesis."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}, "1435": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "1432": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "39310": {"category_aro_name": "ethambutol resistant arabinosyltransferase", "category_aro_cvterm_id": "39310", "category_aro_accession": "3002876", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Arabinosyl transferases allow for the polymerization of arabinose to form arabinan. Arabinan is required for formation of mycobacterial cell walls and arabinosyltransferases are targets of the drug ethambutol. Mutations in these genes can confer resistance to ethambutol."}, "36666": {"category_aro_name": "polyamine antibiotic", "category_aro_cvterm_id": "36666", "category_aro_accession": "3000527", "category_aro_class_name": "Drug Class", "category_aro_description": "Polyamine antibiotics are organic compounds having two or more primary amino groups."}, "36636": {"category_aro_name": "ethambutol", "category_aro_cvterm_id": "36636", "category_aro_accession": "3000497", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ethambutol is an antimycobacterial drug prescribed to treat tuberculosis. It is usually given in combination with other tuberculosis drugs, such as isoniazid, rifampicin, and pyrazinamide. Ethambutol inhibits arabinosyl biosynthesis, disrupting mycobacterial cell wall formation."}}}}, "1433": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1430": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1431": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36205": {"category_aro_name": "GES beta-lactamase", "category_aro_cvterm_id": "36205", "category_aro_accession": "3000066", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "GES beta-lactamases or Guiana extended-spectrum beta-lactamases are related to the other plasmid-located class A beta-lactamases"}}}}, "418": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1981": {"$update": {"ARO_category": {"36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "39340": {"category_aro_name": "van ligase", "category_aro_cvterm_id": "39340", "category_aro_accession": "3002906", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "van ligases synthesize alternative substrates for peptidoglycan synthesis that reduce vancomycin binding affinity."}, "35948": {"category_aro_name": "teicoplanin", "category_aro_cvterm_id": "35948", "category_aro_accession": "0000029", "category_aro_class_name": "Antibiotic", "category_aro_description": "Teicoplanin is a glycopeptide antibiotic used in the prophylaxis and treatment of serious infections caused by Gram-positive bacteria. Teicoplanin has a unique acyl-aliphatic chain, and binds to cell wall precursors to inhibit transglycosylation and transpeptidation."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35947": {"category_aro_name": "vancomycin", "category_aro_cvterm_id": "35947", "category_aro_accession": "0000028", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vancomycin is a glycopeptide antibiotic used in the prophylaxis and treatment of infections caused by Gram-positive bacteria. Vancomycin inhibits the synthesis of peptidoglycan, the major component of the cell wall of gram-positive bacteria. Its mechanism of action is unusual in that it acts by binding precursors of peptidoglycan, rather than by interacting with an enzyme."}}}}, "1438": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1381": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41364": {"category_aro_name": "CcrA beta-lactamase", "category_aro_cvterm_id": "41364", "category_aro_accession": "3004200", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CcrA beta-lactamases are chromosomal-encoded carbapenemase commonly found in Bacteroides fragilis isolates."}}}}, "1260": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36265": {"category_aro_name": "APH(3')", "category_aro_cvterm_id": "36265", "category_aro_accession": "3000126", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Phosphorylation of 2-deoxystreptamine aminoglycosides on the hydroxyl group at position 3'"}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1349": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36199": {"category_aro_name": "IND beta-lactamase", "category_aro_cvterm_id": "36199", "category_aro_accession": "3000060", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "IND beta-lactamases are class B carbapenem-hydrolyzing beta-lactamases"}}}}, "1541": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36211": {"category_aro_name": "ACT beta-lactamase", "category_aro_cvterm_id": "36211", "category_aro_accession": "3000072", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "458": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "459": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "450": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40512": {"category_aro_name": "BAL30072", "category_aro_cvterm_id": "40512", "category_aro_accession": "3003821", "category_aro_class_name": "Antibiotic", "category_aro_description": "BAL30072 is a monocyclic beta-lactam antibiotic belonging to the sulfactams. BAL30072 was found to trigger the spheroplasting and lysis of Escherichia coli rather than the formation of extensive filaments."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "451": {"$update": {"ARO_category": {"41392": {"category_aro_name": "class A LRA beta-lactamase", "category_aro_cvterm_id": "41392", "category_aro_accession": "3004228", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Beta-lactamases that are part of the LRA gene family and are classified as Class A beta-lactamases."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "452": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1343": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1344": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "455": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "39340": {"category_aro_name": "van ligase", "category_aro_cvterm_id": "39340", "category_aro_accession": "3002906", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "van ligases synthesize alternative substrates for peptidoglycan synthesis that reduce vancomycin binding affinity."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "456": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "457": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1082": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "517": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1266": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36368": {"category_aro_name": "ANT(4')", "category_aro_cvterm_id": "36368", "category_aro_accession": "3000229", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotidylylation of 2-deoxystreptamine aminoglycosides at the hydroxyl group at position 4'"}, "35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "656": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "657": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "654": {"$update": {"ARO_category": {"36476": {"category_aro_name": "iclaprim", "category_aro_cvterm_id": "36476", "category_aro_accession": "3000337", "category_aro_class_name": "Antibiotic", "category_aro_description": "Iclaprim is a bactericidal compound that inhibits dihydrofolate reductase. It is used against clinically important Gram-positive pathogens, including methicillin-sensitive Staphylococcus aureus and methicillin-resistant S. aureus."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36408": {"category_aro_name": "brodimoprim", "category_aro_cvterm_id": "36408", "category_aro_accession": "3000269", "category_aro_class_name": "Antibiotic", "category_aro_description": "Brodimoprim is a structural derivative of trimethoprim and an inhibitor of bacterial dihydrofolate reductase. The 4-methoxy group of trimethoprim is replaced with a bromine atom."}, "37617": {"category_aro_name": "trimethoprim resistant dihydrofolate reductase dfr", "category_aro_cvterm_id": "37617", "category_aro_accession": "3001218", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Alternative dihydropteroate synthase dfr present on plasmids produces alternate proteins that are less sensitive to trimethoprim from inhibiting its role in folate synthesis, thus conferring trimethoprim resistance."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36423": {"category_aro_name": "tetroxoprim", "category_aro_cvterm_id": "36423", "category_aro_accession": "3000284", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetroxoprim is a trimethoprim derivative that inhibits bacterial dihydrofolate reductase."}}}}, "655": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "652": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "653": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36461": {"category_aro_name": "AAC(3)", "category_aro_cvterm_id": "36461", "category_aro_accession": "3000322", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 3."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "650": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "41439": {"category_aro_name": "ANT(3'')", "category_aro_cvterm_id": "41439", "category_aro_accession": "3004275", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotidylylation of streptomycin at the hydroxyl group at position 3''"}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1505": {"$update": {"ARO_category": {"37249": {"category_aro_name": "streptothricin acetyltransferase (SAT)", "category_aro_cvterm_id": "37249", "category_aro_accession": "3000869", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "AcetylCoA dependent acetyltransferase that acetylate streptothricins such as nourseothricin at position 16 (beta position of beta-lysine)."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}}}}, "1508": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1509": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "36020": {"category_aro_name": "vanX", "category_aro_cvterm_id": "36020", "category_aro_accession": "3000011", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanX is a D,D-dipeptidase that cleaves D-Ala-D-Ala but not D-Ala-D-Lac, ensuring that the latter dipeptide that has reduced binding affinity with vancomycin is used to synthesize peptidoglycan substrate."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "658": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "516": {"$update": {"ARO_category": {"41433": {"category_aro_name": "pmr phosphoethanolamine transferase", "category_aro_cvterm_id": "41433", "category_aro_accession": "3004269", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "This family of phosphoethanolamine transferase catalyze the addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) and phosphoethanolamine to lipid A, which impedes the binding of colistin to the cell membrane."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "1992": {"$update": {"ARO_category": {"36476": {"category_aro_name": "iclaprim", "category_aro_cvterm_id": "36476", "category_aro_accession": "3000337", "category_aro_class_name": "Antibiotic", "category_aro_description": "Iclaprim is a bactericidal compound that inhibits dihydrofolate reductase. It is used against clinically important Gram-positive pathogens, including methicillin-sensitive Staphylococcus aureus and methicillin-resistant S. aureus."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36408": {"category_aro_name": "brodimoprim", "category_aro_cvterm_id": "36408", "category_aro_accession": "3000269", "category_aro_class_name": "Antibiotic", "category_aro_description": "Brodimoprim is a structural derivative of trimethoprim and an inhibitor of bacterial dihydrofolate reductase. The 4-methoxy group of trimethoprim is replaced with a bromine atom."}, "37617": {"category_aro_name": "trimethoprim resistant dihydrofolate reductase dfr", "category_aro_cvterm_id": "37617", "category_aro_accession": "3001218", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Alternative dihydropteroate synthase dfr present on plasmids produces alternate proteins that are less sensitive to trimethoprim from inhibiting its role in folate synthesis, thus conferring trimethoprim resistance."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36423": {"category_aro_name": "tetroxoprim", "category_aro_cvterm_id": "36423", "category_aro_accession": "3000284", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetroxoprim is a trimethoprim derivative that inhibits bacterial dihydrofolate reductase."}}}}, "2127": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2126": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2129": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2128": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2815": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36600": {"category_aro_name": "florfenicol", "category_aro_cvterm_id": "36600", "category_aro_accession": "3000461", "category_aro_class_name": "Antibiotic", "category_aro_description": "Florfenicol is a fluorine derivative of chloramphenicol, where the nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3) and the hydroxyl group (-OH), by a fluorine group (-F). The action mechanism is the same as chloramphenicol's, where the antibiotic binds to the 23S RNA of the 50S subunit of bacterial ribosomes to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "41251": {"category_aro_name": "23S rRNA with mutation conferring resistance to macrolide antibiotics", "category_aro_cvterm_id": "41251", "category_aro_accession": "3004125", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotide point mutations in the 23S rRNA subunit may confer resistance to macrolide antibiotics."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "945": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "2814": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36600": {"category_aro_name": "florfenicol", "category_aro_cvterm_id": "36600", "category_aro_accession": "3000461", "category_aro_class_name": "Antibiotic", "category_aro_description": "Florfenicol is a fluorine derivative of chloramphenicol, where the nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3) and the hydroxyl group (-OH), by a fluorine group (-F). The action mechanism is the same as chloramphenicol's, where the antibiotic binds to the 23S RNA of the 50S subunit of bacterial ribosomes to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "41251": {"category_aro_name": "23S rRNA with mutation conferring resistance to macrolide antibiotics", "category_aro_cvterm_id": "41251", "category_aro_accession": "3004125", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotide point mutations in the 23S rRNA subunit may confer resistance to macrolide antibiotics."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "1376": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36222": {"category_aro_name": "MOX beta-lactamase", "category_aro_cvterm_id": "36222", "category_aro_accession": "3000083", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "MOX beta-lactamases are plasmid-mediated AmpC-type beta-lactamases."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1081": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "322": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "41375": {"category_aro_name": "FEZ beta-lactamase", "category_aro_cvterm_id": "41375", "category_aro_accession": "3004211", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The FEZ family of beta-lactamases are subclass B3 beta-lactamases that hydrolyze penicillins, cephalosporins, and carbapenems."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}}}}, "323": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "41439": {"category_aro_name": "ANT(3'')", "category_aro_cvterm_id": "41439", "category_aro_accession": "3004275", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotidylylation of streptomycin at the hydroxyl group at position 3''"}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "320": {"$update": {"ARO_category": {"37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "36992": {"category_aro_name": "ceftibuten", "category_aro_cvterm_id": "36992", "category_aro_accession": "3000648", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftibuten is a semisynthetic cephalosporin active against Gram-negative bacilli. It is resistant against many plasmid-mediated beta-lactamases."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36993": {"category_aro_name": "cefditoren", "category_aro_cvterm_id": "36993", "category_aro_accession": "3000649", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefditoren is a semisynthetic cephalosporin active against staphylococci, streptococci, and and most enterobacteria. It is resistant to staphylococcal and most enterobacterial beta-lactamases, and is usually taken as the prodrug cefditoren pivoxil."}, "35995": {"category_aro_name": "piperacillin", "category_aro_cvterm_id": "35995", "category_aro_accession": "0000078", "category_aro_class_name": "Antibiotic", "category_aro_description": "Piperacillin is an acetylureidopenicillin and has an extended spectrum of targets relative to other beta-lactam antibiotics. It inhibits cell wall synthesis in bacteria, and is usually taken with the beta-lactamase inhibitor tazobactam to overcome penicillin-resistant bacteria."}, "36991": {"category_aro_name": "cefpodoxime", "category_aro_cvterm_id": "36991", "category_aro_accession": "3000647", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefpodoxime is a semisynthetic cephalosporin that acts similarly to cefotaxime with broad-spectrum activity. It is stable to many plasmid-mediated beta-lactamses. Cefpodoxime is consumed as the prodrug cefpodoxime proxetil."}, "36990": {"category_aro_name": "cefixime", "category_aro_cvterm_id": "36990", "category_aro_accession": "3000646", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefixime is a cephalosporin resistant to most beta-lactamases. It is active against many enterobacteria, but activity against staphylococci is poor."}, "36994": {"category_aro_name": "cefdinir", "category_aro_cvterm_id": "36994", "category_aro_accession": "3000650", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefdinir is similar to cefixime with a modified side-chain at its 7-amino position. It also shares similar activity with cefixime but is more active against staphylococci. It has also be shown to enhance phagocytosis."}, "35990": {"category_aro_name": "meropenem", "category_aro_cvterm_id": "35990", "category_aro_accession": "0000073", "category_aro_class_name": "Antibiotic", "category_aro_description": "Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36309": {"category_aro_name": "imipenem", "category_aro_cvterm_id": "36309", "category_aro_accession": "3000170", "category_aro_class_name": "Antibiotic", "category_aro_description": "Imipenem is a broad-spectrum antibiotic and is usually taken with cilastatin, which prevents hydrolysis of imipenem by renal dehydropeptidase-I. It is resistant to hydrolysis by most other beta-lactamases. Notable exceptions are the KPC beta-lactamases and Ambler Class B enzymes."}, "35927": {"category_aro_name": "cefoxitin", "category_aro_cvterm_id": "35927", "category_aro_accession": "0000008", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefoxitin is a cephamycin antibiotic often grouped with the second generation cephalosporins. Cefoxitin is bactericidal and acts by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. Cefoxitin's 7-alpha-methoxy group and 3' leaving group make it a poor substrate for most beta-lactamases."}, "36689": {"category_aro_name": "aztreonam", "category_aro_cvterm_id": "36689", "category_aro_accession": "3000550", "category_aro_class_name": "Antibiotic", "category_aro_description": "Aztreonam was the first monobactam discovered, and is greatly effective against Gram-negative bacteria while inactive against Gram-positive bacteria. Artreonam is a poor substrate for beta-lactamases, and may even act as an inhibitor. In Gram-negative bacteria, Aztreonam interferes with filamentation, inhibiting cell division and leading to cell death."}, "35980": {"category_aro_name": "cefuroxime", "category_aro_cvterm_id": "35980", "category_aro_accession": "0000063", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefuroxime is a second-generation cephalosporin antibiotic with increased stability with beta-lactamases than first-generation cephalosporins. Cefuroxime is active against Gram-positive organisms but less active against methicillin-resistant strains."}, "37085": {"category_aro_name": "isopenicillin N", "category_aro_cvterm_id": "37085", "category_aro_accession": "3000705", "category_aro_class_name": "Antibiotic", "category_aro_description": "Isopenicillin N is a natural penicillin derivative produced by Penicillium chrysogenum with activity similar to penicillin N."}, "35975": {"category_aro_name": "cefazolin", "category_aro_cvterm_id": "35975", "category_aro_accession": "0000058", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefazolin (INN), also known as cefazoline or cephazolin, is a first generation cephalosporin antibiotic. It is administered parenterally, and is active against a broad spectrum of bacteria."}, "37086": {"category_aro_name": "penicillin N", "category_aro_cvterm_id": "37086", "category_aro_accession": "3000706", "category_aro_class_name": "Antibiotic", "category_aro_description": "Penicillin N is a penicillin derivative produced by Cephalosporium acremonium."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35976": {"category_aro_name": "cefepime", "category_aro_cvterm_id": "35976", "category_aro_accession": "0000059", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefepime (INN) is a fourth-generation cephalosporin antibiotic developed in 1994. It contains an aminothiazolyl group that decreases its affinity with beta-lactamases. Cefepime shows high binding affinity with penicillin-binding proteins and has an extended spectrum of activity against Gram-positive and Gram-negative bacteria, with greater activity against both Gram-negative and Gram-positive organisms than third-generation agents."}, "35971": {"category_aro_name": "penicillin", "category_aro_cvterm_id": "35971", "category_aro_accession": "0000054", "category_aro_class_name": "Antibiotic", "category_aro_description": "Penicillin (sometimes abbreviated PCN) is a beta-lactam antibiotic used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms. It works by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35973": {"category_aro_name": "oxacillin", "category_aro_cvterm_id": "35973", "category_aro_accession": "0000056", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxacillin is a penicillinase-resistant beta-lactam. It is similar to methicillin, and has replaced methicillin in clinical use. Oxacillin, especially in combination with other antibiotics, is effective against many penicillinase-producing strains of Staphylococcus aureus and Staphylococcus epidermidis."}, "40928": {"category_aro_name": "cefmetazole", "category_aro_cvterm_id": "40928", "category_aro_accession": "3004001", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefmetazole is a semi-synthetic cephamycin antibiotic with broad spectrum antibiotic activity against both gram-positive and gram-negative bacteria, that disrupt cell wall synthesis through binding to PBPs causing cell lysis."}, "40944": {"category_aro_name": "moxalactam", "category_aro_cvterm_id": "40944", "category_aro_accession": "3004017", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxalactam (Latamoxef) is a broad spectrum cephalosporin (oxacephem) and beta-lactam antibiotic. Moxalactam binding to PBPs inhibits peptidoglycan cross-linkage in the cell wall, resulting in cell death. Moxalactam is proposed to be effective against meningitides as it passes the blood-brain barrier."}, "35930": {"category_aro_name": "cloxacillin", "category_aro_cvterm_id": "35930", "category_aro_accession": "0000011", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cloxacillin is a semisynthetic, isoxazolyl penicillin derivative in the beta-lactam class of antibiotics. It interferes with peptidogylcan synthesis and is commonly used for treating penicillin-resistant Staphylococcus aureus infections."}, "36995": {"category_aro_name": "ceftaroline", "category_aro_cvterm_id": "36995", "category_aro_accession": "3000651", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftaroline is a novel cephalosporin active against methicillin resistant Staphylococcus aureus. Like other cephalosporins it binds penicillin-binding proteins to inhibit cell wall synthesis. It strongly binds with PBP2a, associated with methicillin resistance. It is taken orally as the prodrug ceftaroline fosamil."}, "35979": {"category_aro_name": "ceftriaxone", "category_aro_cvterm_id": "35979", "category_aro_accession": "0000062", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftriaxone is a third-generation cephalosporin antibiotic. The presence of an aminothiazolyl sidechain increases ceftriazone's resistance to beta-lactamases. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria."}, "35934": {"category_aro_name": "methicillin", "category_aro_cvterm_id": "35934", "category_aro_accession": "0000015", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derived from penicillin to combat penicillin-resistance, methicillin is insensitive to beta-lactamases (also known as penicillinases) secreted by many penicillin-resistant bacteria. Methicillin is bactericidal, and acts by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40943": {"category_aro_name": "loracarbef", "category_aro_cvterm_id": "40943", "category_aro_accession": "3004016", "category_aro_class_name": "Antibiotic", "category_aro_description": "Loracarbef is a second-generation cephalosporin (carbacephem) and broad spectrum beta-lactam antibiotic. Loracarbef inhibits PBPs through binding, disrupting peptidoglycan cell wall cross-linkage and resulting in cell death."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36989": {"category_aro_name": "cefotaxime", "category_aro_cvterm_id": "36989", "category_aro_accession": "3000645", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefotaxime is a semisynthetic cephalosporin taken parenterally. It is resistant to most beta-lactamases and active against Gram-negative rods and cocci due to its aminothiazoyl and methoximino functional groups."}, "36988": {"category_aro_name": "cefaclor", "category_aro_cvterm_id": "36988", "category_aro_accession": "3000644", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefaclor is a semisynthetic cephalosporin derived from cephalexin. It has broad-spectrum antibiotic activity."}, "40661": {"category_aro_name": "Penicillin-binding protein mutations conferring resistance to beta-lactam antibiotics", "category_aro_cvterm_id": "40661", "category_aro_accession": "3003938", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Mutations in PBP transpeptidases that change the affinity for penicillin thereby conferring resistance to penicillin antibiotics"}, "40929": {"category_aro_name": "cefonicid", "category_aro_cvterm_id": "40929", "category_aro_accession": "3004002", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefonicid is a second-generation cephalosporin-class beta-lactam antibiotic with broad spectrum activity. Particularly used against urinary tract infections and lower respiratory infections. Causes cell lysis by inactivation of PBPs through binding, inhibiting peptidoglycan synthesis."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "36980": {"category_aro_name": "flucloxacillin", "category_aro_cvterm_id": "36980", "category_aro_accession": "3000636", "category_aro_class_name": "Antibiotic", "category_aro_description": "Flucloxacillin is similar to cloxacillin, with an extra additional fluorine atom."}, "36983": {"category_aro_name": "mezlocillin", "category_aro_cvterm_id": "36983", "category_aro_accession": "3000639", "category_aro_class_name": "Antibiotic", "category_aro_description": "Mezlocillin is a penicillin derivative taken parenterally."}, "36982": {"category_aro_name": "azlocillin", "category_aro_cvterm_id": "36982", "category_aro_accession": "3000638", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azlocillin is a semisynthetic derivative of penicillin that is notably active against Ps. aeruginosa and other Gram-negative bacteria."}, "36985": {"category_aro_name": "cefalexin", "category_aro_cvterm_id": "36985", "category_aro_accession": "3000641", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalexin is a cephalosporin antibiotic that causes filamentation. It is resistant to staphylococcal beta-lactamase, but degraded by enterobacterial beta-lactamases."}, "36984": {"category_aro_name": "doripenem", "category_aro_cvterm_id": "36984", "category_aro_accession": "3000640", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doripenem is a carbapenem with a broad range of activity against Gram-positive and Gram-negative bacteria, and along with meropenem, it is the most active beta-lactam antibiotic against Pseudomonas aeruginosa. It inhibits bacterial cell wall synthesis."}, "36987": {"category_aro_name": "cefotiam", "category_aro_cvterm_id": "36987", "category_aro_accession": "3000643", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefotiam is a cephalosporin antibiotic with similar activity to cefuroxime but more active against enterobacteria. It is consumed orally as the prodrug cefotiam hexetil."}, "36986": {"category_aro_name": "cefadroxil", "category_aro_cvterm_id": "36986", "category_aro_accession": "3000642", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefadroxil, or p-hydroxycephalexin, is an cephalosporin antibiotic similar to cefalexin."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "37141": {"category_aro_name": "mecillinam", "category_aro_cvterm_id": "37141", "category_aro_accession": "3000761", "category_aro_class_name": "Antibiotic", "category_aro_description": "Mecillinam is a broad-spectrum beta-lactam antibiotic that was semi-synthetically derived to have a different drug centre, being a 6-alpha-amidinopenicillanate instead of a 6-alpha-acylaminopenicillanate. Contrasting most beta-lactam drugs, mecillinam is most active against Gram-negative bacteria. It binds specifically to penicillin binding protein 2 (PBP2)."}, "36979": {"category_aro_name": "dicloxacillin", "category_aro_cvterm_id": "36979", "category_aro_accession": "3000635", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dicloxacillin is a penicillin derivative that has an extra chlorine atom in comparison to cloxacillin. While more active than cloxacillin, its high affinity for serum protein reduces its activity in human serum in vitro."}, "36978": {"category_aro_name": "propicillin", "category_aro_cvterm_id": "36978", "category_aro_accession": "3000634", "category_aro_class_name": "Antibiotic", "category_aro_description": "Propicillin is an orally taken penicillin derivative that has high absorption but poor activity."}, "35978": {"category_aro_name": "ceftobiprole", "category_aro_cvterm_id": "35978", "category_aro_accession": "0000061", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftobiprole (Zeftera/Zevtera) is a next generation (5th generation) cephalosporin antibiotic with activity against methicillin-resistant Staphylococcus aureus, penicillin-resistant Streptococcus pneumoniae, Pseudomonas aeruginosa, and Enterococci. Ceftobiprole inhibits transpeptidases essential to building cell walls, and is a poor substrate for most beta-lactamases."}, "36976": {"category_aro_name": "benzylpenicillin", "category_aro_cvterm_id": "36976", "category_aro_accession": "3000632", "category_aro_class_name": "Antibiotic", "category_aro_description": "Benzylpenicillin, commonly referred to as penicillin G, is effective against both Gram-positive and Gram-negative bacteria. It is unstable in acid."}, "36977": {"category_aro_name": "phenoxymethylpenicillin", "category_aro_cvterm_id": "36977", "category_aro_accession": "3000633", "category_aro_class_name": "Antibiotic", "category_aro_description": "Phenoxymethylpenicillin, or penicillin V, is a penicillin derivative that is acid stable but less active than benzylpenicillin (penicillin G)."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35961": {"category_aro_name": "carbenicillin", "category_aro_cvterm_id": "35961", "category_aro_accession": "0000043", "category_aro_class_name": "Antibiotic", "category_aro_description": "Carbenicillin is a semi-synthetic antibiotic belonging to the carboxypenicillin subgroup of the penicillins. It has gram-negative coverage which includes Pseudomonas aeruginosa but limited gram-positive coverage. The carboxypenicillins are susceptible to degradation by beta-lactamase enzymes. Carbenicillin antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40933": {"category_aro_name": "ceftiofur", "category_aro_cvterm_id": "40933", "category_aro_accession": "3004006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftiofur is a third-generation broad spectrum cephalosporin and beta-lactam antibiotic. It causes cell lysis by disrupting peptidoglycan cross-linkage and cell wall formation by binding to PBPs."}, "40932": {"category_aro_name": "cefprozil", "category_aro_cvterm_id": "40932", "category_aro_accession": "3004005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefprozil is a cephalosporin and beta-lactam antibiotic with bactericidal activity. It selectively binds to PBPs and inhibits peptidoglycan synthesis, a major cell wall component, resulting in cell lysis."}, "40935": {"category_aro_name": "cephapirin", "category_aro_cvterm_id": "40935", "category_aro_accession": "3004008", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cephapirin is a first-generation cephalosporin and broad spectrum beta-lactam antibiotic. Inactivation of penicillin-binding proteins through cephapirin binding disrupts peptidoglycan cross-linking, resulting in cell lysis."}, "40934": {"category_aro_name": "ceftizoxime", "category_aro_cvterm_id": "40934", "category_aro_accession": "3004007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftizoxime is a third-generation cephalosporin and broad spectrum beta-lactam antibiotic. Ceftizoxime causes bacterial cell lysis through peptidoglycan cross-linking inhibition by binding to PBPs."}, "35987": {"category_aro_name": "ertapenem", "category_aro_cvterm_id": "35987", "category_aro_accession": "0000070", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ertapenem is a carbapenem antibiotic and is highly resistant to beta-lactamases like other carbapenems. It inhibits bacterial cell wall synthesis."}, "40936": {"category_aro_name": "cefradine", "category_aro_cvterm_id": "40936", "category_aro_accession": "3004009", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefradine is a first-generation cephalosporin and broad spectrum beta-lactam antibiotic. Cefradine binding to penicillin-binding proteins disrupts cell wall peptidoglycan cross-linkage, resulting in cell lysis."}}}}, "321": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "326": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "327": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36205": {"category_aro_name": "GES beta-lactamase", "category_aro_cvterm_id": "36205", "category_aro_accession": "3000066", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "GES beta-lactamases or Guiana extended-spectrum beta-lactamases are related to the other plasmid-located class A beta-lactamases"}}}}, "324": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "325": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36236": {"category_aro_name": "LEN beta-lactamase", "category_aro_cvterm_id": "36236", "category_aro_accession": "3000097", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "LEN beta-lactamases are chromosomal class A beta-lactamases that confer resistance to ampicillin, amoxicillin, carbenicillin, and ticarcillin but not to extended-spectrum beta-lactams."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}}}}, "328": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "329": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "2819": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36600": {"category_aro_name": "florfenicol", "category_aro_cvterm_id": "36600", "category_aro_accession": "3000461", "category_aro_class_name": "Antibiotic", "category_aro_description": "Florfenicol is a fluorine derivative of chloramphenicol, where the nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3) and the hydroxyl group (-OH), by a fluorine group (-F). The action mechanism is the same as chloramphenicol's, where the antibiotic binds to the 23S RNA of the 50S subunit of bacterial ribosomes to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "36218": {"category_aro_name": "oxazolidinone antibiotic", "category_aro_cvterm_id": "36218", "category_aro_accession": "3000079", "category_aro_class_name": "Drug Class", "category_aro_description": "Oxazolidinones are a class of synthetic antibiotics discovered the the 1980's. They inhibit protein synthesis by binding to domain V of the 23S rRNA of the 50S subunit of bacterial ribosomes. Linezolid is the only member of this class currently in clinical use."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "41323": {"category_aro_name": "23S rRNA with mutation conferring resistance to oxazolidinone antibiotics", "category_aro_cvterm_id": "41323", "category_aro_accession": "3004172", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 23S rRNA subunit may confer resistance to oxazolidinone antibiotics"}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "1340": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$delete": ["36590"], "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35971": {"category_aro_name": "penicillin", "category_aro_cvterm_id": "35971", "category_aro_accession": "0000054", "category_aro_class_name": "Antibiotic", "category_aro_description": "Penicillin (sometimes abbreviated PCN) is a beta-lactam antibiotic used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms. It works by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "2818": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36600": {"category_aro_name": "florfenicol", "category_aro_cvterm_id": "36600", "category_aro_accession": "3000461", "category_aro_class_name": "Antibiotic", "category_aro_description": "Florfenicol is a fluorine derivative of chloramphenicol, where the nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3) and the hydroxyl group (-OH), by a fluorine group (-F). The action mechanism is the same as chloramphenicol's, where the antibiotic binds to the 23S RNA of the 50S subunit of bacterial ribosomes to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "41251": {"category_aro_name": "23S rRNA with mutation conferring resistance to macrolide antibiotics", "category_aro_cvterm_id": "41251", "category_aro_accession": "3004125", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotide point mutations in the 23S rRNA subunit may confer resistance to macrolide antibiotics."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "2331": {"$update": {"ARO_category": {"$update": {"36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$delete": ["36243"], "$insert": {"35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "41098": {"category_aro_name": "kdpDE", "category_aro_cvterm_id": "41098", "category_aro_accession": "3004046", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "kdpDE is a two-component regulatory system in Escherichia coli, well studied for its role in potassium transport and homeostasis. kdpE is also implicated in virulence loci regulation and overexpression of kdpE is shown to confer resistance to aminoglycoside antibiotics."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}}}}}, "2333": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36236": {"category_aro_name": "LEN beta-lactamase", "category_aro_cvterm_id": "36236", "category_aro_accession": "3000097", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "LEN beta-lactamases are chromosomal class A beta-lactamases that confer resistance to ampicillin, amoxicillin, carbenicillin, and ticarcillin but not to extended-spectrum beta-lactams."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}}}}, "2335": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}}}, "1594": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36515": {"category_aro_name": "streptogramin vgb lyase", "category_aro_cvterm_id": "36515", "category_aro_accession": "3000376", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "vgb (Virginiamycin B) lyase inactivates type B streptogramin antibiotics by linearizing the streptogramin lactone ring at the ester linkage through an elimination mechanism, thus conferring resistance to these compounds."}}}}, "1341": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1995": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2482": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1598": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "2248": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "37139": {"category_aro_name": "fusidic acid", "category_aro_cvterm_id": "37139", "category_aro_accession": "3000759", "category_aro_class_name": "Drug Class", "category_aro_description": "Fusidic acid is the only commercially available fusidane, a group of steroid-like antibiotics. It is most active against Gram-positive bacteria, and acts by inhibiting elongation factor G to block protein synthesis."}, "39459": {"category_aro_name": "fusidic acid inactivation enzyme", "category_aro_cvterm_id": "39459", "category_aro_accession": "3003025", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Enzymes that confer resistance to fusidic acid by inactivation"}}}}, "2249": {"$update": {"ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "40191": {"category_aro_name": "Acinetobacter mutant Lpx gene conferring resistance to colistin", "category_aro_cvterm_id": "40191", "category_aro_accession": "3003581", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These genes are involved in the biosynthesis of lipid A in Gram-negative bacteria and mutations to this gene may cause resistance to antimicrobial peptides that target the outer membrane. Mutation by absence or insertion of ISAba11 sequence is a known cause of resistance in Acinetobacter baumannii\u25bf."}}}}, "2244": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36210": {"category_aro_name": "vanS", "category_aro_cvterm_id": "36210", "category_aro_accession": "3000071", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanS is similar to histidine protein kinases like EnvZ and acts as a response regulator by activating VanR. VanS is required for high level transcription of other van glycopeptide resistance genes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35947": {"category_aro_name": "vancomycin", "category_aro_cvterm_id": "35947", "category_aro_accession": "0000028", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vancomycin is a glycopeptide antibiotic used in the prophylaxis and treatment of infections caused by Gram-positive bacteria. Vancomycin inhibits the synthesis of peptidoglycan, the major component of the cell wall of gram-positive bacteria. Its mechanism of action is unusual in that it acts by binding precursors of peptidoglycan, rather than by interacting with an enzyme."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}}}}, "2245": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "39349": {"category_aro_name": "vanK", "category_aro_cvterm_id": "39349", "category_aro_accession": "3002915", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanK is a member of the Fem family of enzymes that add the cross-bridge amino acids to the stem pentapeptide of cell wall precursors in Streptomyces coelicolor that confers inducible, high-level vancomycin resistance"}}}}, "2246": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36713": {"category_aro_name": "vanR", "category_aro_cvterm_id": "36713", "category_aro_accession": "3000574", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanR is a OmpR-family transcriptional activator in the VanSR regulatory system. When activated by VanS, it promotes cotranscription of VanA, VanH, and VanX."}, "35947": {"category_aro_name": "vancomycin", "category_aro_cvterm_id": "35947", "category_aro_accession": "0000028", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vancomycin is a glycopeptide antibiotic used in the prophylaxis and treatment of infections caused by Gram-positive bacteria. Vancomycin inhibits the synthesis of peptidoglycan, the major component of the cell wall of gram-positive bacteria. Its mechanism of action is unusual in that it acts by binding precursors of peptidoglycan, rather than by interacting with an enzyme."}}}}, "2240": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "41419": {"category_aro_name": "vanJ membrane protein", "category_aro_cvterm_id": "41419", "category_aro_accession": "3004255", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "vanJ and vanJ homologue proteins confer resistance to the teicoplanin."}, "35948": {"category_aro_name": "teicoplanin", "category_aro_cvterm_id": "35948", "category_aro_accession": "0000029", "category_aro_class_name": "Antibiotic", "category_aro_description": "Teicoplanin is a glycopeptide antibiotic used in the prophylaxis and treatment of serious infections caused by Gram-positive bacteria. Teicoplanin has a unique acyl-aliphatic chain, and binds to cell wall precursors to inhibit transglycosylation and transpeptidation."}}}}, "2241": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "39340": {"category_aro_name": "van ligase", "category_aro_cvterm_id": "39340", "category_aro_accession": "3002906", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "van ligases synthesize alternative substrates for peptidoglycan synthesis that reduce vancomycin binding affinity."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "2242": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36011": {"category_aro_name": "vanW", "category_aro_cvterm_id": "36011", "category_aro_accession": "3000002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "vanW is an accessory gene, with unknown function, found on vancomycin resistance operons."}}}}, "2243": {"$update": {"model_sequences": {"$update": {"sequence": {"4230": {"dna_sequence": {"fmax": "709", "fmin": "100", "accession": "NG_055644.1", "strand": "+", "sequence": "ATGAAAAGTGATTTTGTCTTTGTGGACGAGTTGGTATCAGGAATACGTTGGGATGCTAAATACGCCACCTGGGATAATTTTACCGGCAAACCGGTGGACGGCTATGCAGCCAATCGAATTGTCGGTACGAGAGCGTTGTGCGCGGCCTTGGAAAAAGCACGGGAAAACGCCGCATCCTTGGGCTTTGGCTTGCTTCTTTGGGATGGTTACCGCCCTCAATGCGCCGTAGATTGCTTTCTGCGCTGGTCTAAACAGCCGGAAGATGGCCGGACGAAACAGAAACACTATCCGAATATTGACCGATCCGAGATCATCGAAAAAGGATATGTGGCTGCCAAGTCGGGCCACAGCCGGGGCAGCGCCATTGATTTAACCCTTTATCATTTAGCTTCCGGAACACTTGTGCCCATGGGCGGTGATTTTGATTTGATGGATTCAGTCTCACATCATGGCGCACATGGAATCAGCCAAGCCGAAGCGAGAAACCGTCAATATCTTTGTTCGATCATGGAGGCCAGCGGTTTTGTTTCCTACGCTTGCGAGTGGTGGCATTACAGCCTGAAACACGAACCTTATCCCAACACTTACTTTGATTTTCTCATCGCCTAG"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Desulfitobacterium hafniense", "NCBI_taxonomy_id": "49338", "NCBI_taxonomy_cvterm_id": "40382"}, "protein_sequence": {"accession": "WP_015943580.1", "sequence": "MKSDFVFVDELVSGIRWDAKYATWDNFTGKPVDGYAANRIVGTRALCAALEKARENAASLGFGLLLWDGYRPQCAVDCFLRWSKQPEDGRTKQKHYPNIDRSEIIEKGYVAAKSGHSRGSAIDLTLYHLASGTLVPMGGDFDLMDSVSHHGAHGISQAEARNRQYLCSIMEASGFVSYACEWWHYSLKHEPYPNTYFDFLIA"}}}}}, "ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "36020": {"category_aro_name": "vanX", "category_aro_cvterm_id": "36020", "category_aro_accession": "3000011", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanX is a D,D-dipeptidase that cleaves D-Ala-D-Ala but not D-Ala-D-Lac, ensuring that the latter dipeptide that has reduced binding affinity with vancomycin is used to synthesize peptidoglycan substrate."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "995": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "994": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "997": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "996": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "991": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36459": {"category_aro_name": "macrolide esterase", "category_aro_cvterm_id": "36459", "category_aro_accession": "3000320", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Hydrolytic enzymes that cleave the macrocycle lactone ring of macrolide antibiotics."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35946": {"category_aro_name": "roxithromycin", "category_aro_cvterm_id": "35946", "category_aro_accession": "0000027", "category_aro_class_name": "Antibiotic", "category_aro_description": "Roxithromycin is a semi-synthetic, 14-carbon ring macrolide antibiotic derived from erythromycin. It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}, "990": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36206": {"category_aro_name": "FOX beta-lactamase", "category_aro_cvterm_id": "36206", "category_aro_accession": "3000067", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "FOX beta-lactamases are plasmid-encoded AmpC-type beta-lactamase which conferred resistance to broad-spectrum cephalosporins and cephamycins"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "993": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "992": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "999": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36236": {"category_aro_name": "LEN beta-lactamase", "category_aro_cvterm_id": "36236", "category_aro_accession": "3000097", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "LEN beta-lactamases are chromosomal class A beta-lactamases that confer resistance to ampicillin, amoxicillin, carbenicillin, and ticarcillin but not to extended-spectrum beta-lactams."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}}}}, "998": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "120": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "41439": {"category_aro_name": "ANT(3'')", "category_aro_cvterm_id": "41439", "category_aro_accession": "3004275", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotidylylation of streptomycin at the hydroxyl group at position 3''"}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "121": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35973": {"category_aro_name": "oxacillin", "category_aro_cvterm_id": "35973", "category_aro_accession": "0000056", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxacillin is a penicillinase-resistant beta-lactam. It is similar to methicillin, and has replaced methicillin in clinical use. Oxacillin, especially in combination with other antibiotics, is effective against many penicillinase-producing strains of Staphylococcus aureus and Staphylococcus epidermidis."}, "35930": {"category_aro_name": "cloxacillin", "category_aro_cvterm_id": "35930", "category_aro_accession": "0000011", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cloxacillin is a semisynthetic, isoxazolyl penicillin derivative in the beta-lactam class of antibiotics. It interferes with peptidogylcan synthesis and is commonly used for treating penicillin-resistant Staphylococcus aureus infections."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "122": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "123": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "124": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36199": {"category_aro_name": "IND beta-lactamase", "category_aro_cvterm_id": "36199", "category_aro_accession": "3000060", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "IND beta-lactamases are class B carbapenem-hydrolyzing beta-lactamases"}}}}, "125": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "126": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "127": {"$update": {"ARO_category": {"37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37015": {"category_aro_name": "tiamulin", "category_aro_cvterm_id": "37015", "category_aro_accession": "3000671", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tiamulin is a pleuromutilin derivative currently used in veterinary medicine. It binds to the 23 rRNA of the 50S ribosomal subunit to inhibit protein translation."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35989": {"category_aro_name": "linezolid", "category_aro_cvterm_id": "35989", "category_aro_accession": "0000072", "category_aro_class_name": "Antibiotic", "category_aro_description": "Linezolid is a synthetic antibiotic used for the treatment of serious infections caused by Gram-positive bacteria that are resistant to several other antibiotics. It inhibits protein synthesis by binding to domain V of the 23S rRNA of the 50S subunit of bacterial ribosomes."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36218": {"category_aro_name": "oxazolidinone antibiotic", "category_aro_cvterm_id": "36218", "category_aro_accession": "3000079", "category_aro_class_name": "Drug Class", "category_aro_description": "Oxazolidinones are a class of synthetic antibiotics discovered the the 1980's. They inhibit protein synthesis by binding to domain V of the 23S rRNA of the 50S subunit of bacterial ribosomes. Linezolid is the only member of this class currently in clinical use."}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36341": {"category_aro_name": "Cfr 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36341", "category_aro_accession": "3000202", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Cfr genes produce enzymes which catalyze the methylation of the 23S rRNA subunit at position 8 of adenine-2503. Methylation of 23S rRNA at this site confers resistance to some classes of antibiotics, including streptogramins, chloramphenicols, florfenicols, linezolids and clindamycin."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}, "128": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}}}}}, "129": {"$update": {"ARO_category": {"35944": {"category_aro_name": "fosfomycin", "category_aro_cvterm_id": "35944", "category_aro_accession": "0000025", "category_aro_class_name": "Drug Class", "category_aro_description": "Fosfomycin (also known as phosphomycin and phosphonomycin) is a broad-spectrum antibiotic produced by certain Streptomyces species. It is effective on gram positive and negative bacteria as it targets the cell wall, an essential feature shared by both bacteria. Its specific target is MurA (MurZ in E.coli), which attaches phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine, a step of commitment to cell wall synthesis. In the active site of MurA, the active cysteine molecule is alkylated which stops the catalytic reaction."}, "36272": {"category_aro_name": "fosfomycin thiol transferase", "category_aro_cvterm_id": "36272", "category_aro_accession": "3000133", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Catalyzes the addition of a thiol group from a nucleophilic molecule to fosfomycin."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "2068": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "36269": {"category_aro_name": "edeine A", "category_aro_cvterm_id": "36269", "category_aro_accession": "3000130", "category_aro_class_name": "Antibiotic", "category_aro_description": "Edeine A is a subtype of the peptide antibiotic edeine, composed of beta-tyr, beta-ser, diaminopropionic acid, diaminohydroxyazelaic acid, glycine, and spermidine. Edeine A is a mixture of edeine A1 and its inactive isomer, edeine A2. Edeines bind to the 30S subunit to block fMet-tRNA interaction at the P site, inhibiting protein synthesis and subsequent structure/function processes critical for life or replication."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40278": {"category_aro_name": "16s rRNA with mutation conferring resistance to peptide antibiotics", "category_aro_cvterm_id": "40278", "category_aro_accession": "3003667", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to peptide antibiotics."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "36273": {"category_aro_name": "edeine B", "category_aro_cvterm_id": "36273", "category_aro_accession": "3000134", "category_aro_class_name": "Antibiotic", "category_aro_description": "Edeine B is a subtype of the peptide antibiotic edeine, composed of beta-tyr, beta-ser, diaminopropionic acid, diaminohydroxyazelaic acid, glycine, and guanylspermidine. Edeine B is a mixture of edeine B1 and its inactive isomer, edeine B2. Edeines bind to the 30S subunit to block fMet-tRNA interaction at the P site, inhibiting protein synthesis and subsequent structure/function processes critical for life or replication. Edeine B has also been shown to inhibit septation and cause filamentous morphology, also leading to cell death."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "36275": {"category_aro_name": "edeine F", "category_aro_cvterm_id": "36275", "category_aro_accession": "3000136", "category_aro_class_name": "Antibiotic", "category_aro_description": "Edeine F is a subtype of edeine similar to edeine B with beta-tyr replaced by beta-phe-beta-ala. Edeines bind to the 30S subunit to block fMet-tRNA interaction at the P site, inhibiting protein synthesis and subsequent structure/function processes critical for life or replication."}, "36274": {"category_aro_name": "edeine D", "category_aro_cvterm_id": "36274", "category_aro_accession": "3000135", "category_aro_class_name": "Antibiotic", "category_aro_description": "Edeine D is a subtype of edeine similar to edeine A with the beta-tyr replaced by beta-phe-beta-ala. Edeines bind to the 30S subunit to block fMet-tRNA interaction at the P site, inhibiting protein synthesis and subsequent structure/function processes critical for life or replication."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2069": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2798": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$delete": ["35950"], "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35976": {"category_aro_name": "cefepime", "category_aro_cvterm_id": "35976", "category_aro_accession": "0000059", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefepime (INN) is a fourth-generation cephalosporin antibiotic developed in 1994. It contains an aminothiazolyl group that decreases its affinity with beta-lactamases. Cefepime shows high binding affinity with penicillin-binding proteins and has an extended spectrum of activity against Gram-positive and Gram-negative bacteria, with greater activity against both Gram-negative and Gram-positive organisms than third-generation agents."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "2799": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35976": {"category_aro_name": "cefepime", "category_aro_cvterm_id": "35976", "category_aro_accession": "0000059", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefepime (INN) is a fourth-generation cephalosporin antibiotic developed in 1994. It contains an aminothiazolyl group that decreases its affinity with beta-lactamases. Cefepime shows high binding affinity with penicillin-binding proteins and has an extended spectrum of activity against Gram-positive and Gram-negative bacteria, with greater activity against both Gram-negative and Gram-positive organisms than third-generation agents."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "2060": {"$update": {"ARO_category": {"35944": {"category_aro_name": "fosfomycin", "category_aro_cvterm_id": "35944", "category_aro_accession": "0000025", "category_aro_class_name": "Drug Class", "category_aro_description": "Fosfomycin (also known as phosphomycin and phosphonomycin) is a broad-spectrum antibiotic produced by certain Streptomyces species. It is effective on gram positive and negative bacteria as it targets the cell wall, an essential feature shared by both bacteria. Its specific target is MurA (MurZ in E.coli), which attaches phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine, a step of commitment to cell wall synthesis. In the active site of MurA, the active cysteine molecule is alkylated which stops the catalytic reaction."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41409": {"category_aro_name": "fosC phosphotransferase family", "category_aro_cvterm_id": "41409", "category_aro_accession": "3004245", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The fosC family of phosphotransferases phosphorylate fosfomycin to confer resistance and have been found in various bacterial isolates."}}}}, "2061": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "2062": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36472": {"category_aro_name": "macrolide phosphotransferase (MPH)", "category_aro_cvterm_id": "36472", "category_aro_accession": "3000333", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Macrolide phosphotransferases (MPH) are enzymes encoded by macrolide phosphotransferase genes (mph genes). These enzymes phosphorylate macrolides in GTP dependent manner at 2'-OH of desosamine sugar thereby inactivating them. Characterized MPH's are differentiated based on their substrate specificity."}, "37247": {"category_aro_name": "oleandomycin", "category_aro_cvterm_id": "37247", "category_aro_accession": "3000867", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oleandomycin is a 14-membered macrolide produced by Streptomyces antibioticus. It is ssimilar to erythromycin, and contains a desosamine amino sugar and an oleandrose sugar. It targets the 50S ribosomal subunit to prevent protein synthesis."}, "35974": {"category_aro_name": "telithromycin", "category_aro_cvterm_id": "35974", "category_aro_accession": "0000057", "category_aro_class_name": "Antibiotic", "category_aro_description": "Telithromycin is a semi-synthetic derivative of erythromycin. It is a 14-membered macrolide and is the first ketolide antibiotic to be used in clinics. Telithromycin binds the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36315": {"category_aro_name": "dirithromycin", "category_aro_cvterm_id": "36315", "category_aro_accession": "3000176", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dirithromycin is an oxazine derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome to inhibit bacterial protein synthesis."}, "36284": {"category_aro_name": "tylosin", "category_aro_cvterm_id": "36284", "category_aro_accession": "3000145", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tylosin is a 16-membered macrolide, naturally produced by Streptomyces fradiae. It interacts with the bacterial ribosome 50S subunit to inhibit protein synthesis."}, "35946": {"category_aro_name": "roxithromycin", "category_aro_cvterm_id": "35946", "category_aro_accession": "0000027", "category_aro_class_name": "Antibiotic", "category_aro_description": "Roxithromycin is a semi-synthetic, 14-carbon ring macrolide antibiotic derived from erythromycin. It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36295": {"category_aro_name": "spiramycin", "category_aro_cvterm_id": "36295", "category_aro_accession": "3000156", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spiramycin is a 16-membered macrolide and is natural product produced by Streptomyces ambofaciens. It binds to the 50S subunit of bacterial ribosomes and inhibits peptidyl transfer activity to disrupt protein synthesis."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}, "2063": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41361": {"category_aro_name": "blaZ beta-lactamase", "category_aro_cvterm_id": "41361", "category_aro_accession": "3004197", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "blaZ beta-lactamases are Class A beta-lactamases. These beta-lactamases are responsible for penicillin resistance in Staphylococcus aures."}}}}, "2064": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "2065": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "2066": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$delete": ["35950", "36409"], "$insert": {"40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36383": {"category_aro_name": "reduced permeability to antibiotic", "category_aro_cvterm_id": "36383", "category_aro_accession": "3000244", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Reduction in permeability to antibiotic, generally through reduced production of porins, can provide resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "41445": {"category_aro_name": "General Bacterial Porin with reduced permeability to beta-lactams", "category_aro_cvterm_id": "41445", "category_aro_accession": "3004281", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These are GBPs that are associated with decreased susceptibility to beta-lactams either through mutations in the porin protein, absence of the porin protein, or expression of the porin protein."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}}}}}, "2795": {"$update": {"ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "41432": {"category_aro_name": "MCR phosphoethanolamine transferase", "category_aro_cvterm_id": "41432", "category_aro_accession": "3004268", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "A group of mobile colistin resistance genes encode the MCR family of phosphoethanolamine transferases, which catalyze the addition of phosphoethanolamine onto lipid A, thus interfering with the binding of colistin to the cell membrane."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36968": {"category_aro_name": "colistin B", "category_aro_cvterm_id": "36968", "category_aro_accession": "3000624", "category_aro_class_name": "Antibiotic", "category_aro_description": "Colistin B, or polymyxin E2, has a 6-heptanoic acid lipid tail. Polymyxins disrupt the cell membrane of Gram-negative bacteria."}, "36966": {"category_aro_name": "colistin A", "category_aro_cvterm_id": "36966", "category_aro_accession": "3000622", "category_aro_class_name": "Antibiotic", "category_aro_description": "Colistin A, or polymyxin E1, has a 6-octanoic acid lipid tail. Polymyxins disrupt the cell membrane of Gram-negative bacteria."}}}}, "2666": {"$update": {"ARO_category": {"36659": {"category_aro_name": "isoniazid", "category_aro_cvterm_id": "36659", "category_aro_accession": "3000520", "category_aro_class_name": "Drug Class", "category_aro_description": "Isoniazid is an organic compound that is the first-line anti tuberculosis medication in prevention and treatment. As a prodrug, it is activated by mycobacterial catalase-peroxidases such as M. tuberculosis KatG. Isoniazid inhibits mycolic acid synthesis, which prevents cell wall synthesis in mycobacteria."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "41434": {"category_aro_name": "antibiotic resistant fabI", "category_aro_cvterm_id": "41434", "category_aro_accession": "3004270", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "fabI is a enoyl-acyl carrier reductase used in lipid metabolism and fatty acid biosynthesis. The bacterial biocide Triclosan blocks the final reduction step in fatty acid elongation, inhibiting biosynthesis. Point mutations in fabI can confer resistance to Triclosan and Isoniazid."}}, "ARO_name": "Escherichia coli fabI mutations conferring resistance to isoniazid and triclosan"}}, "2660": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "2661": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "1748": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"37716": {"category_aro_name": "pleuromutilin", "category_aro_cvterm_id": "37716", "category_aro_accession": "3001317", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pleuromutilin is a natural product antibiotic produced by Clitopilus passeckerianus. Related antibiotics of clinical significance, such as tiamulin and retapamulin, are semi-synthetic derivatives of this compound."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}}, "1749": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1645": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36211": {"category_aro_name": "ACT beta-lactamase", "category_aro_cvterm_id": "36211", "category_aro_accession": "3000072", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1644": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1647": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "1646": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1641": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1640": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36197": {"category_aro_name": "MIR beta-lactamase", "category_aro_cvterm_id": "36197", "category_aro_accession": "3000058", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "MIR beta-lactamases are plasmid-mediated beta-lactamases that confer resistance to oxyimino- and alpha-methoxy beta-lactams"}}}}, "1643": {"$update": {"ARO_category": {"41433": {"category_aro_name": "pmr phosphoethanolamine transferase", "category_aro_cvterm_id": "41433", "category_aro_accession": "3004269", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "This family of phosphoethanolamine transferase catalyze the addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) and phosphoethanolamine to lipid A, which impedes the binding of colistin to the cell membrane."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "1642": {"$update": {"ARO_category": {"37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37015": {"category_aro_name": "tiamulin", "category_aro_cvterm_id": "37015", "category_aro_accession": "3000671", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tiamulin is a pleuromutilin derivative currently used in veterinary medicine. It binds to the 23 rRNA of the 50S ribosomal subunit to inhibit protein translation."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35989": {"category_aro_name": "linezolid", "category_aro_cvterm_id": "35989", "category_aro_accession": "0000072", "category_aro_class_name": "Antibiotic", "category_aro_description": "Linezolid is a synthetic antibiotic used for the treatment of serious infections caused by Gram-positive bacteria that are resistant to several other antibiotics. It inhibits protein synthesis by binding to domain V of the 23S rRNA of the 50S subunit of bacterial ribosomes."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36218": {"category_aro_name": "oxazolidinone antibiotic", "category_aro_cvterm_id": "36218", "category_aro_accession": "3000079", "category_aro_class_name": "Drug Class", "category_aro_description": "Oxazolidinones are a class of synthetic antibiotics discovered the the 1980's. They inhibit protein synthesis by binding to domain V of the 23S rRNA of the 50S subunit of bacterial ribosomes. Linezolid is the only member of this class currently in clinical use."}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36341": {"category_aro_name": "Cfr 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36341", "category_aro_accession": "3000202", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Cfr genes produce enzymes which catalyze the methylation of the 23S rRNA subunit at position 8 of adenine-2503. Methylation of 23S rRNA at this site confers resistance to some classes of antibiotics, including streptogramins, chloramphenicols, florfenicols, linezolids and clindamycin."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}, "1396": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1649": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36207": {"category_aro_name": "DHA beta-lactamase", "category_aro_cvterm_id": "36207", "category_aro_accession": "3000068", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DHA beta-lactamases are plasmid-mediated AmpC \u03b2-lactamases that confer resistance to cephamycins and oxyimino-cephalosporins."}}}}, "1648": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1742": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1743": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1252": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}}}}}, "579": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37716": {"category_aro_name": "pleuromutilin", "category_aro_cvterm_id": "37716", "category_aro_accession": "3001317", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pleuromutilin is a natural product antibiotic produced by Clitopilus passeckerianus. Related antibiotics of clinical significance, such as tiamulin and retapamulin, are semi-synthetic derivatives of this compound."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}}}}}, "578": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "573": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "572": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "571": {"$update": {"ARO_category": {"37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37015": {"category_aro_name": "tiamulin", "category_aro_cvterm_id": "37015", "category_aro_accession": "3000671", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tiamulin is a pleuromutilin derivative currently used in veterinary medicine. It binds to the 23 rRNA of the 50S ribosomal subunit to inhibit protein translation."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35989": {"category_aro_name": "linezolid", "category_aro_cvterm_id": "35989", "category_aro_accession": "0000072", "category_aro_class_name": "Antibiotic", "category_aro_description": "Linezolid is a synthetic antibiotic used for the treatment of serious infections caused by Gram-positive bacteria that are resistant to several other antibiotics. It inhibits protein synthesis by binding to domain V of the 23S rRNA of the 50S subunit of bacterial ribosomes."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36218": {"category_aro_name": "oxazolidinone antibiotic", "category_aro_cvterm_id": "36218", "category_aro_accession": "3000079", "category_aro_class_name": "Drug Class", "category_aro_description": "Oxazolidinones are a class of synthetic antibiotics discovered the the 1980's. They inhibit protein synthesis by binding to domain V of the 23S rRNA of the 50S subunit of bacterial ribosomes. Linezolid is the only member of this class currently in clinical use."}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36341": {"category_aro_name": "Cfr 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36341", "category_aro_accession": "3000202", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Cfr genes produce enzymes which catalyze the methylation of the 23S rRNA subunit at position 8 of adenine-2503. Methylation of 23S rRNA at this site confers resistance to some classes of antibiotics, including streptogramins, chloramphenicols, florfenicols, linezolids and clindamycin."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}, "570": {"$update": {"ARO_category": {"36463": {"category_aro_name": "sulfadiazine", "category_aro_cvterm_id": "36463", "category_aro_accession": "3000324", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfadiazine is a potent inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids."}, "36466": {"category_aro_name": "sulfadoxine", "category_aro_cvterm_id": "36466", "category_aro_accession": "3000327", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfadoxine is an inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids."}, "37027": {"category_aro_name": "sulfacetamide", "category_aro_cvterm_id": "37027", "category_aro_accession": "3000683", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfacetamide is a very soluable sulfonamide antibiotic previously used to treat urinary tract infections. Its relatively low activity and toxicity to those with Stevens-Johnson syndrome have reduced its use and availability."}, "36464": {"category_aro_name": "sulfadimidine", "category_aro_cvterm_id": "36464", "category_aro_accession": "3000325", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfadimidine is an alkaline sulfonamide antibiotic that inhibits dihydropteroate synthase, and enzyme in the tetrahydrofolic acid biosynthesis pathway. This interferes with the production of folate, which is a precursor to many amino acids and nucleotides."}, "37028": {"category_aro_name": "mafenide", "category_aro_cvterm_id": "37028", "category_aro_accession": "3000684", "category_aro_class_name": "Antibiotic", "category_aro_description": "Mafenide is a sulfonamide used topically for treating burns."}, "39999": {"category_aro_name": "sulfonamide resistant dihydropteroate synthase folP", "category_aro_cvterm_id": "39999", "category_aro_accession": "3003415", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in dihydropteroate synthase folP prevent sulfonamide antibiotics from inhibiting its role in folate synthesis, thus conferring sulfonamide resistance"}, "36469": {"category_aro_name": "sulfisoxazole", "category_aro_cvterm_id": "36469", "category_aro_accession": "3000330", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfisoxazole is an inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids."}, "39996": {"category_aro_name": "dapsone", "category_aro_cvterm_id": "39996", "category_aro_accession": "3003412", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dapsone is a sulfone in which it inhibits folic acid synthesis, such as the dihydropteroate synthase."}, "37043": {"category_aro_name": "sulfamethizole", "category_aro_cvterm_id": "37043", "category_aro_accession": "3000699", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfamethizole is a short-acting sulfonamide that inhibits dihydropteroate synthetase."}, "39985": {"category_aro_name": "sulfone antibiotic", "category_aro_cvterm_id": "39985", "category_aro_accession": "3003401", "category_aro_class_name": "Drug Class", "category_aro_description": "A sulfone active against a wide range of bacteria but mainly employed for its actions against mycobacterium laprae. Its mechanism of action involves inhibition of folic acid synthesis in susceptible organisms."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37042": {"category_aro_name": "sulfasalazine", "category_aro_cvterm_id": "37042", "category_aro_accession": "3000698", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfasalazine is a derivative of the early sulfonamide sulfapyridine (salicylazosulfapyridine). It was developed to increase water solubility and is taken orally for ulcerative colitis."}, "36468": {"category_aro_name": "sulfamethoxazole", "category_aro_cvterm_id": "36468", "category_aro_accession": "3000329", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfamethoxazole is a sulfonamide antibiotic usually taken with trimethoprim, a diaminopyrimidine antibiotic. Sulfamethoxazole inhibits dihydropteroate synthase, essential to tetrahydrofolic acid biosynthesis. This pathway generates compounds used in the synthesis of many amino acids and nucleotides."}, "36421": {"category_aro_name": "sulfonamide antibiotic", "category_aro_cvterm_id": "36421", "category_aro_accession": "3000282", "category_aro_class_name": "Drug Class", "category_aro_description": "Sulfonamides are broad spectrum, synthetic antibiotics that contain the sulfonamide group. Sulfonamides inhibit dihydropteroate synthase, which catalyzes the conversion of p-aminobenzoic acid to dihydropteroic acid as part of the tetrahydrofolic acid biosynthetic pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor of many nucleotides and amino acids. Many sulfamides are taken with trimethoprim, an inhibitor of dihydrofolate reductase, also disturbing the trihydrofolic acid synthesis pathway."}}}}, "577": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "576": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36197": {"category_aro_name": "MIR beta-lactamase", "category_aro_cvterm_id": "36197", "category_aro_accession": "3000058", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "MIR beta-lactamases are plasmid-mediated beta-lactamases that confer resistance to oxyimino- and alpha-methoxy beta-lactams"}}}}, "575": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36461": {"category_aro_name": "AAC(3)", "category_aro_cvterm_id": "36461", "category_aro_accession": "3000322", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 3."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "574": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2808": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36600": {"category_aro_name": "florfenicol", "category_aro_cvterm_id": "36600", "category_aro_accession": "3000461", "category_aro_class_name": "Antibiotic", "category_aro_description": "Florfenicol is a fluorine derivative of chloramphenicol, where the nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3) and the hydroxyl group (-OH), by a fluorine group (-F). The action mechanism is the same as chloramphenicol's, where the antibiotic binds to the 23S RNA of the 50S subunit of bacterial ribosomes to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "41251": {"category_aro_name": "23S rRNA with mutation conferring resistance to macrolide antibiotics", "category_aro_cvterm_id": "41251", "category_aro_accession": "3004125", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotide point mutations in the 23S rRNA subunit may confer resistance to macrolide antibiotics."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "2802": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35974": {"category_aro_name": "telithromycin", "category_aro_cvterm_id": "35974", "category_aro_accession": "0000057", "category_aro_class_name": "Antibiotic", "category_aro_description": "Telithromycin is a semi-synthetic derivative of erythromycin. It is a 14-membered macrolide and is the first ketolide antibiotic to be used in clinics. Telithromycin binds the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36600": {"category_aro_name": "florfenicol", "category_aro_cvterm_id": "36600", "category_aro_accession": "3000461", "category_aro_class_name": "Antibiotic", "category_aro_description": "Florfenicol is a fluorine derivative of chloramphenicol, where the nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3) and the hydroxyl group (-OH), by a fluorine group (-F). The action mechanism is the same as chloramphenicol's, where the antibiotic binds to the 23S RNA of the 50S subunit of bacterial ribosomes to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "41251": {"category_aro_name": "23S rRNA with mutation conferring resistance to macrolide antibiotics", "category_aro_cvterm_id": "41251", "category_aro_accession": "3004125", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotide point mutations in the 23S rRNA subunit may confer resistance to macrolide antibiotics."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}, "2803": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "40948": {"category_aro_name": "para-aminosalicylic acid", "category_aro_cvterm_id": "40948", "category_aro_accession": "3004019", "category_aro_class_name": "Drug Class", "category_aro_description": "para-aminosalicylic acid (PAS) is an anti-tubercular antibiotic agent, often used in conjunction with Isoniazid for treatment of M. tuberculosis infections. PAS diminishes bacterial cell growth by limiting folic acid production."}, "41299": {"category_aro_name": "aminosalicylate resistant thymidylate synthase", "category_aro_cvterm_id": "41299", "category_aro_accession": "3004152", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Antibiotic resistant form of thymidylate synthase (synthetase), an enzyme that catalyzes the conversion of dUMP to dTMP in nucleotide biosynthesis. Loss-of-function mutations in thymidylate synthase confer resistance to p-aminosalicylic acid by disrupting the substrate-binding affinity and catalytic activity."}}, "model_param": {"$update": {"41345": {"$update": {"param_value": {"$delete": ["8082"]}}}, "41343": {"$update": {"param_value": {"$insert": {"8082": "-nt472:C"}}}}}}}}, "2800": {"$update": {"ARO_category": {"35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35989": {"category_aro_name": "linezolid", "category_aro_cvterm_id": "35989", "category_aro_accession": "0000072", "category_aro_class_name": "Antibiotic", "category_aro_description": "Linezolid is a synthetic antibiotic used for the treatment of serious infections caused by Gram-positive bacteria that are resistant to several other antibiotics. It inhibits protein synthesis by binding to domain V of the 23S rRNA of the 50S subunit of bacterial ribosomes."}, "36600": {"category_aro_name": "florfenicol", "category_aro_cvterm_id": "36600", "category_aro_accession": "3000461", "category_aro_class_name": "Antibiotic", "category_aro_description": "Florfenicol is a fluorine derivative of chloramphenicol, where the nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3) and the hydroxyl group (-OH), by a fluorine group (-F). The action mechanism is the same as chloramphenicol's, where the antibiotic binds to the 23S RNA of the 50S subunit of bacterial ribosomes to inhibit protein synthesis."}, "36218": {"category_aro_name": "oxazolidinone antibiotic", "category_aro_cvterm_id": "36218", "category_aro_accession": "3000079", "category_aro_class_name": "Drug Class", "category_aro_description": "Oxazolidinones are a class of synthetic antibiotics discovered the the 1980's. They inhibit protein synthesis by binding to domain V of the 23S rRNA of the 50S subunit of bacterial ribosomes. Linezolid is the only member of this class currently in clinical use."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36341": {"category_aro_name": "Cfr 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36341", "category_aro_accession": "3000202", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Cfr genes produce enzymes which catalyze the methylation of the 23S rRNA subunit at position 8 of adenine-2503. Methylation of 23S rRNA at this site confers resistance to some classes of antibiotics, including streptogramins, chloramphenicols, florfenicols, linezolids and clindamycin."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "2806": {"$update": {"ARO_category": {"41349": {"category_aro_name": "23S rRNA with mutation conferring resistance to lincosamide antibiotics", "category_aro_cvterm_id": "41349", "category_aro_accession": "3004187", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 23S rRNA subunit may confer resistance to lincosamide antibiotics by reducing antibiotic binding-site affinity."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36600": {"category_aro_name": "florfenicol", "category_aro_cvterm_id": "36600", "category_aro_accession": "3000461", "category_aro_class_name": "Antibiotic", "category_aro_description": "Florfenicol is a fluorine derivative of chloramphenicol, where the nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3) and the hydroxyl group (-OH), by a fluorine group (-F). The action mechanism is the same as chloramphenicol's, where the antibiotic binds to the 23S RNA of the 50S subunit of bacterial ribosomes to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "2807": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36600": {"category_aro_name": "florfenicol", "category_aro_cvterm_id": "36600", "category_aro_accession": "3000461", "category_aro_class_name": "Antibiotic", "category_aro_description": "Florfenicol is a fluorine derivative of chloramphenicol, where the nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3) and the hydroxyl group (-OH), by a fluorine group (-F). The action mechanism is the same as chloramphenicol's, where the antibiotic binds to the 23S RNA of the 50S subunit of bacterial ribosomes to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "41251": {"category_aro_name": "23S rRNA with mutation conferring resistance to macrolide antibiotics", "category_aro_cvterm_id": "41251", "category_aro_accession": "3004125", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotide point mutations in the 23S rRNA subunit may confer resistance to macrolide antibiotics."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "2804": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "41302": {"category_aro_name": "aminosalicylate resistant dihydrofolate synthase", "category_aro_cvterm_id": "41302", "category_aro_accession": "3004155", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Dihydrofolate synthase (synthetase) enzymes resistant to aminosalicylates (inc. para-aminosalicylic acid) caused by mutation. Dihydrofolate synthase is required for bioactivation of p-aminosalicylic acid, and mutation in dihydrofolate synthase inhibits production of the dihydrofolate analog hydroxyl-dihydrofolate, thus preventing activation and conferring resistance."}, "40948": {"category_aro_name": "para-aminosalicylic acid", "category_aro_cvterm_id": "40948", "category_aro_accession": "3004019", "category_aro_class_name": "Drug Class", "category_aro_description": "para-aminosalicylic acid (PAS) is an anti-tubercular antibiotic agent, often used in conjunction with Isoniazid for treatment of M. tuberculosis infections. PAS diminishes bacterial cell growth by limiting folic acid production."}}}}, "2805": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "37716": {"category_aro_name": "pleuromutilin", "category_aro_cvterm_id": "37716", "category_aro_accession": "3001317", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pleuromutilin is a natural product antibiotic produced by Clitopilus passeckerianus. Related antibiotics of clinical significance, such as tiamulin and retapamulin, are semi-synthetic derivatives of this compound."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36600": {"category_aro_name": "florfenicol", "category_aro_cvterm_id": "36600", "category_aro_accession": "3000461", "category_aro_class_name": "Antibiotic", "category_aro_description": "Florfenicol is a fluorine derivative of chloramphenicol, where the nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3) and the hydroxyl group (-OH), by a fluorine group (-F). The action mechanism is the same as chloramphenicol's, where the antibiotic binds to the 23S RNA of the 50S subunit of bacterial ribosomes to inhibit protein synthesis."}, "41330": {"category_aro_name": "23S rRNA with mutation conferring resistance to pleuromutilin antibiotics", "category_aro_cvterm_id": "41330", "category_aro_accession": "3004178", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 23S rRNA subunit may confer resistance to pleuromutilin antibiotics"}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "1421": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1420": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "41439": {"category_aro_name": "ANT(3'')", "category_aro_cvterm_id": "41439", "category_aro_accession": "3004275", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotidylylation of streptomycin at the hydroxyl group at position 3''"}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1423": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1422": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36212": {"category_aro_name": "ACC beta-lactamase", "category_aro_cvterm_id": "36212", "category_aro_accession": "3000073", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACC beta-lactamases or Ambler class C beta-lactamases are AmpC beta-lactamases. They possess an interesting resistance phenotype due to their low activity against cephamycins."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "1425": {"$update": {"ARO_category": {"36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36673": {"category_aro_name": "rifapentine", "category_aro_cvterm_id": "36673", "category_aro_accession": "3000534", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifapentine is a semisynthetic rifamycin that inhibits DNA-dependent RNA synthesis. It is often used in the treatment of tuberculosis and leprosy."}, "41407": {"category_aro_name": "RbpA bacterial RNA polymerase-binding protein", "category_aro_cvterm_id": "41407", "category_aro_accession": "3004243", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "RbpA is a family of bacterial RNA polymerase-binding proteins, which acts as a transcription factor and binds to the sigma subunit of RNA polymerase."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "36669": {"category_aro_name": "rifabutin", "category_aro_cvterm_id": "36669", "category_aro_accession": "3000530", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifabutin is a semisynthetic rifamycin used in tuberculosis therapy. It inhibits DNA-dependent RNA synthesis."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "36656": {"category_aro_name": "rifaximin", "category_aro_cvterm_id": "36656", "category_aro_accession": "3000517", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifaximin is a semi-synthetic rifamycin used to treat traveller's diarrhea. Rifaximin inhibits RNA synthesis by binding to the beta subunit of bacterial RNA polymerase."}}}}, "1394": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1427": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}}}}}, "1426": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1429": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1428": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36720": {"category_aro_name": "CphA beta-lactamase", "category_aro_cvterm_id": "36720", "category_aro_accession": "3000581", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CphA is an Ambler Class B MBL; subclass B2 originally isolated from Aeromonas hydrophilia. This enzyme has specific activity against carbapenems and is active as a mono-zinc protein."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "2404": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "40463": {"category_aro_name": "nybomycin", "category_aro_cvterm_id": "40463", "category_aro_accession": "3003780", "category_aro_class_name": "Drug Class", "category_aro_description": "A heterocyclic antibiotic that targets mutant gyrA (type II topoisomerase) containing an S84L substitution, counteracting acquired quinolone resistance. It is effective against quinolone-resistant Gram-positive bacteria including S. aureus and E. faecalis. Due to its ability to counteract quinolone resistance by targeting the mutant form of the gyrA protein, it is classified as a reverse antibiotic (RA)."}, "39876": {"category_aro_name": "fluoroquinolone resistant gyrA", "category_aro_cvterm_id": "39876", "category_aro_accession": "3003292", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DNA gyrase is responsible for DNA supercoiling and consists of two alpha and two beta subunits. GyrA point mutations confer resistance by preventing fluoroquinolone antibiotics from binding the alpha-subunit."}}}}, "731": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "730": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2405": {"$update": {"ARO_category": {"37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "36913": {"category_aro_name": "fluoroquinolone resistant parC", "category_aro_cvterm_id": "36913", "category_aro_accession": "3000619", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ParC is a subunit of topoisomerase IV, which decatenates and relaxes DNA to allow access to genes for transcription or translation. Point mutations in ParC prevent fluoroquinolone antibiotics from inhibiting DNA synthesis, and confer low-level resistance. Higher-level resistance results from both gyrA and parC mutations."}, "37142": {"category_aro_name": "pefloxacin", "category_aro_cvterm_id": "37142", "category_aro_accession": "3000762", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pefloxacin is structurally and functionally similar to norfloxacin. It is poorly active against mycobacteria, while anaerobes are resistant."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}}}}, "735": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35996": {"category_aro_name": "clavulanate", "category_aro_cvterm_id": "35996", "category_aro_accession": "0000079", "category_aro_class_name": "Adjuvant", "category_aro_description": "Clavulanic acid is a beta-lactamase inhibitor (marketed by GlaxoSmithKline, formerly Beecham) combined with penicillin group antibiotics to overcome certain types of antibiotic resistance. It is used to overcome resistance in bacteria that secrete beta-lactamase, which otherwise inactivates most penicillins."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "734": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36511": {"category_aro_name": "vanT", "category_aro_cvterm_id": "36511", "category_aro_accession": "3000372", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanT is a membrane bound serine racemase, converting L-serine to D-serine. It is associated with VanC, which incorporated D-serine into D-Ala-D-Ser terminal end of peptidoglycan subunits that have a decreased binding affinity with vancomycin. It was isolated from Enterococcus gallinarum."}}}}, "737": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36197": {"category_aro_name": "MIR beta-lactamase", "category_aro_cvterm_id": "36197", "category_aro_accession": "3000058", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "MIR beta-lactamases are plasmid-mediated beta-lactamases that confer resistance to oxyimino- and alpha-methoxy beta-lactams"}}}}, "736": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36673": {"category_aro_name": "rifapentine", "category_aro_cvterm_id": "36673", "category_aro_accession": "3000534", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifapentine is a semisynthetic rifamycin that inhibits DNA-dependent RNA synthesis. It is often used in the treatment of tuberculosis and leprosy."}, "36669": {"category_aro_name": "rifabutin", "category_aro_cvterm_id": "36669", "category_aro_accession": "3000530", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifabutin is a semisynthetic rifamycin used in tuberculosis therapy. It inhibits DNA-dependent RNA synthesis."}, "36529": {"category_aro_name": "rifampin ADP-ribosyltransferase (Arr)", "category_aro_cvterm_id": "36529", "category_aro_accession": "3000390", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Enzyme responsible for the ADP-ribosylative inactivation of rifampin at the 23-OH position using NAD+."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "36656": {"category_aro_name": "rifaximin", "category_aro_cvterm_id": "36656", "category_aro_accession": "3000517", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifaximin is a semi-synthetic rifamycin used to treat traveller's diarrhea. Rifaximin inhibits RNA synthesis by binding to the beta subunit of bacterial RNA polymerase."}}}}, "739": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "41395": {"category_aro_name": "class C LRA beta-lactamase", "category_aro_cvterm_id": "41395", "category_aro_accession": "3004231", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Beta-lactamases that are part of the LRA gene family and are classified as Class C beta-lactamases."}}}}, "738": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1359": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1358": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "469": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "468": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "37247": {"category_aro_name": "oleandomycin", "category_aro_cvterm_id": "37247", "category_aro_accession": "3000867", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oleandomycin is a 14-membered macrolide produced by Streptomyces antibioticus. It is ssimilar to erythromycin, and contains a desosamine amino sugar and an oleandrose sugar. It targets the 50S ribosomal subunit to prevent protein synthesis."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35974": {"category_aro_name": "telithromycin", "category_aro_cvterm_id": "35974", "category_aro_accession": "0000057", "category_aro_class_name": "Antibiotic", "category_aro_description": "Telithromycin is a semi-synthetic derivative of erythromycin. It is a 14-membered macrolide and is the first ketolide antibiotic to be used in clinics. Telithromycin binds the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36284": {"category_aro_name": "tylosin", "category_aro_cvterm_id": "36284", "category_aro_accession": "3000145", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tylosin is a 16-membered macrolide, naturally produced by Streptomyces fradiae. It interacts with the bacterial ribosome 50S subunit to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36315": {"category_aro_name": "dirithromycin", "category_aro_cvterm_id": "36315", "category_aro_accession": "3000176", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dirithromycin is an oxazine derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome to inhibit bacterial protein synthesis."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "36699": {"category_aro_name": "Erm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36699", "category_aro_accession": "3000560", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Erm proteins are part of the RNA methyltransferase family and methylate A2058 (E. coli nomenclature) of the 23S ribosomal RNA conferring degrees of resistance to Macrolides, Lincosamides and Streptogramin b. This is called the MLSb phenotype."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35946": {"category_aro_name": "roxithromycin", "category_aro_cvterm_id": "35946", "category_aro_accession": "0000027", "category_aro_class_name": "Antibiotic", "category_aro_description": "Roxithromycin is a semi-synthetic, 14-carbon ring macrolide antibiotic derived from erythromycin. It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36295": {"category_aro_name": "spiramycin", "category_aro_cvterm_id": "36295", "category_aro_accession": "3000156", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spiramycin is a 16-membered macrolide and is natural product produced by Streptomyces ambofaciens. It binds to the 50S subunit of bacterial ribosomes and inhibits peptidyl transfer activity to disrupt protein synthesis."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}, "1353": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36205": {"category_aro_name": "GES beta-lactamase", "category_aro_cvterm_id": "36205", "category_aro_accession": "3000066", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "GES beta-lactamases or Guiana extended-spectrum beta-lactamases are related to the other plasmid-located class A beta-lactamases"}}}}, "1352": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1351": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1350": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "461": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1356": {"$update": {"ARO_category": {"36476": {"category_aro_name": "iclaprim", "category_aro_cvterm_id": "36476", "category_aro_accession": "3000337", "category_aro_class_name": "Antibiotic", "category_aro_description": "Iclaprim is a bactericidal compound that inhibits dihydrofolate reductase. It is used against clinically important Gram-positive pathogens, including methicillin-sensitive Staphylococcus aureus and methicillin-resistant S. aureus."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36408": {"category_aro_name": "brodimoprim", "category_aro_cvterm_id": "36408", "category_aro_accession": "3000269", "category_aro_class_name": "Antibiotic", "category_aro_description": "Brodimoprim is a structural derivative of trimethoprim and an inhibitor of bacterial dihydrofolate reductase. The 4-methoxy group of trimethoprim is replaced with a bromine atom."}, "37617": {"category_aro_name": "trimethoprim resistant dihydrofolate reductase dfr", "category_aro_cvterm_id": "37617", "category_aro_accession": "3001218", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Alternative dihydropteroate synthase dfr present on plasmids produces alternate proteins that are less sensitive to trimethoprim from inhibiting its role in folate synthesis, thus conferring trimethoprim resistance."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36423": {"category_aro_name": "tetroxoprim", "category_aro_cvterm_id": "36423", "category_aro_accession": "3000284", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetroxoprim is a trimethoprim derivative that inhibits bacterial dihydrofolate reductase."}}}}, "463": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "608": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1273": {"$update": {"ARO_category": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35921": {"category_aro_name": "tetracycline-resistant ribosomal protection protein", "category_aro_cvterm_id": "35921", "category_aro_accession": "0000002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "A family of proteins known to bind to the 30S ribosomal subunit. This interaction prevents tetracycline and tetracycline derivatives from inhibiting ribosomal function. Thus, these proteins confer elevated resistance to tetracycline derivatives as a ribosomal protection protein."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}}}}, "2158": {"$update": {"ARO_category": {"36725": {"category_aro_name": "pulvomycin", "category_aro_cvterm_id": "36725", "category_aro_accession": "3000586", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pulvomycin is a polyketide antibiotic that binds elongation factor Tu (EF-Tu) to inhibit protein biosynthesis by preventing the formation of the ternary complex (EF-Tu*GTP*aa-tRNA). Phenotypically, it was shown that pulvomycin sensitivity is dominant over resistance."}, "37711": {"category_aro_name": "elfamycin resistant EF-Tu", "category_aro_cvterm_id": "37711", "category_aro_accession": "3001312", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Sequence variants of elongation factor Tu that confer resistance to elfamycin antibiotics."}, "37636": {"category_aro_name": "GE2270A", "category_aro_cvterm_id": "37636", "category_aro_accession": "3001237", "category_aro_class_name": "Antibiotic", "category_aro_description": "GE2270A is the model molecule of cyclic thiazolyl peptide elfamycins. GE2270A is produced by Planobispora rosea. Biosynthesis of the molecule has been shown to originate as a ribosomally synthesized peptide that undergoes significant post-translational modification. Clinical use of cyclic thiazolyl peptides is hindered by their low water solubility and bioavailability."}, "39998": {"category_aro_name": "LFF571", "category_aro_cvterm_id": "39998", "category_aro_accession": "3003414", "category_aro_class_name": "Antibiotic", "category_aro_description": "LFF571 is a novel semi-synthetic thiopeptide antibiotic derived from GE2270. It has been shown to possess potent in vitro and in vivo activity against Gram-positive bacteria. It is hypothesized that it a translation inhibitor leading to cell death."}, "37618": {"category_aro_name": "elfamycin antibiotic", "category_aro_cvterm_id": "37618", "category_aro_accession": "3001219", "category_aro_class_name": "Drug Class", "category_aro_description": "Elfamycins are molecules that inhibit bacterial elongation factor Tu (EF-Tu), a key protein which brings aminoacyl-tRNA (aa-tRNA) to the ribosome during protein synthesis. Elfamycins defined by their target (EF-Tu), rather than a conserved chemical backbone. Elfamycins follow two mechanisms to disrupt protein synthesis: 1. kirromycins and enacyloxin fix EF-Tu in the GTP bound conformation and lock EF-Tu onto the ribosome, and 2. pulvomycin and GE2270 cover the binding site of aa-tRNA disallowing EF-Tu from being charged with aa-tRNA. All elfamycins cause increased the affinity of EF-Tu for GTP."}, "37641": {"category_aro_name": "enacyloxin IIa", "category_aro_cvterm_id": "37641", "category_aro_accession": "3001242", "category_aro_class_name": "Antibiotic", "category_aro_description": "Enacyloxin IIa is structurally distinct but acts in a similar mechanism to kirromycin-like elfamycins. It prohibits the transfer of the amino acid at the A site to the elongating peptide chain. It is most likely that the mechanism of action is that EF-Tu*GDP is locked in the EF-Tu*GTP form, and EF-Tu*GDP*aa-tRNA is immobilized on the ribosome. It is an open question whether enacyloxin IIa actually belongs to the kirromycin-like group of elfamycins due to their high similarity."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "1519": {"$update": {"ARO_category": {"37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36592": {"category_aro_name": "streptogramin vat acetyltransferase", "category_aro_cvterm_id": "36592", "category_aro_accession": "3000453", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "vat (Virginiamycin acetyltransferases) enzymes catalyze the transfer of an acetyl group from acetyl-CoA to the secondary alcohol of streptogramin A compounds, thus inactivating virginiamycin-like antibiotics and conferring resistance to these compounds."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}}}}, "1518": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36459": {"category_aro_name": "macrolide esterase", "category_aro_cvterm_id": "36459", "category_aro_accession": "3000320", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Hydrolytic enzymes that cleave the macrocycle lactone ring of macrolide antibiotics."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}, "1515": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36196": {"category_aro_name": "NDM beta-lactamase", "category_aro_cvterm_id": "36196", "category_aro_accession": "3000057", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "NDM beta-lactamases or New Delhi metallo-beta-lactamases are class B beta-lactamases that confer resistance to a broad range of antibiotics including carbapenems, cephalosporins and penicillins."}}}}, "1514": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1517": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1516": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1511": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1510": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36511": {"category_aro_name": "vanT", "category_aro_cvterm_id": "36511", "category_aro_accession": "3000372", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanT is a membrane bound serine racemase, converting L-serine to D-serine. It is associated with VanC, which incorporated D-serine into D-Ala-D-Ser terminal end of peptidoglycan subunits that have a decreased binding affinity with vancomycin. It was isolated from Enterococcus gallinarum."}}}}, "1513": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1512": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36194": {"category_aro_name": "SME beta-lactamase", "category_aro_cvterm_id": "36194", "category_aro_accession": "3000055", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SME beta-lactamases are chromosome-mediated class A beta-lactamases that hydrolyze carbapenems in Serratia marcescens."}}}}, "280": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "582": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36206": {"category_aro_name": "FOX beta-lactamase", "category_aro_cvterm_id": "36206", "category_aro_accession": "3000067", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "FOX beta-lactamases are plasmid-encoded AmpC-type beta-lactamase which conferred resistance to broad-spectrum cephalosporins and cephamycins"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "357": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "356": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36699": {"category_aro_name": "Erm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36699", "category_aro_accession": "3000560", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Erm proteins are part of the RNA methyltransferase family and methylate A2058 (E. coli nomenclature) of the 23S ribosomal RNA conferring degrees of resistance to Macrolides, Lincosamides and Streptogramin b. This is called the MLSb phenotype."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}, "355": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "354": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "353": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "352": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36237": {"category_aro_name": "PDC beta-lactamase", "category_aro_cvterm_id": "36237", "category_aro_accession": "3000098", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PDC beta-lactamases are class C beta-lactamases that are found in Pseudomonas aeruginosa."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "351": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "350": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36004": {"category_aro_name": "small multidrug resistance (SMR) antibiotic efflux pump", "category_aro_cvterm_id": "36004", "category_aro_accession": "0010003", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Small multidrug resistance (SMR) proteins are a relatively small family of transporters, restricted to prokaryotic cells. They are also the smallest multidrug transporters, with only four transmembrane alpha-helices and no significant extramembrane domain."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "359": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "358": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1033": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36210": {"category_aro_name": "vanS", "category_aro_cvterm_id": "36210", "category_aro_accession": "3000071", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanS is similar to histidine protein kinases like EnvZ and acts as a response regulator by activating VanR. VanS is required for high level transcription of other van glycopeptide resistance genes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35947": {"category_aro_name": "vancomycin", "category_aro_cvterm_id": "35947", "category_aro_accession": "0000028", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vancomycin is a glycopeptide antibiotic used in the prophylaxis and treatment of infections caused by Gram-positive bacteria. Vancomycin inhibits the synthesis of peptidoglycan, the major component of the cell wall of gram-positive bacteria. Its mechanism of action is unusual in that it acts by binding precursors of peptidoglycan, rather than by interacting with an enzyme."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}}}}, "2323": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36004": {"category_aro_name": "small multidrug resistance (SMR) antibiotic efflux pump", "category_aro_cvterm_id": "36004", "category_aro_accession": "0010003", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Small multidrug resistance (SMR) proteins are a relatively small family of transporters, restricted to prokaryotic cells. They are also the smallest multidrug transporters, with only four transmembrane alpha-helices and no significant extramembrane domain."}}}}}, "1447": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38817": {"category_aro_name": "OKP beta-lactamase", "category_aro_cvterm_id": "38817", "category_aro_accession": "3002417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OKP beta-lactamases are chromosomal class A beta-lactamase that confer resistance to penicillins and early cephalosporins in Klebsiella pneumoniae. OKP beta-lactamases can be subdivided into two groups: OKP-A and OKP-B which diverge by about 4.2%"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "2321": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36251": {"category_aro_name": "multidrug and toxic compound extrusion (MATE) transporter", "category_aro_cvterm_id": "36251", "category_aro_accession": "3000112", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Multidrug and toxic compound extrusion (MATE) transporters utilize the cationic gradient across the membrane as an energy source. Although there is a diverse substrate specificity, almost all MATE transporters recognize fluoroquinolones. Arciflavine, ethidium and aminoglycosides are also good substrates."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}}}}}, "2326": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "39785": {"category_aro_name": "TLA beta-lactamase", "category_aro_cvterm_id": "39785", "category_aro_accession": "3003201", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The TLA beta-lactamases are resistant to expanded-spectrum cephalosporins, aztreonam, ciprofloxacin, and ofloxacin but was susceptible to amikacin, cefotetan, and imipenem."}}}}, "2325": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36472": {"category_aro_name": "macrolide phosphotransferase (MPH)", "category_aro_cvterm_id": "36472", "category_aro_accession": "3000333", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Macrolide phosphotransferases (MPH) are enzymes encoded by macrolide phosphotransferase genes (mph genes). These enzymes phosphorylate macrolides in GTP dependent manner at 2'-OH of desosamine sugar thereby inactivating them. Characterized MPH's are differentiated based on their substrate specificity."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}}}}, "1446": {"$update": {"ARO_category": {"36237": {"category_aro_name": "PDC beta-lactamase", "category_aro_cvterm_id": "36237", "category_aro_accession": "3000098", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PDC beta-lactamases are class C beta-lactamases that are found in Pseudomonas aeruginosa."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "2329": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36222": {"category_aro_name": "MOX beta-lactamase", "category_aro_cvterm_id": "36222", "category_aro_accession": "3000083", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "MOX beta-lactamases are plasmid-mediated AmpC-type beta-lactamases."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "2328": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41143": {"category_aro_name": "MUS beta-lactamase", "category_aro_cvterm_id": "41143", "category_aro_accession": "3004067", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Subclass B1 (metallo-) beta-lactamases found in Myroides spp., which confer resistance to carbapenam class beta-lactamase antibiotics."}}, "ARO_name": "MUS-2"}}, "1445": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}}}}}, "289": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "288": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1112": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "281": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1443": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36230": {"category_aro_name": "CARB beta-lactamase", "category_aro_cvterm_id": "36230", "category_aro_accession": "3000091", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CARB beta-lactamases are class A lactamases that can hydrolyze carbenicillin. Many of the PSE beta-lactamases have been renamed as CARB-lactamases with the notable exception of PSE-2 which is now OXA-10."}}}}, "283": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "282": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "285": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "284": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "287": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1114": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36211": {"category_aro_name": "ACT beta-lactamase", "category_aro_cvterm_id": "36211", "category_aro_accession": "3000072", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1441": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "36383": {"category_aro_name": "reduced permeability to antibiotic", "category_aro_cvterm_id": "36383", "category_aro_accession": "3000244", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Reduction in permeability to antibiotic, generally through reduced production of porins, can provide resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "41445": {"category_aro_name": "General Bacterial Porin with reduced permeability to beta-lactams", "category_aro_cvterm_id": "41445", "category_aro_accession": "3004281", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These are GBPs that are associated with decreased susceptibility to beta-lactams either through mutations in the porin protein, absence of the porin protein, or expression of the porin protein."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}, "ARO_name": "Enterobacter aerogenes Omp36"}}, "1440": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "263": {"$update": {"ARO_category": {"36476": {"category_aro_name": "iclaprim", "category_aro_cvterm_id": "36476", "category_aro_accession": "3000337", "category_aro_class_name": "Antibiotic", "category_aro_description": "Iclaprim is a bactericidal compound that inhibits dihydrofolate reductase. It is used against clinically important Gram-positive pathogens, including methicillin-sensitive Staphylococcus aureus and methicillin-resistant S. aureus."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36408": {"category_aro_name": "brodimoprim", "category_aro_cvterm_id": "36408", "category_aro_accession": "3000269", "category_aro_class_name": "Antibiotic", "category_aro_description": "Brodimoprim is a structural derivative of trimethoprim and an inhibitor of bacterial dihydrofolate reductase. The 4-methoxy group of trimethoprim is replaced with a bromine atom."}, "37617": {"category_aro_name": "trimethoprim resistant dihydrofolate reductase dfr", "category_aro_cvterm_id": "37617", "category_aro_accession": "3001218", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Alternative dihydropteroate synthase dfr present on plasmids produces alternate proteins that are less sensitive to trimethoprim from inhibiting its role in folate synthesis, thus conferring trimethoprim resistance."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36423": {"category_aro_name": "tetroxoprim", "category_aro_cvterm_id": "36423", "category_aro_accession": "3000284", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetroxoprim is a trimethoprim derivative that inhibits bacterial dihydrofolate reductase."}}}}, "262": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "261": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "260": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "37247": {"category_aro_name": "oleandomycin", "category_aro_cvterm_id": "37247", "category_aro_accession": "3000867", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oleandomycin is a 14-membered macrolide produced by Streptomyces antibioticus. It is ssimilar to erythromycin, and contains a desosamine amino sugar and an oleandrose sugar. It targets the 50S ribosomal subunit to prevent protein synthesis."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35974": {"category_aro_name": "telithromycin", "category_aro_cvterm_id": "35974", "category_aro_accession": "0000057", "category_aro_class_name": "Antibiotic", "category_aro_description": "Telithromycin is a semi-synthetic derivative of erythromycin. It is a 14-membered macrolide and is the first ketolide antibiotic to be used in clinics. Telithromycin binds the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36284": {"category_aro_name": "tylosin", "category_aro_cvterm_id": "36284", "category_aro_accession": "3000145", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tylosin is a 16-membered macrolide, naturally produced by Streptomyces fradiae. It interacts with the bacterial ribosome 50S subunit to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36315": {"category_aro_name": "dirithromycin", "category_aro_cvterm_id": "36315", "category_aro_accession": "3000176", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dirithromycin is an oxazine derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome to inhibit bacterial protein synthesis."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "36699": {"category_aro_name": "Erm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36699", "category_aro_accession": "3000560", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Erm proteins are part of the RNA methyltransferase family and methylate A2058 (E. coli nomenclature) of the 23S ribosomal RNA conferring degrees of resistance to Macrolides, Lincosamides and Streptogramin b. This is called the MLSb phenotype."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35946": {"category_aro_name": "roxithromycin", "category_aro_cvterm_id": "35946", "category_aro_accession": "0000027", "category_aro_class_name": "Antibiotic", "category_aro_description": "Roxithromycin is a semi-synthetic, 14-carbon ring macrolide antibiotic derived from erythromycin. It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36295": {"category_aro_name": "spiramycin", "category_aro_cvterm_id": "36295", "category_aro_accession": "3000156", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spiramycin is a 16-membered macrolide and is natural product produced by Streptomyces ambofaciens. It binds to the 50S subunit of bacterial ribosomes and inhibits peptidyl transfer activity to disrupt protein synthesis."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}, "267": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "266": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "265": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "264": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37716": {"category_aro_name": "pleuromutilin", "category_aro_cvterm_id": "37716", "category_aro_accession": "3001317", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pleuromutilin is a natural product antibiotic produced by Clitopilus passeckerianus. Related antibiotics of clinical significance, such as tiamulin and retapamulin, are semi-synthetic derivatives of this compound."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}}, "286": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "269": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "268": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "39434": {"category_aro_name": "CfxA beta-lactamase", "category_aro_cvterm_id": "39434", "category_aro_accession": "3003000", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "cfxA beta-lactamases are class A beta-lactamases"}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1562": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36364": {"category_aro_name": "ANT(6)", "category_aro_cvterm_id": "36364", "category_aro_accession": "3000225", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucelotidylylation of streptomycin at the hydroxyl group at position 6"}}}}, "1563": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1564": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "2192": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}}}}}, "1565": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36211": {"category_aro_name": "ACT beta-lactamase", "category_aro_cvterm_id": "36211", "category_aro_accession": "3000072", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1566": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "36020": {"category_aro_name": "vanX", "category_aro_cvterm_id": "36020", "category_aro_accession": "3000011", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanX is a D,D-dipeptidase that cleaves D-Ala-D-Ala but not D-Ala-D-Lac, ensuring that the latter dipeptide that has reduced binding affinity with vancomycin is used to synthesize peptidoglycan substrate."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "2259": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36472": {"category_aro_name": "macrolide phosphotransferase (MPH)", "category_aro_cvterm_id": "36472", "category_aro_accession": "3000333", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Macrolide phosphotransferases (MPH) are enzymes encoded by macrolide phosphotransferase genes (mph genes). These enzymes phosphorylate macrolides in GTP dependent manner at 2'-OH of desosamine sugar thereby inactivating them. Characterized MPH's are differentiated based on their substrate specificity."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}}}}, "2257": {"$update": {"ARO_category": {"36725": {"category_aro_name": "pulvomycin", "category_aro_cvterm_id": "36725", "category_aro_accession": "3000586", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pulvomycin is a polyketide antibiotic that binds elongation factor Tu (EF-Tu) to inhibit protein biosynthesis by preventing the formation of the ternary complex (EF-Tu*GTP*aa-tRNA). Phenotypically, it was shown that pulvomycin sensitivity is dominant over resistance."}, "37711": {"category_aro_name": "elfamycin resistant EF-Tu", "category_aro_cvterm_id": "37711", "category_aro_accession": "3001312", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Sequence variants of elongation factor Tu that confer resistance to elfamycin antibiotics."}, "37636": {"category_aro_name": "GE2270A", "category_aro_cvterm_id": "37636", "category_aro_accession": "3001237", "category_aro_class_name": "Antibiotic", "category_aro_description": "GE2270A is the model molecule of cyclic thiazolyl peptide elfamycins. GE2270A is produced by Planobispora rosea. Biosynthesis of the molecule has been shown to originate as a ribosomally synthesized peptide that undergoes significant post-translational modification. Clinical use of cyclic thiazolyl peptides is hindered by their low water solubility and bioavailability."}, "39998": {"category_aro_name": "LFF571", "category_aro_cvterm_id": "39998", "category_aro_accession": "3003414", "category_aro_class_name": "Antibiotic", "category_aro_description": "LFF571 is a novel semi-synthetic thiopeptide antibiotic derived from GE2270. It has been shown to possess potent in vitro and in vivo activity against Gram-positive bacteria. It is hypothesized that it a translation inhibitor leading to cell death."}, "37618": {"category_aro_name": "elfamycin antibiotic", "category_aro_cvterm_id": "37618", "category_aro_accession": "3001219", "category_aro_class_name": "Drug Class", "category_aro_description": "Elfamycins are molecules that inhibit bacterial elongation factor Tu (EF-Tu), a key protein which brings aminoacyl-tRNA (aa-tRNA) to the ribosome during protein synthesis. Elfamycins defined by their target (EF-Tu), rather than a conserved chemical backbone. Elfamycins follow two mechanisms to disrupt protein synthesis: 1. kirromycins and enacyloxin fix EF-Tu in the GTP bound conformation and lock EF-Tu onto the ribosome, and 2. pulvomycin and GE2270 cover the binding site of aa-tRNA disallowing EF-Tu from being charged with aa-tRNA. All elfamycins cause increased the affinity of EF-Tu for GTP."}, "37641": {"category_aro_name": "enacyloxin IIa", "category_aro_cvterm_id": "37641", "category_aro_accession": "3001242", "category_aro_class_name": "Antibiotic", "category_aro_description": "Enacyloxin IIa is structurally distinct but acts in a similar mechanism to kirromycin-like elfamycins. It prohibits the transfer of the amino acid at the A site to the elongating peptide chain. It is most likely that the mechanism of action is that EF-Tu*GDP is locked in the EF-Tu*GTP form, and EF-Tu*GDP*aa-tRNA is immobilized on the ribosome. It is an open question whether enacyloxin IIa actually belongs to the kirromycin-like group of elfamycins due to their high similarity."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "1567": {"$update": {"ARO_category": {"35944": {"category_aro_name": "fosfomycin", "category_aro_cvterm_id": "35944", "category_aro_accession": "0000025", "category_aro_class_name": "Drug Class", "category_aro_description": "Fosfomycin (also known as phosphomycin and phosphonomycin) is a broad-spectrum antibiotic produced by certain Streptomyces species. It is effective on gram positive and negative bacteria as it targets the cell wall, an essential feature shared by both bacteria. Its specific target is MurA (MurZ in E.coli), which attaches phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine, a step of commitment to cell wall synthesis. In the active site of MurA, the active cysteine molecule is alkylated which stops the catalytic reaction."}, "36272": {"category_aro_name": "fosfomycin thiol transferase", "category_aro_cvterm_id": "36272", "category_aro_accession": "3000133", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Catalyzes the addition of a thiol group from a nucleophilic molecule to fosfomycin."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "2251": {"$update": {"ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "40191": {"category_aro_name": "Acinetobacter mutant Lpx gene conferring resistance to colistin", "category_aro_cvterm_id": "40191", "category_aro_accession": "3003581", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These genes are involved in the biosynthesis of lipid A in Gram-negative bacteria and mutations to this gene may cause resistance to antimicrobial peptides that target the outer membrane. Mutation by absence or insertion of ISAba11 sequence is a known cause of resistance in Acinetobacter baumannii\u25bf."}}}}, "2476": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "40805": {"category_aro_name": "16S rRNA with mutation conferring resistance to pactamycin", "category_aro_cvterm_id": "40805", "category_aro_accession": "3003976", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in bacterial 16S rRNA that confer resistance to antibiotic pactamycin"}, "40804": {"category_aro_name": "pactamycin", "category_aro_cvterm_id": "40804", "category_aro_accession": "3003975", "category_aro_class_name": "Drug Class", "category_aro_description": "Antibiotic produced by Streptomyces pactum, considered a universal translation inhibitor"}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "988": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "989": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "37247": {"category_aro_name": "oleandomycin", "category_aro_cvterm_id": "37247", "category_aro_accession": "3000867", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oleandomycin is a 14-membered macrolide produced by Streptomyces antibioticus. It is ssimilar to erythromycin, and contains a desosamine amino sugar and an oleandrose sugar. It targets the 50S ribosomal subunit to prevent protein synthesis."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35974": {"category_aro_name": "telithromycin", "category_aro_cvterm_id": "35974", "category_aro_accession": "0000057", "category_aro_class_name": "Antibiotic", "category_aro_description": "Telithromycin is a semi-synthetic derivative of erythromycin. It is a 14-membered macrolide and is the first ketolide antibiotic to be used in clinics. Telithromycin binds the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36284": {"category_aro_name": "tylosin", "category_aro_cvterm_id": "36284", "category_aro_accession": "3000145", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tylosin is a 16-membered macrolide, naturally produced by Streptomyces fradiae. It interacts with the bacterial ribosome 50S subunit to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36315": {"category_aro_name": "dirithromycin", "category_aro_cvterm_id": "36315", "category_aro_accession": "3000176", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dirithromycin is an oxazine derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome to inhibit bacterial protein synthesis."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "36699": {"category_aro_name": "Erm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36699", "category_aro_accession": "3000560", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Erm proteins are part of the RNA methyltransferase family and methylate A2058 (E. coli nomenclature) of the 23S ribosomal RNA conferring degrees of resistance to Macrolides, Lincosamides and Streptogramin b. This is called the MLSb phenotype."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35946": {"category_aro_name": "roxithromycin", "category_aro_cvterm_id": "35946", "category_aro_accession": "0000027", "category_aro_class_name": "Antibiotic", "category_aro_description": "Roxithromycin is a semi-synthetic, 14-carbon ring macrolide antibiotic derived from erythromycin. It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36295": {"category_aro_name": "spiramycin", "category_aro_cvterm_id": "36295", "category_aro_accession": "3000156", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spiramycin is a 16-membered macrolide and is natural product produced by Streptomyces ambofaciens. It binds to the 50S subunit of bacterial ribosomes and inhibits peptidyl transfer activity to disrupt protein synthesis."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}, "982": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "983": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36205": {"category_aro_name": "GES beta-lactamase", "category_aro_cvterm_id": "36205", "category_aro_accession": "3000066", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "GES beta-lactamases or Guiana extended-spectrum beta-lactamases are related to the other plasmid-located class A beta-lactamases"}}}}, "980": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41354": {"category_aro_name": "BlaA beta-lactamase", "category_aro_cvterm_id": "41354", "category_aro_accession": "3004190", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "BlaA beta-lactamases are Class A beta-lactamases first identified in Yersinia enterocolitica and have the ability to hydrolize penicilins and cephalosporins."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "981": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "986": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}}}}}, "987": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "984": {"$update": {"ARO_category": {"40463": {"category_aro_name": "nybomycin", "category_aro_cvterm_id": "40463", "category_aro_accession": "3003780", "category_aro_class_name": "Drug Class", "category_aro_description": "A heterocyclic antibiotic that targets mutant gyrA (type II topoisomerase) containing an S84L substitution, counteracting acquired quinolone resistance. It is effective against quinolone-resistant Gram-positive bacteria including S. aureus and E. faecalis. Due to its ability to counteract quinolone resistance by targeting the mutant form of the gyrA protein, it is classified as a reverse antibiotic (RA)."}, "37009": {"category_aro_name": "grepafloxacin", "category_aro_cvterm_id": "37009", "category_aro_accession": "3000665", "category_aro_class_name": "Antibiotic", "category_aro_description": "Grepafloxacin is a broad-spectrum antibacterial quinoline. It is no longer taken due to its high toxicity."}, "37008": {"category_aro_name": "trovafloxacin", "category_aro_cvterm_id": "37008", "category_aro_accession": "3000664", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trovafloxacin is a trifluoroquinalone with a broad spectrum of activity that acts by inhibiting the uncoiling of supercoiled DNA. While potent against many Gram-positive and Gram-negative bacteria, it is less active against pseudomonads and Cl. difficile. It is usually taken as the prodrug trovafloxacin mesylate or alatrofloxacin mesylate for oral or intravenous administration, respectively."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "37004": {"category_aro_name": "lomefloxacin", "category_aro_cvterm_id": "37004", "category_aro_accession": "3000660", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lomefloxacin is a difluoropiperazinyl quinolone, sharing similar activities with other fluoroquinolones. It is used to treat urinary tract infections. Relative to other fluoroquinolones, it has a longer half life and has higher serum concentrations."}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}, "39876": {"category_aro_name": "fluoroquinolone resistant gyrA", "category_aro_cvterm_id": "39876", "category_aro_accession": "3003292", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DNA gyrase is responsible for DNA supercoiling and consists of two alpha and two beta subunits. GyrA point mutations confer resistance by preventing fluoroquinolone antibiotics from binding the alpha-subunit."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37142": {"category_aro_name": "pefloxacin", "category_aro_cvterm_id": "37142", "category_aro_accession": "3000762", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pefloxacin is structurally and functionally similar to norfloxacin. It is poorly active against mycobacteria, while anaerobes are resistant."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35942": {"category_aro_name": "enoxacin", "category_aro_cvterm_id": "35942", "category_aro_accession": "0000023", "category_aro_class_name": "Antibiotic", "category_aro_description": "Enoxacin belongs to a group called fluoroquinolones. Its mode of action depends upon blocking bacterial DNA replication by binding itself to DNA gyrase and causing double-stranded breaks in the bacterial chromosome."}}}}, "985": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "37247": {"category_aro_name": "oleandomycin", "category_aro_cvterm_id": "37247", "category_aro_accession": "3000867", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oleandomycin is a 14-membered macrolide produced by Streptomyces antibioticus. It is ssimilar to erythromycin, and contains a desosamine amino sugar and an oleandrose sugar. It targets the 50S ribosomal subunit to prevent protein synthesis."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35974": {"category_aro_name": "telithromycin", "category_aro_cvterm_id": "35974", "category_aro_accession": "0000057", "category_aro_class_name": "Antibiotic", "category_aro_description": "Telithromycin is a semi-synthetic derivative of erythromycin. It is a 14-membered macrolide and is the first ketolide antibiotic to be used in clinics. Telithromycin binds the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36284": {"category_aro_name": "tylosin", "category_aro_cvterm_id": "36284", "category_aro_accession": "3000145", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tylosin is a 16-membered macrolide, naturally produced by Streptomyces fradiae. It interacts with the bacterial ribosome 50S subunit to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36315": {"category_aro_name": "dirithromycin", "category_aro_cvterm_id": "36315", "category_aro_accession": "3000176", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dirithromycin is an oxazine derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome to inhibit bacterial protein synthesis."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "36699": {"category_aro_name": "Erm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36699", "category_aro_accession": "3000560", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Erm proteins are part of the RNA methyltransferase family and methylate A2058 (E. coli nomenclature) of the 23S ribosomal RNA conferring degrees of resistance to Macrolides, Lincosamides and Streptogramin b. This is called the MLSb phenotype."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35946": {"category_aro_name": "roxithromycin", "category_aro_cvterm_id": "35946", "category_aro_accession": "0000027", "category_aro_class_name": "Antibiotic", "category_aro_description": "Roxithromycin is a semi-synthetic, 14-carbon ring macrolide antibiotic derived from erythromycin. It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36295": {"category_aro_name": "spiramycin", "category_aro_cvterm_id": "36295", "category_aro_accession": "3000156", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spiramycin is a 16-membered macrolide and is natural product produced by Streptomyces ambofaciens. It binds to the 50S subunit of bacterial ribosomes and inhibits peptidyl transfer activity to disrupt protein synthesis."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}, "115": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "114": {"$update": {"ARO_category": {"36476": {"category_aro_name": "iclaprim", "category_aro_cvterm_id": "36476", "category_aro_accession": "3000337", "category_aro_class_name": "Antibiotic", "category_aro_description": "Iclaprim is a bactericidal compound that inhibits dihydrofolate reductase. It is used against clinically important Gram-positive pathogens, including methicillin-sensitive Staphylococcus aureus and methicillin-resistant S. aureus."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36408": {"category_aro_name": "brodimoprim", "category_aro_cvterm_id": "36408", "category_aro_accession": "3000269", "category_aro_class_name": "Antibiotic", "category_aro_description": "Brodimoprim is a structural derivative of trimethoprim and an inhibitor of bacterial dihydrofolate reductase. The 4-methoxy group of trimethoprim is replaced with a bromine atom."}, "37617": {"category_aro_name": "trimethoprim resistant dihydrofolate reductase dfr", "category_aro_cvterm_id": "37617", "category_aro_accession": "3001218", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Alternative dihydropteroate synthase dfr present on plasmids produces alternate proteins that are less sensitive to trimethoprim from inhibiting its role in folate synthesis, thus conferring trimethoprim resistance."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36423": {"category_aro_name": "tetroxoprim", "category_aro_cvterm_id": "36423", "category_aro_accession": "3000284", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetroxoprim is a trimethoprim derivative that inhibits bacterial dihydrofolate reductase."}}}}, "1790": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "36015": {"category_aro_name": "vanH", "category_aro_cvterm_id": "36015", "category_aro_accession": "3000006", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanH is a D-specific alpha-ketoacid dehydrogenase that synthesizes D-lactate. D-lactate is incorporated into the end of the peptidoglycan subunits, decreasing vancomycin binding affinity."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}}}, "116": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "111": {"$update": {"ARO_category": {"36271": {"category_aro_name": "clorobiocin", "category_aro_cvterm_id": "36271", "category_aro_accession": "3000132", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clorobiocin is an aminocoumarin antibiotic produced by Streptomyces roseochromogenes, and binds DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "36289": {"category_aro_name": "coumermycin A1", "category_aro_cvterm_id": "36289", "category_aro_accession": "3000150", "category_aro_class_name": "Antibiotic", "category_aro_description": "Coumermycin A1 is an antibiotic produced by Streptomyces rishiriensis, and binds DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36618": {"category_aro_name": "aminocoumarin resistant gyrB", "category_aro_cvterm_id": "36618", "category_aro_accession": "3000479", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in DNA gyrase subunit B (gyrB) can result in resistance to aminocoumarins. These mutations usually involve arginine residues in organisms."}}}}, "110": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "113": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36182": {"category_aro_name": "VEB beta-lactamase", "category_aro_cvterm_id": "36182", "category_aro_accession": "3000043", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VEB beta-lactamases or Vietnamese extended-spectrum beta-lactamases are class A beta-lactamases that confer high-level resistance to oxyimino cephalosporins and to aztreonam"}}}}, "112": {"$update": {"ARO_category": {"35944": {"category_aro_name": "fosfomycin", "category_aro_cvterm_id": "35944", "category_aro_accession": "0000025", "category_aro_class_name": "Drug Class", "category_aro_description": "Fosfomycin (also known as phosphomycin and phosphonomycin) is a broad-spectrum antibiotic produced by certain Streptomyces species. It is effective on gram positive and negative bacteria as it targets the cell wall, an essential feature shared by both bacteria. Its specific target is MurA (MurZ in E.coli), which attaches phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine, a step of commitment to cell wall synthesis. In the active site of MurA, the active cysteine molecule is alkylated which stops the catalytic reaction."}, "36272": {"category_aro_name": "fosfomycin thiol transferase", "category_aro_cvterm_id": "36272", "category_aro_accession": "3000133", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Catalyzes the addition of a thiol group from a nucleophilic molecule to fosfomycin."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "119": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36030": {"category_aro_name": "VIM beta-lactamase", "category_aro_cvterm_id": "36030", "category_aro_accession": "3000021", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia."}}}}, "118": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41390": {"category_aro_name": "subclass B3 LRA beta-lactamase", "category_aro_cvterm_id": "41390", "category_aro_accession": "3004226", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Beta-lactamases that are part of the LRA gene family and are classified as B3 (metallo-) beta-lactamases."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "2785": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36989": {"category_aro_name": "cefotaxime", "category_aro_cvterm_id": "36989", "category_aro_accession": "3000645", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefotaxime is a semisynthetic cephalosporin taken parenterally. It is resistant to most beta-lactamases and active against Gram-negative rods and cocci due to its aminothiazoyl and methoximino functional groups."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "36383": {"category_aro_name": "reduced permeability to antibiotic", "category_aro_cvterm_id": "36383", "category_aro_accession": "3000244", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Reduction in permeability to antibiotic, generally through reduced production of porins, can provide resistance."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "41445": {"category_aro_name": "General Bacterial Porin with reduced permeability to beta-lactams", "category_aro_cvterm_id": "41445", "category_aro_accession": "3004281", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These are GBPs that are associated with decreased susceptibility to beta-lactams either through mutations in the porin protein, absence of the porin protein, or expression of the porin protein."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35927": {"category_aro_name": "cefoxitin", "category_aro_cvterm_id": "35927", "category_aro_accession": "0000008", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefoxitin is a cephamycin antibiotic often grouped with the second generation cephalosporins. Cefoxitin is bactericidal and acts by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. Cefoxitin's 7-alpha-methoxy group and 3' leaving group make it a poor substrate for most beta-lactamases."}}}}, "2787": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "36383": {"category_aro_name": "reduced permeability to antibiotic", "category_aro_cvterm_id": "36383", "category_aro_accession": "3000244", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Reduction in permeability to antibiotic, generally through reduced production of porins, can provide resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "41445": {"category_aro_name": "General Bacterial Porin with reduced permeability to beta-lactams", "category_aro_cvterm_id": "41445", "category_aro_accession": "3004281", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These are GBPs that are associated with decreased susceptibility to beta-lactams either through mutations in the porin protein, absence of the porin protein, or expression of the porin protein."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40429": {"category_aro_name": "resistance by absence", "category_aro_cvterm_id": "40429", "category_aro_accession": "3003764", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mechanism of antibiotic resistance conferred by deletion of gene (usually a porin)"}}}}, "2786": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36309": {"category_aro_name": "imipenem", "category_aro_cvterm_id": "36309", "category_aro_accession": "3000170", "category_aro_class_name": "Antibiotic", "category_aro_description": "Imipenem is a broad-spectrum antibiotic and is usually taken with cilastatin, which prevents hydrolysis of imipenem by renal dehydropeptidase-I. It is resistant to hydrolysis by most other beta-lactamases. Notable exceptions are the KPC beta-lactamases and Ambler Class B enzymes."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36383": {"category_aro_name": "reduced permeability to antibiotic", "category_aro_cvterm_id": "36383", "category_aro_accession": "3000244", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Reduction in permeability to antibiotic, generally through reduced production of porins, can provide resistance."}, "36976": {"category_aro_name": "benzylpenicillin", "category_aro_cvterm_id": "36976", "category_aro_accession": "3000632", "category_aro_class_name": "Antibiotic", "category_aro_description": "Benzylpenicillin, commonly referred to as penicillin G, is effective against both Gram-positive and Gram-negative bacteria. It is unstable in acid."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "41445": {"category_aro_name": "General Bacterial Porin with reduced permeability to beta-lactams", "category_aro_cvterm_id": "41445", "category_aro_accession": "3004281", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These are GBPs that are associated with decreased susceptibility to beta-lactams either through mutations in the porin protein, absence of the porin protein, or expression of the porin protein."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35927": {"category_aro_name": "cefoxitin", "category_aro_cvterm_id": "35927", "category_aro_accession": "0000008", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefoxitin is a cephamycin antibiotic often grouped with the second generation cephalosporins. Cefoxitin is bactericidal and acts by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. Cefoxitin's 7-alpha-methoxy group and 3' leaving group make it a poor substrate for most beta-lactamases."}}}}, "2781": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35975": {"category_aro_name": "cefazolin", "category_aro_cvterm_id": "35975", "category_aro_accession": "0000058", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefazolin (INN), also known as cefazoline or cephazolin, is a first generation cephalosporin antibiotic. It is administered parenterally, and is active against a broad spectrum of bacteria."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "41256": {"category_aro_name": "cephaloridine", "category_aro_cvterm_id": "41256", "category_aro_accession": "3004129", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cephaloridine is a semisynthetic, broad-spectrum, first-generation cephalosporin with antibacterial activity. Cephaloridine binds to and inactivates penicillin-binding proteins (PBPs) located on the inner membrane of the bacterial cell wall. PBPs are enzymes involved in the terminal stages of assembling the bacterial cell wall and in reshaping the cell wall during growth and division. Inactivation of PBPs interferes with the cross-linkage of peptidoglycan chains necessary for bacterial cell wall strength and rigidity. This results in the weakening of the bacterial cell wall and causes cell lysis."}, "36383": {"category_aro_name": "reduced permeability to antibiotic", "category_aro_cvterm_id": "36383", "category_aro_accession": "3000244", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Reduction in permeability to antibiotic, generally through reduced production of porins, can provide resistance."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "41445": {"category_aro_name": "General Bacterial Porin with reduced permeability to beta-lactams", "category_aro_cvterm_id": "41445", "category_aro_accession": "3004281", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These are GBPs that are associated with decreased susceptibility to beta-lactams either through mutations in the porin protein, absence of the porin protein, or expression of the porin protein."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "2780": {"$update": {"ARO_category": {"35944": {"category_aro_name": "fosfomycin", "category_aro_cvterm_id": "35944", "category_aro_accession": "0000025", "category_aro_class_name": "Drug Class", "category_aro_description": "Fosfomycin (also known as phosphomycin and phosphonomycin) is a broad-spectrum antibiotic produced by certain Streptomyces species. It is effective on gram positive and negative bacteria as it targets the cell wall, an essential feature shared by both bacteria. Its specific target is MurA (MurZ in E.coli), which attaches phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine, a step of commitment to cell wall synthesis. In the active site of MurA, the active cysteine molecule is alkylated which stops the catalytic reaction."}, "36272": {"category_aro_name": "fosfomycin thiol transferase", "category_aro_cvterm_id": "36272", "category_aro_accession": "3000133", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Catalyzes the addition of a thiol group from a nucleophilic molecule to fosfomycin."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "2783": {"$update": {"ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "41245": {"category_aro_name": "BPI", "category_aro_cvterm_id": "41245", "category_aro_accession": "3004121", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bactericidal/permeability-increasing (BPI) protein is a member of a new generation of proteins known as super-antibiotics that are implicated as endotoxin neutralising agents. The potent (nM) cytotoxicity of BPI is limited to gram-negative bacteria (GNB), reflecting the high affinity (<10 nM) of BPI for bacterial lipopolysaccharides (LPS). Binding of BPI to live bacteria via LPS causes immediate growth arrest, actual killing coincides with later damage to the inner membrane."}, "41446": {"category_aro_name": "General Bacterial Porin with reduced permeability to peptide antibiotics", "category_aro_cvterm_id": "41446", "category_aro_accession": "3004282", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These are GBPs that are associated with decreased susceptibility to peptide antibiotics either through mutations in the porin protein, absence of the porin protein, or expression of the porin protein."}, "36383": {"category_aro_name": "reduced permeability to antibiotic", "category_aro_cvterm_id": "36383", "category_aro_accession": "3000244", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Reduction in permeability to antibiotic, generally through reduced production of porins, can provide resistance."}}}}, "2782": {"$update": {"ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "41245": {"category_aro_name": "BPI", "category_aro_cvterm_id": "41245", "category_aro_accession": "3004121", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bactericidal/permeability-increasing (BPI) protein is a member of a new generation of proteins known as super-antibiotics that are implicated as endotoxin neutralising agents. The potent (nM) cytotoxicity of BPI is limited to gram-negative bacteria (GNB), reflecting the high affinity (<10 nM) of BPI for bacterial lipopolysaccharides (LPS). Binding of BPI to live bacteria via LPS causes immediate growth arrest, actual killing coincides with later damage to the inner membrane."}, "41446": {"category_aro_name": "General Bacterial Porin with reduced permeability to peptide antibiotics", "category_aro_cvterm_id": "41446", "category_aro_accession": "3004282", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These are GBPs that are associated with decreased susceptibility to peptide antibiotics either through mutations in the porin protein, absence of the porin protein, or expression of the porin protein."}, "36383": {"category_aro_name": "reduced permeability to antibiotic", "category_aro_cvterm_id": "36383", "category_aro_accession": "3000244", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Reduction in permeability to antibiotic, generally through reduced production of porins, can provide resistance."}}}}, "2789": {"$update": {"ARO_category": {"35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "36383": {"category_aro_name": "reduced permeability to antibiotic", "category_aro_cvterm_id": "36383", "category_aro_accession": "3000244", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Reduction in permeability to antibiotic, generally through reduced production of porins, can provide resistance."}, "41444": {"category_aro_name": "MipA-interacting Protein", "category_aro_cvterm_id": "41444", "category_aro_accession": "3004280", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The MltA-interacting Protein (MipA) family consists mainly of homologs to MipA and OmpV proteins. Proteins of this family, are predicted to form a \u00df-barrel."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40429": {"category_aro_name": "resistance by absence", "category_aro_cvterm_id": "40429", "category_aro_accession": "3003764", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mechanism of antibiotic resistance conferred by deletion of gene (usually a porin)"}}}}, "2788": {"$update": {"ARO_category": {"36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "41257": {"category_aro_name": "balofloxacin", "category_aro_cvterm_id": "41257", "category_aro_accession": "3004130", "category_aro_class_name": "Antibiotic", "category_aro_description": "Balofloxacin is an 8-methoxy fluoroquinolone antibiotic. It shows potent bactericidal activity and inhibits the supercoiling activity of DNA gyrase of S. aureus, E. coli, and P. aeruginosa."}, "36383": {"category_aro_name": "reduced permeability to antibiotic", "category_aro_cvterm_id": "36383", "category_aro_accession": "3000244", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Reduction in permeability to antibiotic, generally through reduced production of porins, can provide resistance."}, "41443": {"category_aro_name": "Sugar Porin (SP)", "category_aro_cvterm_id": "41443", "category_aro_accession": "3004279", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Members of the Sugar Porin family tend to facilitate the transport of maltodextrins and other sugars across the outer membrane of Gram-negative bacteria. These porins form a homotrimeric structure."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "40429": {"category_aro_name": "resistance by absence", "category_aro_cvterm_id": "40429", "category_aro_accession": "3003764", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mechanism of antibiotic resistance conferred by deletion of gene (usually a porin)"}}}}, "1797": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36699": {"category_aro_name": "Erm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36699", "category_aro_accession": "3000560", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Erm proteins are part of the RNA methyltransferase family and methylate A2058 (E. coli nomenclature) of the 23S ribosomal RNA conferring degrees of resistance to Macrolides, Lincosamides and Streptogramin b. This is called the MLSb phenotype."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}, "2079": {"$update": {"ARO_category": {"35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "41435": {"category_aro_name": "16S rRNA methyltransferase (G1405)", "category_aro_cvterm_id": "41435", "category_aro_accession": "3004271", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Methyltransferases that methylate the G1405 position of 16S rRNA, which is part of an aminoglycoside binding site."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2078": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2073": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2072": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35975": {"category_aro_name": "cefazolin", "category_aro_cvterm_id": "35975", "category_aro_accession": "0000058", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefazolin (INN), also known as cefazoline or cephazolin, is a first generation cephalosporin antibiotic. It is administered parenterally, and is active against a broad spectrum of bacteria."}, "41359": {"category_aro_name": "NmcA beta-lactamase", "category_aro_cvterm_id": "41359", "category_aro_accession": "3004195", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "nmcA beta-lactamases are chromosomal-encoded Class A beta-lactamases first isolated from Enterobacter cloacae, specifically a clinical strain known as NOR-1. nmcA beta-lactamases have been shown to hydrolyze carbapenems."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35996": {"category_aro_name": "clavulanate", "category_aro_cvterm_id": "35996", "category_aro_accession": "0000079", "category_aro_class_name": "Adjuvant", "category_aro_description": "Clavulanic acid is a beta-lactamase inhibitor (marketed by GlaxoSmithKline, formerly Beecham) combined with penicillin group antibiotics to overcome certain types of antibiotic resistance. It is used to overcome resistance in bacteria that secrete beta-lactamase, which otherwise inactivates most penicillins."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}, "35927": {"category_aro_name": "cefoxitin", "category_aro_cvterm_id": "35927", "category_aro_accession": "0000008", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefoxitin is a cephamycin antibiotic often grouped with the second generation cephalosporins. Cefoxitin is bactericidal and acts by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. Cefoxitin's 7-alpha-methoxy group and 3' leaving group make it a poor substrate for most beta-lactamases."}}}}, "2071": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2070": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2077": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2076": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "2075": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$delete": ["35950"], "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}}}}}, "2074": {"$update": {"ARO_category": {"35940": {"category_aro_name": "ribostamycin", "category_aro_cvterm_id": "35940", "category_aro_accession": "0000021", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ribostamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "36997": {"category_aro_name": "G418", "category_aro_cvterm_id": "36997", "category_aro_accession": "3000653", "category_aro_class_name": "Antibiotic", "category_aro_description": "A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3')."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37001": {"category_aro_name": "paromomycin", "category_aro_cvterm_id": "37001", "category_aro_accession": "3000657", "category_aro_class_name": "Antibiotic", "category_aro_description": "An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35955": {"category_aro_name": "apramycin", "category_aro_cvterm_id": "35955", "category_aro_accession": "0000037", "category_aro_class_name": "Antibiotic", "category_aro_description": "Apramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections in animals. Apramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35931": {"category_aro_name": "streptothricin", "category_aro_cvterm_id": "35931", "category_aro_accession": "0000012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptothricins are a group of N-glycoside antibiotics that include a carbamoylated D-glucosamine to which are attached a series of L-beta-lysine residues at position 2 and a streptolidine at position 1. Streptothricins vary by the number of beta-lysine residues (from 1 (nourseothricin) to 7) and target protein synthesis in bacteria and eukaryotes."}, "35922": {"category_aro_name": "astromicin", "category_aro_cvterm_id": "35922", "category_aro_accession": "0000003", "category_aro_class_name": "Antibiotic", "category_aro_description": "Astromicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Astromicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "40277": {"category_aro_name": "16s rRNA with mutation conferring resistance to aminoglycoside antibiotics", "category_aro_cvterm_id": "40277", "category_aro_accession": "3003666", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 16S rRNA of bacteria can confer resistance to aminoglycosides."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "36353": {"category_aro_name": "hygromycin B", "category_aro_cvterm_id": "36353", "category_aro_accession": "3000214", "category_aro_class_name": "Antibiotic", "category_aro_description": "Hygromycin B is an aminoglycoside antibiotic used to treat different types of bacterial infections. Hygromycin B works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Hygromycin B has also been shown to interact with eukaryotic cells."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35943": {"category_aro_name": "butirosin", "category_aro_cvterm_id": "35943", "category_aro_accession": "0000024", "category_aro_class_name": "Antibiotic", "category_aro_description": "Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1796": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1035": {"$update": {"ARO_category": {"37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "36992": {"category_aro_name": "ceftibuten", "category_aro_cvterm_id": "36992", "category_aro_accession": "3000648", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftibuten is a semisynthetic cephalosporin active against Gram-negative bacilli. It is resistant against many plasmid-mediated beta-lactamases."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36993": {"category_aro_name": "cefditoren", "category_aro_cvterm_id": "36993", "category_aro_accession": "3000649", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefditoren is a semisynthetic cephalosporin active against staphylococci, streptococci, and and most enterobacteria. It is resistant to staphylococcal and most enterobacterial beta-lactamases, and is usually taken as the prodrug cefditoren pivoxil."}, "35995": {"category_aro_name": "piperacillin", "category_aro_cvterm_id": "35995", "category_aro_accession": "0000078", "category_aro_class_name": "Antibiotic", "category_aro_description": "Piperacillin is an acetylureidopenicillin and has an extended spectrum of targets relative to other beta-lactam antibiotics. It inhibits cell wall synthesis in bacteria, and is usually taken with the beta-lactamase inhibitor tazobactam to overcome penicillin-resistant bacteria."}, "36991": {"category_aro_name": "cefpodoxime", "category_aro_cvterm_id": "36991", "category_aro_accession": "3000647", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefpodoxime is a semisynthetic cephalosporin that acts similarly to cefotaxime with broad-spectrum activity. It is stable to many plasmid-mediated beta-lactamses. Cefpodoxime is consumed as the prodrug cefpodoxime proxetil."}, "36990": {"category_aro_name": "cefixime", "category_aro_cvterm_id": "36990", "category_aro_accession": "3000646", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefixime is a cephalosporin resistant to most beta-lactamases. It is active against many enterobacteria, but activity against staphylococci is poor."}, "36994": {"category_aro_name": "cefdinir", "category_aro_cvterm_id": "36994", "category_aro_accession": "3000650", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefdinir is similar to cefixime with a modified side-chain at its 7-amino position. It also shares similar activity with cefixime but is more active against staphylococci. It has also be shown to enhance phagocytosis."}, "35990": {"category_aro_name": "meropenem", "category_aro_cvterm_id": "35990", "category_aro_accession": "0000073", "category_aro_class_name": "Antibiotic", "category_aro_description": "Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36309": {"category_aro_name": "imipenem", "category_aro_cvterm_id": "36309", "category_aro_accession": "3000170", "category_aro_class_name": "Antibiotic", "category_aro_description": "Imipenem is a broad-spectrum antibiotic and is usually taken with cilastatin, which prevents hydrolysis of imipenem by renal dehydropeptidase-I. It is resistant to hydrolysis by most other beta-lactamases. Notable exceptions are the KPC beta-lactamases and Ambler Class B enzymes."}, "35927": {"category_aro_name": "cefoxitin", "category_aro_cvterm_id": "35927", "category_aro_accession": "0000008", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefoxitin is a cephamycin antibiotic often grouped with the second generation cephalosporins. Cefoxitin is bactericidal and acts by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. Cefoxitin's 7-alpha-methoxy group and 3' leaving group make it a poor substrate for most beta-lactamases."}, "36689": {"category_aro_name": "aztreonam", "category_aro_cvterm_id": "36689", "category_aro_accession": "3000550", "category_aro_class_name": "Antibiotic", "category_aro_description": "Aztreonam was the first monobactam discovered, and is greatly effective against Gram-negative bacteria while inactive against Gram-positive bacteria. Artreonam is a poor substrate for beta-lactamases, and may even act as an inhibitor. In Gram-negative bacteria, Aztreonam interferes with filamentation, inhibiting cell division and leading to cell death."}, "35980": {"category_aro_name": "cefuroxime", "category_aro_cvterm_id": "35980", "category_aro_accession": "0000063", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefuroxime is a second-generation cephalosporin antibiotic with increased stability with beta-lactamases than first-generation cephalosporins. Cefuroxime is active against Gram-positive organisms but less active against methicillin-resistant strains."}, "37085": {"category_aro_name": "isopenicillin N", "category_aro_cvterm_id": "37085", "category_aro_accession": "3000705", "category_aro_class_name": "Antibiotic", "category_aro_description": "Isopenicillin N is a natural penicillin derivative produced by Penicillium chrysogenum with activity similar to penicillin N."}, "35975": {"category_aro_name": "cefazolin", "category_aro_cvterm_id": "35975", "category_aro_accession": "0000058", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefazolin (INN), also known as cefazoline or cephazolin, is a first generation cephalosporin antibiotic. It is administered parenterally, and is active against a broad spectrum of bacteria."}, "37086": {"category_aro_name": "penicillin N", "category_aro_cvterm_id": "37086", "category_aro_accession": "3000706", "category_aro_class_name": "Antibiotic", "category_aro_description": "Penicillin N is a penicillin derivative produced by Cephalosporium acremonium."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35976": {"category_aro_name": "cefepime", "category_aro_cvterm_id": "35976", "category_aro_accession": "0000059", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefepime (INN) is a fourth-generation cephalosporin antibiotic developed in 1994. It contains an aminothiazolyl group that decreases its affinity with beta-lactamases. Cefepime shows high binding affinity with penicillin-binding proteins and has an extended spectrum of activity against Gram-positive and Gram-negative bacteria, with greater activity against both Gram-negative and Gram-positive organisms than third-generation agents."}, "35971": {"category_aro_name": "penicillin", "category_aro_cvterm_id": "35971", "category_aro_accession": "0000054", "category_aro_class_name": "Antibiotic", "category_aro_description": "Penicillin (sometimes abbreviated PCN) is a beta-lactam antibiotic used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms. It works by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35973": {"category_aro_name": "oxacillin", "category_aro_cvterm_id": "35973", "category_aro_accession": "0000056", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxacillin is a penicillinase-resistant beta-lactam. It is similar to methicillin, and has replaced methicillin in clinical use. Oxacillin, especially in combination with other antibiotics, is effective against many penicillinase-producing strains of Staphylococcus aureus and Staphylococcus epidermidis."}, "40928": {"category_aro_name": "cefmetazole", "category_aro_cvterm_id": "40928", "category_aro_accession": "3004001", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefmetazole is a semi-synthetic cephamycin antibiotic with broad spectrum antibiotic activity against both gram-positive and gram-negative bacteria, that disrupt cell wall synthesis through binding to PBPs causing cell lysis."}, "40944": {"category_aro_name": "moxalactam", "category_aro_cvterm_id": "40944", "category_aro_accession": "3004017", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxalactam (Latamoxef) is a broad spectrum cephalosporin (oxacephem) and beta-lactam antibiotic. Moxalactam binding to PBPs inhibits peptidoglycan cross-linkage in the cell wall, resulting in cell death. Moxalactam is proposed to be effective against meningitides as it passes the blood-brain barrier."}, "35930": {"category_aro_name": "cloxacillin", "category_aro_cvterm_id": "35930", "category_aro_accession": "0000011", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cloxacillin is a semisynthetic, isoxazolyl penicillin derivative in the beta-lactam class of antibiotics. It interferes with peptidogylcan synthesis and is commonly used for treating penicillin-resistant Staphylococcus aureus infections."}, "36995": {"category_aro_name": "ceftaroline", "category_aro_cvterm_id": "36995", "category_aro_accession": "3000651", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftaroline is a novel cephalosporin active against methicillin resistant Staphylococcus aureus. Like other cephalosporins it binds penicillin-binding proteins to inhibit cell wall synthesis. It strongly binds with PBP2a, associated with methicillin resistance. It is taken orally as the prodrug ceftaroline fosamil."}, "35979": {"category_aro_name": "ceftriaxone", "category_aro_cvterm_id": "35979", "category_aro_accession": "0000062", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftriaxone is a third-generation cephalosporin antibiotic. The presence of an aminothiazolyl sidechain increases ceftriazone's resistance to beta-lactamases. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria."}, "35934": {"category_aro_name": "methicillin", "category_aro_cvterm_id": "35934", "category_aro_accession": "0000015", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derived from penicillin to combat penicillin-resistance, methicillin is insensitive to beta-lactamases (also known as penicillinases) secreted by many penicillin-resistant bacteria. Methicillin is bactericidal, and acts by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40943": {"category_aro_name": "loracarbef", "category_aro_cvterm_id": "40943", "category_aro_accession": "3004016", "category_aro_class_name": "Antibiotic", "category_aro_description": "Loracarbef is a second-generation cephalosporin (carbacephem) and broad spectrum beta-lactam antibiotic. Loracarbef inhibits PBPs through binding, disrupting peptidoglycan cell wall cross-linkage and resulting in cell death."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36989": {"category_aro_name": "cefotaxime", "category_aro_cvterm_id": "36989", "category_aro_accession": "3000645", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefotaxime is a semisynthetic cephalosporin taken parenterally. It is resistant to most beta-lactamases and active against Gram-negative rods and cocci due to its aminothiazoyl and methoximino functional groups."}, "36988": {"category_aro_name": "cefaclor", "category_aro_cvterm_id": "36988", "category_aro_accession": "3000644", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefaclor is a semisynthetic cephalosporin derived from cephalexin. It has broad-spectrum antibiotic activity."}, "40661": {"category_aro_name": "Penicillin-binding protein mutations conferring resistance to beta-lactam antibiotics", "category_aro_cvterm_id": "40661", "category_aro_accession": "3003938", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Mutations in PBP transpeptidases that change the affinity for penicillin thereby conferring resistance to penicillin antibiotics"}, "40929": {"category_aro_name": "cefonicid", "category_aro_cvterm_id": "40929", "category_aro_accession": "3004002", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefonicid is a second-generation cephalosporin-class beta-lactam antibiotic with broad spectrum activity. Particularly used against urinary tract infections and lower respiratory infections. Causes cell lysis by inactivation of PBPs through binding, inhibiting peptidoglycan synthesis."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "36980": {"category_aro_name": "flucloxacillin", "category_aro_cvterm_id": "36980", "category_aro_accession": "3000636", "category_aro_class_name": "Antibiotic", "category_aro_description": "Flucloxacillin is similar to cloxacillin, with an extra additional fluorine atom."}, "36983": {"category_aro_name": "mezlocillin", "category_aro_cvterm_id": "36983", "category_aro_accession": "3000639", "category_aro_class_name": "Antibiotic", "category_aro_description": "Mezlocillin is a penicillin derivative taken parenterally."}, "36982": {"category_aro_name": "azlocillin", "category_aro_cvterm_id": "36982", "category_aro_accession": "3000638", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azlocillin is a semisynthetic derivative of penicillin that is notably active against Ps. aeruginosa and other Gram-negative bacteria."}, "36985": {"category_aro_name": "cefalexin", "category_aro_cvterm_id": "36985", "category_aro_accession": "3000641", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalexin is a cephalosporin antibiotic that causes filamentation. It is resistant to staphylococcal beta-lactamase, but degraded by enterobacterial beta-lactamases."}, "36984": {"category_aro_name": "doripenem", "category_aro_cvterm_id": "36984", "category_aro_accession": "3000640", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doripenem is a carbapenem with a broad range of activity against Gram-positive and Gram-negative bacteria, and along with meropenem, it is the most active beta-lactam antibiotic against Pseudomonas aeruginosa. It inhibits bacterial cell wall synthesis."}, "36987": {"category_aro_name": "cefotiam", "category_aro_cvterm_id": "36987", "category_aro_accession": "3000643", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefotiam is a cephalosporin antibiotic with similar activity to cefuroxime but more active against enterobacteria. It is consumed orally as the prodrug cefotiam hexetil."}, "36986": {"category_aro_name": "cefadroxil", "category_aro_cvterm_id": "36986", "category_aro_accession": "3000642", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefadroxil, or p-hydroxycephalexin, is an cephalosporin antibiotic similar to cefalexin."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "37141": {"category_aro_name": "mecillinam", "category_aro_cvterm_id": "37141", "category_aro_accession": "3000761", "category_aro_class_name": "Antibiotic", "category_aro_description": "Mecillinam is a broad-spectrum beta-lactam antibiotic that was semi-synthetically derived to have a different drug centre, being a 6-alpha-amidinopenicillanate instead of a 6-alpha-acylaminopenicillanate. Contrasting most beta-lactam drugs, mecillinam is most active against Gram-negative bacteria. It binds specifically to penicillin binding protein 2 (PBP2)."}, "36979": {"category_aro_name": "dicloxacillin", "category_aro_cvterm_id": "36979", "category_aro_accession": "3000635", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dicloxacillin is a penicillin derivative that has an extra chlorine atom in comparison to cloxacillin. While more active than cloxacillin, its high affinity for serum protein reduces its activity in human serum in vitro."}, "36978": {"category_aro_name": "propicillin", "category_aro_cvterm_id": "36978", "category_aro_accession": "3000634", "category_aro_class_name": "Antibiotic", "category_aro_description": "Propicillin is an orally taken penicillin derivative that has high absorption but poor activity."}, "35978": {"category_aro_name": "ceftobiprole", "category_aro_cvterm_id": "35978", "category_aro_accession": "0000061", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftobiprole (Zeftera/Zevtera) is a next generation (5th generation) cephalosporin antibiotic with activity against methicillin-resistant Staphylococcus aureus, penicillin-resistant Streptococcus pneumoniae, Pseudomonas aeruginosa, and Enterococci. Ceftobiprole inhibits transpeptidases essential to building cell walls, and is a poor substrate for most beta-lactamases."}, "36976": {"category_aro_name": "benzylpenicillin", "category_aro_cvterm_id": "36976", "category_aro_accession": "3000632", "category_aro_class_name": "Antibiotic", "category_aro_description": "Benzylpenicillin, commonly referred to as penicillin G, is effective against both Gram-positive and Gram-negative bacteria. It is unstable in acid."}, "36977": {"category_aro_name": "phenoxymethylpenicillin", "category_aro_cvterm_id": "36977", "category_aro_accession": "3000633", "category_aro_class_name": "Antibiotic", "category_aro_description": "Phenoxymethylpenicillin, or penicillin V, is a penicillin derivative that is acid stable but less active than benzylpenicillin (penicillin G)."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35961": {"category_aro_name": "carbenicillin", "category_aro_cvterm_id": "35961", "category_aro_accession": "0000043", "category_aro_class_name": "Antibiotic", "category_aro_description": "Carbenicillin is a semi-synthetic antibiotic belonging to the carboxypenicillin subgroup of the penicillins. It has gram-negative coverage which includes Pseudomonas aeruginosa but limited gram-positive coverage. The carboxypenicillins are susceptible to degradation by beta-lactamase enzymes. Carbenicillin antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40933": {"category_aro_name": "ceftiofur", "category_aro_cvterm_id": "40933", "category_aro_accession": "3004006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftiofur is a third-generation broad spectrum cephalosporin and beta-lactam antibiotic. It causes cell lysis by disrupting peptidoglycan cross-linkage and cell wall formation by binding to PBPs."}, "40932": {"category_aro_name": "cefprozil", "category_aro_cvterm_id": "40932", "category_aro_accession": "3004005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefprozil is a cephalosporin and beta-lactam antibiotic with bactericidal activity. It selectively binds to PBPs and inhibits peptidoglycan synthesis, a major cell wall component, resulting in cell lysis."}, "40935": {"category_aro_name": "cephapirin", "category_aro_cvterm_id": "40935", "category_aro_accession": "3004008", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cephapirin is a first-generation cephalosporin and broad spectrum beta-lactam antibiotic. Inactivation of penicillin-binding proteins through cephapirin binding disrupts peptidoglycan cross-linking, resulting in cell lysis."}, "40934": {"category_aro_name": "ceftizoxime", "category_aro_cvterm_id": "40934", "category_aro_accession": "3004007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftizoxime is a third-generation cephalosporin and broad spectrum beta-lactam antibiotic. Ceftizoxime causes bacterial cell lysis through peptidoglycan cross-linking inhibition by binding to PBPs."}, "35987": {"category_aro_name": "ertapenem", "category_aro_cvterm_id": "35987", "category_aro_accession": "0000070", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ertapenem is a carbapenem antibiotic and is highly resistant to beta-lactamases like other carbapenems. It inhibits bacterial cell wall synthesis."}, "40936": {"category_aro_name": "cefradine", "category_aro_cvterm_id": "40936", "category_aro_accession": "3004009", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefradine is a first-generation cephalosporin and broad spectrum beta-lactam antibiotic. Cefradine binding to penicillin-binding proteins disrupts cell wall peptidoglycan cross-linkage, resulting in cell lysis."}}}}, "1389": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36198": {"category_aro_name": "KPC beta-lactamase", "category_aro_cvterm_id": "36198", "category_aro_accession": "3000059", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Klebsiella pneumoniae carbapenem resistant (KPC) beta-lactamases are notorious for their ability to efficiently hydrolyze carbapenems, unlike other Ambler Class A beta-lactamases. There are currently 9 variants reported worldwide. These enzymes were first isolated from Klebsiella pneumoniae strains in 2001 in the United States. Hospital outbreaks have since been reported in Greece and Israel and KPC carrying strains are now endemic to New York facilities. KPC-1 and KPC-2 have been shown to be identical and are now referred to as KPC-2."}}}}, "2679": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36421": {"category_aro_name": "sulfonamide antibiotic", "category_aro_cvterm_id": "36421", "category_aro_accession": "3000282", "category_aro_class_name": "Drug Class", "category_aro_description": "Sulfonamides are broad spectrum, synthetic antibiotics that contain the sulfonamide group. Sulfonamides inhibit dihydropteroate synthase, which catalyzes the conversion of p-aminobenzoic acid to dihydropteroic acid as part of the tetrahydrofolic acid biosynthetic pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor of many nucleotides and amino acids. Many sulfamides are taken with trimethoprim, an inhibitor of dihydrofolate reductase, also disturbing the trihydrofolic acid synthesis pathway."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "40362": {"category_aro_name": "panipenem", "category_aro_cvterm_id": "40362", "category_aro_accession": "3003708", "category_aro_class_name": "Antibiotic", "category_aro_description": "Panipenem is a carbapenem antibacterial agent with a broad spectrum of in vitro activity covering a wide range of Gram-negative and Gram-positive aerobic and anaerobic bacterial. It is used in combination with betamipron to inhibit panipenem uptake into the renal tubule and prevent nephrotoxicity."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35996": {"category_aro_name": "clavulanate", "category_aro_cvterm_id": "35996", "category_aro_accession": "0000079", "category_aro_class_name": "Adjuvant", "category_aro_description": "Clavulanic acid is a beta-lactamase inhibitor (marketed by GlaxoSmithKline, formerly Beecham) combined with penicillin group antibiotics to overcome certain types of antibiotic resistance. It is used to overcome resistance in bacteria that secrete beta-lactamase, which otherwise inactivates most penicillins."}, "35990": {"category_aro_name": "meropenem", "category_aro_cvterm_id": "35990", "category_aro_accession": "0000073", "category_aro_class_name": "Antibiotic", "category_aro_description": "Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36689": {"category_aro_name": "aztreonam", "category_aro_cvterm_id": "36689", "category_aro_accession": "3000550", "category_aro_class_name": "Antibiotic", "category_aro_description": "Aztreonam was the first monobactam discovered, and is greatly effective against Gram-negative bacteria while inactive against Gram-positive bacteria. Artreonam is a poor substrate for beta-lactamases, and may even act as an inhibitor. In Gram-negative bacteria, Aztreonam interferes with filamentation, inhibiting cell division and leading to cell death."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35977": {"category_aro_name": "ceftazidime", "category_aro_cvterm_id": "35977", "category_aro_accession": "0000060", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35979": {"category_aro_name": "ceftriaxone", "category_aro_cvterm_id": "35979", "category_aro_accession": "0000062", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ceftriaxone is a third-generation cephalosporin antibiotic. The presence of an aminothiazolyl sidechain increases ceftriazone's resistance to beta-lactamases. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria."}, "36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "35981": {"category_aro_name": "amoxicillin", "category_aro_cvterm_id": "35981", "category_aro_accession": "0000064", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36468": {"category_aro_name": "sulfamethoxazole", "category_aro_cvterm_id": "36468", "category_aro_accession": "3000329", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sulfamethoxazole is a sulfonamide antibiotic usually taken with trimethoprim, a diaminopyrimidine antibiotic. Sulfamethoxazole inhibits dihydropteroate synthase, essential to tetrahydrofolic acid biosynthesis. This pathway generates compounds used in the synthesis of many amino acids and nucleotides."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "40957": {"category_aro_name": "trimethoprim-sulfamethoxazole", "category_aro_cvterm_id": "40957", "category_aro_accession": "3004024", "category_aro_class_name": "Antibiotic", "category_aro_description": "An antibiotic cocktail containing the diaminopyrimidine antibiotic Trimethoprim and the sulfonamide antibiotic sulfamethoxazole (1 TMP:5 SMX)."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "1209": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1208": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1630": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1631": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1632": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1633": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "36261": {"category_aro_name": "chloramphenicol acetyltransferase (CAT)", "category_aro_cvterm_id": "36261", "category_aro_accession": "3000122", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Inactivates chloramphenicol by addition of an acyl group. cat is used to describe many variants of the chloramphenicol acetyltransferase gene in a range of organisms including Acinetobacter calcoaceticus, Agrobacterium tumefaciens, Bacillus clausii, Bacillus subtilis, Campylobacter coli, Enterococcus faecalis, Enterococcus faecium, Lactococcus lactis, Listeria monocytogenes, Listonella anguillarum Morganella morganii, Photobacterium damselae subsp. piscicida, Proteus mirabilis, Salmonella typhi, Serratia marcescens, Shigella flexneri, Staphylococcus aureus, Staphylococcus haemolyticus, Staphylococcus intermedius, Streptococcus agalactiae, Streptococcus suis and Streptomyces acrimycini"}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "1634": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1635": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36713": {"category_aro_name": "vanR", "category_aro_cvterm_id": "36713", "category_aro_accession": "3000574", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanR is a OmpR-family transcriptional activator in the VanSR regulatory system. When activated by VanS, it promotes cotranscription of VanA, VanH, and VanX."}, "35947": {"category_aro_name": "vancomycin", "category_aro_cvterm_id": "35947", "category_aro_accession": "0000028", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vancomycin is a glycopeptide antibiotic used in the prophylaxis and treatment of infections caused by Gram-positive bacteria. Vancomycin inhibits the synthesis of peptidoglycan, the major component of the cell wall of gram-positive bacteria. Its mechanism of action is unusual in that it acts by binding precursors of peptidoglycan, rather than by interacting with an enzyme."}}}}, "1636": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1637": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36222": {"category_aro_name": "MOX beta-lactamase", "category_aro_cvterm_id": "36222", "category_aro_accession": "3000083", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "MOX beta-lactamases are plasmid-mediated AmpC-type beta-lactamases."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1638": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1639": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "1988": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1989": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$delete": ["35950"], "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "36308": {"category_aro_name": "rifampin", "category_aro_cvterm_id": "36308", "category_aro_accession": "3000169", "category_aro_class_name": "Antibiotic", "category_aro_description": "Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "37084": {"category_aro_name": "cefalotin", "category_aro_cvterm_id": "37084", "category_aro_accession": "3000704", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases."}, "35949": {"category_aro_name": "tigecycline", "category_aro_cvterm_id": "35949", "category_aro_accession": "0000030", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome."}, "35960": {"category_aro_name": "glycylcycline", "category_aro_cvterm_id": "35960", "category_aro_accession": "0000042", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA."}, "36981": {"category_aro_name": "ampicillin", "category_aro_cvterm_id": "36981", "category_aro_accession": "3000637", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36296": {"category_aro_name": "rifamycin antibiotic", "category_aro_cvterm_id": "36296", "category_aro_accession": "3000157", "category_aro_class_name": "Drug Class", "category_aro_description": "Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "568": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "569": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "2817": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36600": {"category_aro_name": "florfenicol", "category_aro_cvterm_id": "36600", "category_aro_accession": "3000461", "category_aro_class_name": "Antibiotic", "category_aro_description": "Florfenicol is a fluorine derivative of chloramphenicol, where the nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3) and the hydroxyl group (-OH), by a fluorine group (-F). The action mechanism is the same as chloramphenicol's, where the antibiotic binds to the 23S RNA of the 50S subunit of bacterial ribosomes to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "41251": {"category_aro_name": "23S rRNA with mutation conferring resistance to macrolide antibiotics", "category_aro_cvterm_id": "41251", "category_aro_accession": "3004125", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotide point mutations in the 23S rRNA subunit may confer resistance to macrolide antibiotics."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "2816": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36600": {"category_aro_name": "florfenicol", "category_aro_cvterm_id": "36600", "category_aro_accession": "3000461", "category_aro_class_name": "Antibiotic", "category_aro_description": "Florfenicol is a fluorine derivative of chloramphenicol, where the nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3) and the hydroxyl group (-OH), by a fluorine group (-F). The action mechanism is the same as chloramphenicol's, where the antibiotic binds to the 23S RNA of the 50S subunit of bacterial ribosomes to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "41251": {"category_aro_name": "23S rRNA with mutation conferring resistance to macrolide antibiotics", "category_aro_cvterm_id": "41251", "category_aro_accession": "3004125", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotide point mutations in the 23S rRNA subunit may confer resistance to macrolide antibiotics."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "2811": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36600": {"category_aro_name": "florfenicol", "category_aro_cvterm_id": "36600", "category_aro_accession": "3000461", "category_aro_class_name": "Antibiotic", "category_aro_description": "Florfenicol is a fluorine derivative of chloramphenicol, where the nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3) and the hydroxyl group (-OH), by a fluorine group (-F). The action mechanism is the same as chloramphenicol's, where the antibiotic binds to the 23S RNA of the 50S subunit of bacterial ribosomes to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "41251": {"category_aro_name": "23S rRNA with mutation conferring resistance to macrolide antibiotics", "category_aro_cvterm_id": "41251", "category_aro_accession": "3004125", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotide point mutations in the 23S rRNA subunit may confer resistance to macrolide antibiotics."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "2810": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36600": {"category_aro_name": "florfenicol", "category_aro_cvterm_id": "36600", "category_aro_accession": "3000461", "category_aro_class_name": "Antibiotic", "category_aro_description": "Florfenicol is a fluorine derivative of chloramphenicol, where the nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3) and the hydroxyl group (-OH), by a fluorine group (-F). The action mechanism is the same as chloramphenicol's, where the antibiotic binds to the 23S RNA of the 50S subunit of bacterial ribosomes to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "41251": {"category_aro_name": "23S rRNA with mutation conferring resistance to macrolide antibiotics", "category_aro_cvterm_id": "41251", "category_aro_accession": "3004125", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotide point mutations in the 23S rRNA subunit may confer resistance to macrolide antibiotics."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "2813": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36600": {"category_aro_name": "florfenicol", "category_aro_cvterm_id": "36600", "category_aro_accession": "3000461", "category_aro_class_name": "Antibiotic", "category_aro_description": "Florfenicol is a fluorine derivative of chloramphenicol, where the nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3) and the hydroxyl group (-OH), by a fluorine group (-F). The action mechanism is the same as chloramphenicol's, where the antibiotic binds to the 23S RNA of the 50S subunit of bacterial ribosomes to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "41251": {"category_aro_name": "23S rRNA with mutation conferring resistance to macrolide antibiotics", "category_aro_cvterm_id": "41251", "category_aro_accession": "3004125", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotide point mutations in the 23S rRNA subunit may confer resistance to macrolide antibiotics."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "2812": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36600": {"category_aro_name": "florfenicol", "category_aro_cvterm_id": "36600", "category_aro_accession": "3000461", "category_aro_class_name": "Antibiotic", "category_aro_description": "Florfenicol is a fluorine derivative of chloramphenicol, where the nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3) and the hydroxyl group (-OH), by a fluorine group (-F). The action mechanism is the same as chloramphenicol's, where the antibiotic binds to the 23S RNA of the 50S subunit of bacterial ribosomes to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "41251": {"category_aro_name": "23S rRNA with mutation conferring resistance to macrolide antibiotics", "category_aro_cvterm_id": "41251", "category_aro_accession": "3004125", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotide point mutations in the 23S rRNA subunit may confer resistance to macrolide antibiotics."}, "35982": {"category_aro_name": "clarithromycin", "category_aro_cvterm_id": "35982", "category_aro_accession": "0000065", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "560": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "561": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38817": {"category_aro_name": "OKP beta-lactamase", "category_aro_cvterm_id": "38817", "category_aro_accession": "3002417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OKP beta-lactamases are chromosomal class A beta-lactamase that confer resistance to penicillins and early cephalosporins in Klebsiella pneumoniae. OKP beta-lactamases can be subdivided into two groups: OKP-A and OKP-B which diverge by about 4.2%"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "562": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "563": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38817": {"category_aro_name": "OKP beta-lactamase", "category_aro_cvterm_id": "38817", "category_aro_accession": "3002417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OKP beta-lactamases are chromosomal class A beta-lactamase that confer resistance to penicillins and early cephalosporins in Klebsiella pneumoniae. OKP beta-lactamases can be subdivided into two groups: OKP-A and OKP-B which diverge by about 4.2%"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "564": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "565": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "566": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "567": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1188": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36699": {"category_aro_name": "Erm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36699", "category_aro_accession": "3000560", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Erm proteins are part of the RNA methyltransferase family and methylate A2058 (E. coli nomenclature) of the 23S ribosomal RNA conferring degrees of resistance to Macrolides, Lincosamides and Streptogramin b. This is called the MLSb phenotype."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}, "1189": {"$update": {"ARO_category": {"37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36592": {"category_aro_name": "streptogramin vat acetyltransferase", "category_aro_cvterm_id": "36592", "category_aro_accession": "3000453", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "vat (Virginiamycin acetyltransferases) enzymes catalyze the transfer of an acetyl group from acetyl-CoA to the secondary alcohol of streptogramin A compounds, thus inactivating virginiamycin-like antibiotics and conferring resistance to these compounds."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}}}}, "1186": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1187": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1184": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1185": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1182": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1183": {"$update": {"ARO_category": {"36667": {"category_aro_name": "chlortetracycline", "category_aro_cvterm_id": "36667", "category_aro_accession": "3000528", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chlortetracycline was an early, first-generation tetracycline antibiotic developed in the 1940's. It inhibits bacterial protein synthesis by binding to the 30S subunit of bacterial ribosomes, preventing the aminoacyl-tRNA from binding to the ribosome."}, "37011": {"category_aro_name": "demeclocycline", "category_aro_cvterm_id": "37011", "category_aro_accession": "3000667", "category_aro_class_name": "Antibiotic", "category_aro_description": "Demeclocycline is a tetracycline analog with 7-chloro and 6-methyl groups. Due to its fast absorption and slow excretion, it maintains higher effective blood levels compared to other tetracyclines."}, "37012": {"category_aro_name": "oxytetracycline", "category_aro_cvterm_id": "37012", "category_aro_accession": "3000668", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oxytetracycline is a derivative of tetracycline with a 5-hydroxyl group. Its activity is similar to other tetracyclines."}, "36291": {"category_aro_name": "minocycline", "category_aro_cvterm_id": "36291", "category_aro_accession": "3000152", "category_aro_class_name": "Antibiotic", "category_aro_description": "Minocycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35986": {"category_aro_name": "doxycycline", "category_aro_cvterm_id": "35986", "category_aro_accession": "0000069", "category_aro_class_name": "Antibiotic", "category_aro_description": "Doxycycline is second generation semi-synthetic derivative of the tetracycline group of antibiotics. It inhibits bacterial protein synthesis by binding to the 30S subunit of the bacterial ribosome and preventing the aminotransferase-tRNA from associating with the ribosome."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "35921": {"category_aro_name": "tetracycline-resistant ribosomal protection protein", "category_aro_cvterm_id": "35921", "category_aro_accession": "0000002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "A family of proteins known to bind to the 30S ribosomal subunit. This interaction prevents tetracycline and tetracycline derivatives from inhibiting ribosomal function. Thus, these proteins confer elevated resistance to tetracycline derivatives as a ribosomal protection protein."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}, "1180": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "1181": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36989": {"category_aro_name": "cefotaxime", "category_aro_cvterm_id": "36989", "category_aro_accession": "3000645", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefotaxime is a semisynthetic cephalosporin taken parenterally. It is resistant to most beta-lactamases and active against Gram-negative rods and cocci due to its aminothiazoyl and methoximino functional groups."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37139": {"category_aro_name": "fusidic acid", "category_aro_cvterm_id": "37139", "category_aro_accession": "3000759", "category_aro_class_name": "Drug Class", "category_aro_description": "Fusidic acid is the only commercially available fusidane, a group of steroid-like antibiotics. It is most active against Gram-positive bacteria, and acts by inhibiting elongation factor G to block protein synthesis."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "726": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41361": {"category_aro_name": "blaZ beta-lactamase", "category_aro_cvterm_id": "41361", "category_aro_accession": "3004197", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "blaZ beta-lactamases are Class A beta-lactamases. These beta-lactamases are responsible for penicillin resistance in Staphylococcus aures."}}}}, "727": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36699": {"category_aro_name": "Erm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36699", "category_aro_accession": "3000560", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Erm proteins are part of the RNA methyltransferase family and methylate A2058 (E. coli nomenclature) of the 23S ribosomal RNA conferring degrees of resistance to Macrolides, Lincosamides and Streptogramin b. This is called the MLSb phenotype."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}, "724": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "725": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36205": {"category_aro_name": "GES beta-lactamase", "category_aro_cvterm_id": "36205", "category_aro_accession": "3000066", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "GES beta-lactamases or Guiana extended-spectrum beta-lactamases are related to the other plasmid-located class A beta-lactamases"}}}}, "722": {"$update": {"ARO_category": {"36713": {"category_aro_name": "vanR", "category_aro_cvterm_id": "36713", "category_aro_accession": "3000574", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanR is a OmpR-family transcriptional activator in the VanSR regulatory system. When activated by VanS, it promotes cotranscription of VanA, VanH, and VanX."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35948": {"category_aro_name": "teicoplanin", "category_aro_cvterm_id": "35948", "category_aro_accession": "0000029", "category_aro_class_name": "Antibiotic", "category_aro_description": "Teicoplanin is a glycopeptide antibiotic used in the prophylaxis and treatment of serious infections caused by Gram-positive bacteria. Teicoplanin has a unique acyl-aliphatic chain, and binds to cell wall precursors to inhibit transglycosylation and transpeptidation."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35947": {"category_aro_name": "vancomycin", "category_aro_cvterm_id": "35947", "category_aro_accession": "0000028", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vancomycin is a glycopeptide antibiotic used in the prophylaxis and treatment of infections caused by Gram-positive bacteria. Vancomycin inhibits the synthesis of peptidoglycan, the major component of the cell wall of gram-positive bacteria. Its mechanism of action is unusual in that it acts by binding precursors of peptidoglycan, rather than by interacting with an enzyme."}}}}, "723": {"$update": {"ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36024": {"category_aro_name": "SHV beta-lactamase", "category_aro_cvterm_id": "36024", "category_aro_accession": "3000015", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known."}}}}, "720": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36716": {"category_aro_name": "Bc beta-lactamase", "category_aro_cvterm_id": "36716", "category_aro_accession": "3000577", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Bacillus cereus beta-lactamases are zinc metallo-beta-lactamases that hydrolyze a large number of penicillins and cephalosporins."}}}}, "721": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1744": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "1745": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36198": {"category_aro_name": "KPC beta-lactamase", "category_aro_cvterm_id": "36198", "category_aro_accession": "3000059", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Klebsiella pneumoniae carbapenem resistant (KPC) beta-lactamases are notorious for their ability to efficiently hydrolyze carbapenems, unlike other Ambler Class A beta-lactamases. There are currently 9 variants reported worldwide. These enzymes were first isolated from Klebsiella pneumoniae strains in 2001 in the United States. Hospital outbreaks have since been reported in Greece and Israel and KPC carrying strains are now endemic to New York facilities. KPC-1 and KPC-2 have been shown to be identical and are now referred to as KPC-2."}}}}, "1746": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1747": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1740": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1741": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "728": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "729": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1164": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36197": {"category_aro_name": "MIR beta-lactamase", "category_aro_cvterm_id": "36197", "category_aro_accession": "3000058", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "MIR beta-lactamases are plasmid-mediated beta-lactamases that confer resistance to oxyimino- and alpha-methoxy beta-lactams"}}}}, "1165": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38817": {"category_aro_name": "OKP beta-lactamase", "category_aro_cvterm_id": "38817", "category_aro_accession": "3002417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OKP beta-lactamases are chromosomal class A beta-lactamase that confer resistance to penicillins and early cephalosporins in Klebsiella pneumoniae. OKP beta-lactamases can be subdivided into two groups: OKP-A and OKP-B which diverge by about 4.2%"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1166": {"$update": {"ARO_category": {"40463": {"category_aro_name": "nybomycin", "category_aro_cvterm_id": "40463", "category_aro_accession": "3003780", "category_aro_class_name": "Drug Class", "category_aro_description": "A heterocyclic antibiotic that targets mutant gyrA (type II topoisomerase) containing an S84L substitution, counteracting acquired quinolone resistance. It is effective against quinolone-resistant Gram-positive bacteria including S. aureus and E. faecalis. Due to its ability to counteract quinolone resistance by targeting the mutant form of the gyrA protein, it is classified as a reverse antibiotic (RA)."}, "37009": {"category_aro_name": "grepafloxacin", "category_aro_cvterm_id": "37009", "category_aro_accession": "3000665", "category_aro_class_name": "Antibiotic", "category_aro_description": "Grepafloxacin is a broad-spectrum antibacterial quinoline. It is no longer taken due to its high toxicity."}, "37008": {"category_aro_name": "trovafloxacin", "category_aro_cvterm_id": "37008", "category_aro_accession": "3000664", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trovafloxacin is a trifluoroquinalone with a broad spectrum of activity that acts by inhibiting the uncoiling of supercoiled DNA. While potent against many Gram-positive and Gram-negative bacteria, it is less active against pseudomonads and Cl. difficile. It is usually taken as the prodrug trovafloxacin mesylate or alatrofloxacin mesylate for oral or intravenous administration, respectively."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "37004": {"category_aro_name": "lomefloxacin", "category_aro_cvterm_id": "37004", "category_aro_accession": "3000660", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lomefloxacin is a difluoropiperazinyl quinolone, sharing similar activities with other fluoroquinolones. It is used to treat urinary tract infections. Relative to other fluoroquinolones, it has a longer half life and has higher serum concentrations."}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}, "39876": {"category_aro_name": "fluoroquinolone resistant gyrA", "category_aro_cvterm_id": "39876", "category_aro_accession": "3003292", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DNA gyrase is responsible for DNA supercoiling and consists of two alpha and two beta subunits. GyrA point mutations confer resistance by preventing fluoroquinolone antibiotics from binding the alpha-subunit."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37142": {"category_aro_name": "pefloxacin", "category_aro_cvterm_id": "37142", "category_aro_accession": "3000762", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pefloxacin is structurally and functionally similar to norfloxacin. It is poorly active against mycobacteria, while anaerobes are resistant."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35942": {"category_aro_name": "enoxacin", "category_aro_cvterm_id": "35942", "category_aro_accession": "0000023", "category_aro_class_name": "Antibiotic", "category_aro_description": "Enoxacin belongs to a group called fluoroquinolones. Its mode of action depends upon blocking bacterial DNA replication by binding itself to DNA gyrase and causing double-stranded breaks in the bacterial chromosome."}}}}, "1167": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}}, "1160": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "1161": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"37716": {"category_aro_name": "pleuromutilin", "category_aro_cvterm_id": "37716", "category_aro_accession": "3001317", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pleuromutilin is a natural product antibiotic produced by Clitopilus passeckerianus. Related antibiotics of clinical significance, such as tiamulin and retapamulin, are semi-synthetic derivatives of this compound."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}}, "1162": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35957": {"category_aro_name": "spectinomycin", "category_aro_cvterm_id": "35957", "category_aro_accession": "0000039", "category_aro_class_name": "Antibiotic", "category_aro_description": "Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation."}, "41439": {"category_aro_name": "ANT(3'')", "category_aro_cvterm_id": "41439", "category_aro_accession": "3004275", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Nucleotidylylation of streptomycin at the hydroxyl group at position 3''"}, "35958": {"category_aro_name": "streptomycin", "category_aro_cvterm_id": "35958", "category_aro_accession": "0000040", "category_aro_class_name": "Antibiotic", "category_aro_description": "Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1163": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1168": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "36196": {"category_aro_name": "NDM beta-lactamase", "category_aro_cvterm_id": "36196", "category_aro_accession": "3000057", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "NDM beta-lactamases or New Delhi metallo-beta-lactamases are class B beta-lactamases that confer resistance to a broad range of antibiotics including carbapenems, cephalosporins and penicillins."}}}}, "1169": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "472": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "48": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "49": {"$update": {"ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37030": {"category_aro_name": "thiostrepton", "category_aro_cvterm_id": "37030", "category_aro_accession": "3000686", "category_aro_class_name": "Antibiotic", "category_aro_description": "Thiostrepton is a cyclic peptide active against Gram-positive bacteria. It is produced by streptomyces bacteria."}, "39499": {"category_aro_name": "non-erm 23S ribosomal RNA methyltransferase (A1067)", "category_aro_cvterm_id": "39499", "category_aro_accession": "3003065", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Non-erm 23S ribosomal RNA methyltransferases modify adenosine 1067 to confer resistance to peptide antibiotics"}}}}, "46": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "47": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "44": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}, "36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "45": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}, "35965": {"category_aro_name": "puromycin", "category_aro_cvterm_id": "35965", "category_aro_accession": "0000047", "category_aro_class_name": "Antibiotic", "category_aro_description": "Puromycin is an aminonucleoside antibiotic, derived from Streptomyces alboniger, that causes premature chain termination during ribosomal protein translation."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "36174": {"category_aro_name": "nucleoside antibiotic", "category_aro_cvterm_id": "36174", "category_aro_accession": "3000034", "category_aro_class_name": "Drug Class", "category_aro_description": "Nucleoside antibiotics are made of modified nucleosides and nucleotides with wide-ranging activities and means of antibacterial effects. This drug class includes aminonucleoside antibiotics, which contain an amino group."}}}}}, "42": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "38788": {"category_aro_name": "OXY beta-lactamase", "category_aro_cvterm_id": "38788", "category_aro_accession": "3002388", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXY beta-lactamases are chromosomal class A beta-lactamases that are found in Klebsiella oxytoca. At constitutive low levels, OXY beta-lactamases confer resistance to aminopenicillins and carboxypenicillins. At high induced levels, OXY beta-lactamases confer resistance to penicillins, cephalosporins and aztreonam."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "43": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36189": {"category_aro_name": "tetracycline antibiotic", "category_aro_cvterm_id": "36189", "category_aro_accession": "3000050", "category_aro_class_name": "Drug Class", "category_aro_description": "These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "35968": {"category_aro_name": "tetracycline", "category_aro_cvterm_id": "35968", "category_aro_accession": "0000051", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome."}}}}}, "40": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}, "41": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "41435": {"category_aro_name": "16S rRNA methyltransferase (G1405)", "category_aro_cvterm_id": "41435", "category_aro_accession": "3004271", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Methyltransferases that methylate the G1405 position of 16S rRNA, which is part of an aminoglycoside binding site."}}}}, "1568": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1569": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "36261": {"category_aro_name": "chloramphenicol acetyltransferase (CAT)", "category_aro_cvterm_id": "36261", "category_aro_accession": "3000122", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Inactivates chloramphenicol by addition of an acyl group. cat is used to describe many variants of the chloramphenicol acetyltransferase gene in a range of organisms including Acinetobacter calcoaceticus, Agrobacterium tumefaciens, Bacillus clausii, Bacillus subtilis, Campylobacter coli, Enterococcus faecalis, Enterococcus faecium, Lactococcus lactis, Listeria monocytogenes, Listonella anguillarum Morganella morganii, Photobacterium damselae subsp. piscicida, Proteus mirabilis, Salmonella typhi, Serratia marcescens, Shigella flexneri, Staphylococcus aureus, Staphylococcus haemolyticus, Staphylococcus intermedius, Streptococcus agalactiae, Streptococcus suis and Streptomyces acrimycini"}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "1298": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37716": {"category_aro_name": "pleuromutilin", "category_aro_cvterm_id": "37716", "category_aro_accession": "3001317", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pleuromutilin is a natural product antibiotic produced by Clitopilus passeckerianus. Related antibiotics of clinical significance, such as tiamulin and retapamulin, are semi-synthetic derivatives of this compound."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}}, "1299": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1292": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1293": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1290": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1291": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36023": {"category_aro_name": "TEM beta-lactamase", "category_aro_cvterm_id": "36023", "category_aro_accession": "3000014", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "TEM-1 is the most commonly-encountered beta-lactamase in gram-negative bacteria. Up to 90% of ampicillin resistance in E. coli is due to the production of TEM-1. Also responsible for the ampicillin and penicillin resistance that is seen in H. influenzae and N. gonorrhoeae in increasing numbers. Although TEM-type beta-lactamases are most often found in E. coli and K. pneumoniae, they are also found in other species of gram-negative bacteria with increasing frequency. The amino acid substitutions responsible for the ESBL phenotype cluster around the active site of the enzyme and change its configuration, allowing access to oxyimino-beta-lactam substrates. Opening the active site to beta-lactam substrates also typically enhances the susceptibility of the enzyme to b-lactamase inhibitors, such as clavulanic acid. Although the inhibitor-resistant beta-lactamases are not ESBLs, they are often discussed with ESBLs because they are also derivatives of the classical TEM- or SHV-type enzymes. These enzymes were at first given the designation IRT for inhibitor-resistant TEM beta-lactamase; however, all have subsequently been renamed with numerical TEM designations. There are at least 19 distinct inhibitor-resistant TEM beta-lactamases. Inhibitor-resistant TEM beta-lactamases have been found mainly in clinical isolates of E. coli, but also some strains of K. pneumoniae, Klebsiella oxytoca, P. mirabilis, and Citrobacter freundii. Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing clinical resistance to the beta-lactam-lactamase inhibitor combinations of amoxicillin-clavulanate (Co-amoxiclav), ticarcillin-clavulanate, and ampicillin/sulbactam, they normally remain susceptible to inhibition by tazobactam and subsequently the combination of piperacillin/tazobactam, although resistance has been described."}}}}, "1296": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "38817": {"category_aro_name": "OKP beta-lactamase", "category_aro_cvterm_id": "38817", "category_aro_accession": "3002417", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OKP beta-lactamases are chromosomal class A beta-lactamase that confer resistance to penicillins and early cephalosporins in Klebsiella pneumoniae. OKP beta-lactamases can be subdivided into two groups: OKP-A and OKP-B which diverge by about 4.2%"}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "1297": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36025": {"category_aro_name": "CTX-M beta-lactamase", "category_aro_cvterm_id": "36025", "category_aro_accession": "3000016", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "These enzymes were named for their greater activity against cefotaxime than other oxyimino-beta-lactam substrates (eg, ceftazidime, ceftriaxone, or cefepime). Rather than arising by mutation, they represent examples of plasmid acquisition of beta-lactamase genes normally found on the chromosome of Kluyvera species, a group of rarely pathogenic commensal organisms. These enzymes are not very closely related to TEM or SHV beta-lactamases in that they show only approximately 40% identity with these two commonly isolated beta-lactamases. Despite their name, a few are more active on ceftazidime than cefotaxime. CTX-M-15 was recently found in bacterial strains expressing NDM-1 and were responsible for resistance to aztreonam."}}}}, "1294": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "41357": {"category_aro_name": "Sed beta-lactamase", "category_aro_cvterm_id": "41357", "category_aro_accession": "3004193", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Sed beta-lactamases are Class A beta-lactamases that are capable of hydrolyzing benzypenicillin, cephalothin, and cloxacillin."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}}}, "1295": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "36261": {"category_aro_name": "chloramphenicol acetyltransferase (CAT)", "category_aro_cvterm_id": "36261", "category_aro_accession": "3000122", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Inactivates chloramphenicol by addition of an acyl group. cat is used to describe many variants of the chloramphenicol acetyltransferase gene in a range of organisms including Acinetobacter calcoaceticus, Agrobacterium tumefaciens, Bacillus clausii, Bacillus subtilis, Campylobacter coli, Enterococcus faecalis, Enterococcus faecium, Lactococcus lactis, Listeria monocytogenes, Listonella anguillarum Morganella morganii, Photobacterium damselae subsp. piscicida, Proteus mirabilis, Salmonella typhi, Serratia marcescens, Shigella flexneri, Staphylococcus aureus, Staphylococcus haemolyticus, Staphylococcus intermedius, Streptococcus agalactiae, Streptococcus suis and Streptomyces acrimycini"}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}, "1713": {"$update": {"ARO_category": {"36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "36373": {"category_aro_name": "glycopeptide resistance gene cluster", "category_aro_cvterm_id": "36373", "category_aro_accession": "3000234", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Genes that when expressed confer resistance to vancomycin and teicoplanin type antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36216": {"category_aro_name": "vanY", "category_aro_cvterm_id": "36216", "category_aro_accession": "3000077", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "VanY is a D,D-carboxypeptidase that cleaves removes the terminal D-Ala from peptidoglycan for the addition of D-Lactate. The D-Ala-D-Lac peptidoglycan subunits have reduced binding affinity with vancomycin compared to D-Ala-D-Ala."}}}}, "1360": {"$update": {"ARO_category": {"36271": {"category_aro_name": "clorobiocin", "category_aro_cvterm_id": "36271", "category_aro_accession": "3000132", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clorobiocin is an aminocoumarin antibiotic produced by Streptomyces roseochromogenes, and binds DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "36289": {"category_aro_name": "coumermycin A1", "category_aro_cvterm_id": "36289", "category_aro_accession": "3000150", "category_aro_class_name": "Antibiotic", "category_aro_description": "Coumermycin A1 is an antibiotic produced by Streptomyces rishiriensis, and binds DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36618": {"category_aro_name": "aminocoumarin resistant gyrB", "category_aro_cvterm_id": "36618", "category_aro_accession": "3000479", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in DNA gyrase subunit B (gyrB) can result in resistance to aminocoumarins. These mutations usually involve arginine residues in organisms."}}}}, "1712": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "2033": {"$update": {"ARO_category": {"$update": {"36590": {"$insert": {"category_aro_class_name": "Efflux Regulator"}}}, "$insert": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "36005": {"category_aro_name": "resistance-nodulation-cell division (RND) antibiotic efflux pump", "category_aro_cvterm_id": "36005", "category_aro_accession": "0010004", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient."}, "40730": {"category_aro_name": "linoleic acid", "category_aro_cvterm_id": "40730", "category_aro_accession": "3003959", "category_aro_class_name": "Antibiotic", "category_aro_description": "Linoleic acid is a polyunsaturated omega-6 fatty acid. Linoleic acid has been found to have antibacterial activity, particularly in inhibiting the growth of Gram-positive bacterial species."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36298": {"category_aro_name": "efflux pump complex or subunit conferring antibiotic resistance", "category_aro_cvterm_id": "36298", "category_aro_accession": "3000159", "category_aro_class_name": "Efflux Component", "category_aro_description": "Efflux proteins that pump antibiotic out of a cell to confer resistance."}, "40727": {"category_aro_name": "antibacterial free fatty acids", "category_aro_cvterm_id": "40727", "category_aro_accession": "3003956", "category_aro_class_name": "Drug Class", "category_aro_description": "Amongst the diverse and potent biological activities of free fatty acids (FFAs) is the ability to kill or inhibit the growth of bacteria. The antibacterial properties of FFAs are used by many organisms to defend against parasitic or pathogenic bacteria. The prime target of FFA action is the cell membrane, where FFAs disrupt the electron transport chain and oxidative phosphorylation. Besides interfering with cellular energy production, FFA action may also result from the inhibition of enzyme activity, impairment of nutrient uptake, generation of peroxidation and auto-oxidation degradation products or direct lysis of bacterial cells."}, "35971": {"category_aro_name": "penicillin", "category_aro_cvterm_id": "35971", "category_aro_accession": "0000054", "category_aro_class_name": "Antibiotic", "category_aro_description": "Penicillin (sometimes abbreviated PCN) is a beta-lactam antibiotic used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms. It works by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40728": {"category_aro_name": "palmitic acid", "category_aro_cvterm_id": "40728", "category_aro_accession": "3003957", "category_aro_class_name": "Antibiotic", "category_aro_description": "Palmitic acid is the most common saturated fatty acid found in animals, plants, and microorganisms. Palmitic acid is found to have antibacterial properties."}, "40729": {"category_aro_name": "oleic acid", "category_aro_cvterm_id": "40729", "category_aro_accession": "3003958", "category_aro_class_name": "Antibiotic", "category_aro_description": "Oleic acid is a fatty acid that occurs naturally in various animal and vegetable fats and oils. Oleic acid is found to have antibacterial activity, particularly in inhibiting the growth of several Gram-positive bacterial species."}, "36297": {"category_aro_name": "azithromycin", "category_aro_cvterm_id": "36297", "category_aro_accession": "3000158", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}}, "1711": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "39426": {"category_aro_name": "AQU beta-lactamase", "category_aro_cvterm_id": "39426", "category_aro_accession": "3002992", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "AQU beta-lactamases are chromosomal class C beta-lactamases that confer resistance to cephalosporins."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}}}, "2425": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36251": {"category_aro_name": "multidrug and toxic compound extrusion (MATE) transporter", "category_aro_cvterm_id": "36251", "category_aro_accession": "3000112", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Multidrug and toxic compound extrusion (MATE) transporters utilize the cationic gradient across the membrane as an energy source. Although there is a diverse substrate specificity, almost all MATE transporters recognize fluoroquinolones. Arciflavine, ethidium and aminoglycosides are also good substrates."}, "36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}}}}}, "1710": {"$update": {"ARO_category": {"37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}, "37244": {"category_aro_name": "fluoroquinolone resistant gyrB", "category_aro_cvterm_id": "37244", "category_aro_accession": "3000864", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in DNA gyrase subunit B (gyrB) observed in Mycobacterium tuberculosis can result in resistance to fluoroquinolones."}, "37009": {"category_aro_name": "grepafloxacin", "category_aro_cvterm_id": "37009", "category_aro_accession": "3000665", "category_aro_class_name": "Antibiotic", "category_aro_description": "Grepafloxacin is a broad-spectrum antibacterial quinoline. It is no longer taken due to its high toxicity."}, "37008": {"category_aro_name": "trovafloxacin", "category_aro_cvterm_id": "37008", "category_aro_accession": "3000664", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trovafloxacin is a trifluoroquinalone with a broad spectrum of activity that acts by inhibiting the uncoiling of supercoiled DNA. While potent against many Gram-positive and Gram-negative bacteria, it is less active against pseudomonads and Cl. difficile. It is usually taken as the prodrug trovafloxacin mesylate or alatrofloxacin mesylate for oral or intravenous administration, respectively."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "37004": {"category_aro_name": "lomefloxacin", "category_aro_cvterm_id": "37004", "category_aro_accession": "3000660", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lomefloxacin is a difluoropiperazinyl quinolone, sharing similar activities with other fluoroquinolones. It is used to treat urinary tract infections. Relative to other fluoroquinolones, it has a longer half life and has higher serum concentrations."}, "36242": {"category_aro_name": "aminocoumarin antibiotic", "category_aro_cvterm_id": "36242", "category_aro_accession": "3000103", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36289": {"category_aro_name": "coumermycin A1", "category_aro_cvterm_id": "36289", "category_aro_accession": "3000150", "category_aro_class_name": "Antibiotic", "category_aro_description": "Coumermycin A1 is an antibiotic produced by Streptomyces rishiriensis, and binds DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "40940": {"category_aro_name": "fleroxacin", "category_aro_cvterm_id": "40940", "category_aro_accession": "3004013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Fleroxacin is a broad spectrum fluoroquinolone antibiotic that inhibits the DNA supercoiling activity of bacterial DNA gyrase, resulting in double-stranded DNA breaks and subsequent cell death."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "36271": {"category_aro_name": "clorobiocin", "category_aro_cvterm_id": "36271", "category_aro_accession": "3000132", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clorobiocin is an aminocoumarin antibiotic produced by Streptomyces roseochromogenes, and binds DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling."}, "36250": {"category_aro_name": "novobiocin", "category_aro_cvterm_id": "36250", "category_aro_accession": "3000111", "category_aro_class_name": "Antibiotic", "category_aro_description": "Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling."}, "40939": {"category_aro_name": "Clofazimine", "category_aro_cvterm_id": "40939", "category_aro_accession": "3004012", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clofazimine is a fluoroquinolone-class phenazine dye used for the treatment of leprosy. Clofazimine binds to DNA and disrupts bacterial DNA gyrase, thereby causing double-stranded DNA breaks, and subsequent cell death."}, "40938": {"category_aro_name": "clinafloxacin", "category_aro_cvterm_id": "40938", "category_aro_accession": "3004011", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clinafloxacin is a fluoroquinolone antibiotic and gyrase (DNA topoisomerase II) inhibitor. It binds to DNA gyrase and disrupts replication by causing double-stranded DNA breaks, resulting in cell death."}, "40937": {"category_aro_name": "cinoxacin", "category_aro_cvterm_id": "40937", "category_aro_accession": "3004010", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cinoxacin is a fluoroquinolone antibiotic primarily used for the treatment of urinary tract infections in adults. Cinoxacin binds to DNA gyrase, resulting in double-stranded DNA breaks and cell death."}, "37142": {"category_aro_name": "pefloxacin", "category_aro_cvterm_id": "37142", "category_aro_accession": "3000762", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pefloxacin is structurally and functionally similar to norfloxacin. It is poorly active against mycobacteria, while anaerobes are resistant."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35942": {"category_aro_name": "enoxacin", "category_aro_cvterm_id": "35942", "category_aro_accession": "0000023", "category_aro_class_name": "Antibiotic", "category_aro_description": "Enoxacin belongs to a group called fluoroquinolones. Its mode of action depends upon blocking bacterial DNA replication by binding itself to DNA gyrase and causing double-stranded breaks in the bacterial chromosome."}}}}, "1717": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1716": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1715": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "732": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "1201": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36230": {"category_aro_name": "CARB beta-lactamase", "category_aro_cvterm_id": "36230", "category_aro_accession": "3000091", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CARB beta-lactamases are class A lactamases that can hydrolyze carbenicillin. Many of the PSE beta-lactamases have been renamed as CARB-lactamases with the notable exception of PSE-2 which is now OXA-10."}}}}, "1714": {"$update": {"ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36699": {"category_aro_name": "Erm 23S ribosomal RNA methyltransferase", "category_aro_cvterm_id": "36699", "category_aro_accession": "3000560", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Erm proteins are part of the RNA methyltransferase family and methylate A2058 (E. coli nomenclature) of the 23S ribosomal RNA conferring degrees of resistance to Macrolides, Lincosamides and Streptogramin b. This is called the MLSb phenotype."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}}}, "1366": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "36003": {"category_aro_name": "major facilitator superfamily (MFS) antibiotic efflux pump", "category_aro_cvterm_id": "36003", "category_aro_accession": "0010002", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}}}}, "1367": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36604": {"category_aro_name": "ole glycosyltransferase", "category_aro_cvterm_id": "36604", "category_aro_accession": "3000465", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OleI and OleD are glycosyltransferases found in Streptomyces antibioticus which is a natural producer of antibiotic oleandomycin. OleI glycosylates antibiotic oleandomycin whereas OleD can glycosylate a wide variety of macrolides."}, "36284": {"category_aro_name": "tylosin", "category_aro_cvterm_id": "36284", "category_aro_accession": "3000145", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tylosin is a 16-membered macrolide, naturally produced by Streptomyces fradiae. It interacts with the bacterial ribosome 50S subunit to inhibit protein synthesis."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "35925": {"category_aro_name": "erythromycin", "category_aro_cvterm_id": "35925", "category_aro_accession": "0000006", "category_aro_class_name": "Antibiotic", "category_aro_description": "Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited."}}}}, "1364": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36208": {"category_aro_name": "CMY beta-lactamase", "category_aro_cvterm_id": "36208", "category_aro_accession": "3000069", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1365": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35953": {"category_aro_name": "sisomicin", "category_aro_cvterm_id": "35953", "category_aro_accession": "0000035", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36484": {"category_aro_name": "AAC(6')", "category_aro_cvterm_id": "36484", "category_aro_accession": "3000345", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 6'."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35966": {"category_aro_name": "kanamycin A", "category_aro_cvterm_id": "35966", "category_aro_accession": "0000049", "category_aro_class_name": "Antibiotic", "category_aro_description": "Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35926": {"category_aro_name": "dibekacin", "category_aro_cvterm_id": "35926", "category_aro_accession": "0000007", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36998": {"category_aro_name": "arbekacin", "category_aro_cvterm_id": "36998", "category_aro_accession": "3000654", "category_aro_class_name": "Antibiotic", "category_aro_description": "A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35956": {"category_aro_name": "netilmicin", "category_aro_cvterm_id": "35956", "category_aro_accession": "0000038", "category_aro_class_name": "Antibiotic", "category_aro_description": "Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin."}, "35932": {"category_aro_name": "amikacin", "category_aro_cvterm_id": "35932", "category_aro_accession": "0000013", "category_aro_class_name": "Antibiotic", "category_aro_description": "Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "36996": {"category_aro_name": "isepamicin", "category_aro_cvterm_id": "36996", "category_aro_accession": "3000652", "category_aro_class_name": "Antibiotic", "category_aro_description": "A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae."}, "35924": {"category_aro_name": "neomycin", "category_aro_cvterm_id": "35924", "category_aro_accession": "0000005", "category_aro_class_name": "Antibiotic", "category_aro_description": "Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "1362": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1363": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36230": {"category_aro_name": "CARB beta-lactamase", "category_aro_cvterm_id": "36230", "category_aro_accession": "3000091", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "CARB beta-lactamases are class A lactamases that can hydrolyze carbenicillin. Many of the PSE beta-lactamases have been renamed as CARB-lactamases with the notable exception of PSE-2 which is now OXA-10."}}}}, "474": {"$update": {"ARO_category": {"36476": {"category_aro_name": "iclaprim", "category_aro_cvterm_id": "36476", "category_aro_accession": "3000337", "category_aro_class_name": "Antibiotic", "category_aro_description": "Iclaprim is a bactericidal compound that inhibits dihydrofolate reductase. It is used against clinically important Gram-positive pathogens, including methicillin-sensitive Staphylococcus aureus and methicillin-resistant S. aureus."}, "36327": {"category_aro_name": "trimethoprim", "category_aro_cvterm_id": "36327", "category_aro_accession": "3000188", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic."}, "36408": {"category_aro_name": "brodimoprim", "category_aro_cvterm_id": "36408", "category_aro_accession": "3000269", "category_aro_class_name": "Antibiotic", "category_aro_description": "Brodimoprim is a structural derivative of trimethoprim and an inhibitor of bacterial dihydrofolate reductase. The 4-methoxy group of trimethoprim is replaced with a bromine atom."}, "37617": {"category_aro_name": "trimethoprim resistant dihydrofolate reductase dfr", "category_aro_cvterm_id": "37617", "category_aro_accession": "3001218", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Alternative dihydropteroate synthase dfr present on plasmids produces alternate proteins that are less sensitive to trimethoprim from inhibiting its role in folate synthesis, thus conferring trimethoprim resistance."}, "36310": {"category_aro_name": "diaminopyrimidine antibiotic", "category_aro_cvterm_id": "36310", "category_aro_accession": "3000171", "category_aro_class_name": "Drug Class", "category_aro_description": "Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis."}, "35998": {"category_aro_name": "antibiotic target replacement", "category_aro_cvterm_id": "35998", "category_aro_accession": "0001002", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance."}, "36423": {"category_aro_name": "tetroxoprim", "category_aro_cvterm_id": "36423", "category_aro_accession": "3000284", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tetroxoprim is a trimethoprim derivative that inhibits bacterial dihydrofolate reductase."}}}}, "1361": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36026": {"category_aro_name": "OXA beta-lactamase", "category_aro_cvterm_id": "36026", "category_aro_accession": "3000017", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "OXA beta-lactamases were long recognized as a less common but also plasmid-mediated beta-lactamase variety that could hydrolyze oxacillin and related anti-staphylococcal penicillins. These beta-lactamases differ from the TEM and SHV enzymes in that they belong to molecular class D and functional group 2d. The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic activity against oxacillin and cloxacillin and the fact that they are poorly inhibited by clavulanic acid. Amino acid substitutions in OXA enzymes can also give the ESBL phenotype. The OXA beta-lactamase family was originally created as a phenotypic rather than a genotypic group for a few beta-lactamases that had a specific hydrolysis profile. Therefore, there is as little as 20% sequence homology among some of the members of this family. However, recent additions to this family show some degree of homology to one or more of the existing members of the OXA beta-lactamase family. Some confer resistance predominantly to ceftazidime, but OXA-17 confers greater resistance to cefotaxime and cefepime than it does resistance to ceftazidime."}}}}, "478": {"$update": {"ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36461": {"category_aro_name": "AAC(3)", "category_aro_cvterm_id": "36461", "category_aro_accession": "3000322", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Acetylation of the aminoglycoside antibiotic on the amino group at position 3."}, "36999": {"category_aro_name": "gentamicin B", "category_aro_cvterm_id": "36999", "category_aro_accession": "3000655", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin B is a semisynthetic aminoglycoside antibacterial."}, "35933": {"category_aro_name": "gentamicin C", "category_aro_cvterm_id": "35933", "category_aro_accession": "0000014", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}, "35935": {"category_aro_name": "aminoglycoside antibiotic", "category_aro_cvterm_id": "35935", "category_aro_accession": "0000016", "category_aro_class_name": "Drug Class", "category_aro_description": "Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth."}, "35969": {"category_aro_name": "tobramycin", "category_aro_cvterm_id": "35969", "category_aro_accession": "0000052", "category_aro_class_name": "Antibiotic", "category_aro_description": "Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth."}}}}, "479": {"$update": {"ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36029": {"category_aro_name": "IMP beta-lactamase", "category_aro_cvterm_id": "36029", "category_aro_accession": "3000020", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Plasmid mediated IMP-type carbapenemases, of which at least 26 varieties are currently known, became established in Japan in the 1990s in enteric gram-negative organisms, Pseudomonas and Acinetobacter species. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}}}}, "1368": {"$update": {"ARO_category": {"$update": {"36298": {"$insert": {"category_aro_class_name": "Efflux Component"}}}, "$insert": {"36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36251": {"category_aro_name": "multidrug and toxic compound extrusion (MATE) transporter", "category_aro_cvterm_id": "36251", "category_aro_accession": "3000112", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. Multidrug and toxic compound extrusion (MATE) transporters utilize the cationic gradient across the membrane as an energy source. Although there is a diverse substrate specificity, almost all MATE transporters recognize fluoroquinolones. Arciflavine, ethidium and aminoglycosides are also good substrates."}, "36193": {"category_aro_name": "acridine dye", "category_aro_cvterm_id": "36193", "category_aro_accession": "3000054", "category_aro_class_name": "Drug Class", "category_aro_description": "Acridine dyes are cell permeable, basic molecules with an acridine chromophore. These compounds intercalate DNA. The image shown represents the core structure of the acridine family, with specific dyes containing varying substituents."}, "35963": {"category_aro_name": "acriflavin", "category_aro_cvterm_id": "35963", "category_aro_accession": "0000045", "category_aro_class_name": "Antibiotic", "category_aro_description": "Acriflavin is a topical antiseptic. It has the form of an orange or brown powder. It may be harmful in the eyes or if inhaled. Acriflavine is also used as treatment for external fungal infections of aquarium fish."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}}}}}, "1369": {"$update": {"ARO_category": {"37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "36558": {"category_aro_name": "quinolone resistance protein (qnr)", "category_aro_cvterm_id": "36558", "category_aro_accession": "3000419", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics"}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "35999": {"category_aro_name": "antibiotic target protection", "category_aro_cvterm_id": "35999", "category_aro_accession": "0001003", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}}}}}, "$delete": ["2332", "874", "777", "2776", "2764", "538"], "$insert": {"212": {"model_id": "212", "ARO_accession": "3003312", "model_param": {"blastp_bit_score": {"param_value": "1400", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}, "snp": {"param_type": "single resistance variant", "param_value": {"3984": "E84G", "3982": "S80F", "3983": "S80Y"}, "clinical": {"3984": "E84G", "3982": "S80F", "3983": "S80Y"}, "param_type_id": "36301", "param_description": "A nucleotide or amino acid substitution that confers elevated resistance to antibiotic(s) relative to wild type. The most common type encoded in the CARD is an amino acid substitution gleaned from the literature with format [wild-type][position][mutation], e.g. R184Q. When present in the associated gene or protein, a single resistance variant confers resistance to an antibiotic drug or drug class. Single resistance variants are used by the protein variant and rRNA mutation models to detect antibiotic resistance from submitted sequences."}}, "ARO_description": "Point mutation in Staphylococcus aureus parC resulting in fluoroquinolone resistance", "model_sequences": {"sequence": {"2067": {"dna_sequence": {"fmax": "1422162", "fmin": "1419759", "accession": "NC_002952", "strand": "+", "sequence": "GTGAGTGAAATAATTCAAGATTTATCACTTGAAGATGTTTTAGGTGATCGCTTTGGAAGATATAGTAAATATATTATTCAAGAGCGTGCATTGCCAGATGTTCGTGATGGTTTAAAACCAGTACAACGTCGTATTTTATATGCAATGTATTCAAGTGGTAATACACACGATAAAAATTTCCGTAAAAGTGCGAAAACAGTCGGTGATGTTATTGGTCAATATCATCCACATGGAGACTTCTCAGTGTACGAAGCAATGGTCCGTTTAAGTCAAGACTGGAAGTTACGACATGTCTTAATAGAAATGCATGGTAATAATGGTAGTATCGATAATGATCCACCAGCGGCAATGCGTTACACTGAAGCTAAGTTAAGCTTACTAGCTGAAGAGTTATTACGTGATATTAATAAAGAGACAGTTTCCTTCATTTCAAACTATGATGATACGACGCTCGAACCAATGGTATTGCCATCAAGATTTCCTAACTTACTAGTGAATGGTTCTACAGGTATATCTGCAGGTTACGCGACAGATATACCACCACATAATTTAGCTGAAGTGATTCAAGCAACACTTAAATATATTGATAATCCGGATATTACAGTCAATCAATTAATGAAATATATTAAAGGTCCTGATTTTCCAACTGGCGGTATTATTCAAGGTATTGATGGTATTAAAAAAGCTTATGAATCAGGTAAAGGTAGAATTATAGTTCGTTCTAAAGTTGAAGAAGAAACTTTACGCAATGGACGTAAACAGTTAATTATTACTGAAATTCCATATGAAGTGAACAAAAGTAGCTTAGTAAAACGTATCGATGAATTACGTGCTGACAAAAAAGTCGATGGTATCGTTGAAGTACGTGATGAAACTGATAGAACTGGTTTACGAATAGCAATTGAATTGAAAAAAGATGTGAACAGTGAATCAATCAAAAATTATCTTTATAAAAACTCTGATTTACAGATTTCATATAATTTCAACATGGTCGCTATTAGTGATGGTCGTCCAAAATTGATGGGTATTCGTCAAATTATAGATAGTTATTTAAATCATCAAATTGAGGTTGTTGCAAATAGAACGAAGTTTGAATTAGATAATGCTGAAAAACGCATGCATATCGTTGAAGGTTTGATTAAAGCGTTGTCAATTTTAGATAAAGTAATCGAATTGATTCGTAGCTCTAAAAACAAGCGTGACGCTAAAGAAAACCTTATCGAAGTATACGAGTTCACAGAAGAACAGGCTGAAGCAATTGTAATGTTACAGTTATATCGTTTAACAAACACTGACATAGTTGCGCTTGAAGGTGAACATAAAGAACTTGAAGCATTAATCAAACAATTACGTCATATTCTTGATAACCATGATGCATTATTGAATGTCATCAAAGAAGAATTGAATGAAATTAAAAAGAAATTCAAATCTGAACGACTGTCTTTAATTGAAGCAGAAATTGAAGAAATTAAAATTGACAAAGAAGTTATGGTGCCTAGTGAAGAAGTTATTTTAAGTATGACACGTCATGGATATATTAAACGTACTTCTATTCGTAGCTATAATGCTAGCGGTGTTGAAGATATTGGTTTAAAAGATGGTGACAGTTTACTTAAACATCAAGAAGTAAATACGCAAGATACCGTACTAGTATTTACAAATAAAGGTCGTTATCTATTTATACCGGTTCATAAATTAGCAGATATTCGTTGGAAAGAATTGGGGCAACATGTATCACAAATAGTTCCTATCGAAGAAGATGAAGTGGTTATTAATGTCTTTAATGAAAAGGACTTTAATACAGATGCATTTTATGTTTTTGCGACTCAAAATGGCATGATTAAGAAAAGTACAGTGCCTCTATTTAAAACAACGCGTTTTAATAAACCTTTAATTGCTACTAAAGTTAAAGAAAATGATGATTTGATTAGTGTTATGCGCTTTGAAAAAGATCAATTAATTACCATCATTACAAATAAAGGTATGTCTTTAACTTATAATACAAGTGAACTATCAGATACCGGATTAAGGGCAGCTGGTGTTAAATCAATAAATCTTAAAGCAGAAGATTTCGTTGTTATGACAGAAGGTGTTTCTGAAAATGATACTATATTGATGGCCACACAACGCGGCTCGTTAAAACGTATTAGTTTTAAAATCTTACAAGTTGCTAAAAGAGCACAACGTGGAATAACTTTATTAAAAGAATTAAAGAAAAATCCACATCGTATAGTAGCTGCACATGTAGTGACAGGTGAACATAGTCAATATACATTATATTCAAAATCAAACGAAGAACATGGTTTAATTAATGATATTCATAAATCTGAACAATATACAAATGGCTCATTCATTGTAGATACCGATGATTTTGGTGAAGTAATAGACATGTATATTAGCTAAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Staphylococcus aureus subsp. aureus MRSA252", "NCBI_taxonomy_id": "282458", "NCBI_taxonomy_cvterm_id": "35517"}, "protein_sequence": {"accession": "YP_040772.1", "sequence": "MSEIIQDLSLEDVLGDRFGRYSKYIIQERALPDVRDGLKPVQRRILYAMYSSGNTHDKNFRKSAKTVGDVIGQYHPHGDFSVYEAMVRLSQDWKLRHVLIEMHGNNGSIDNDPPAAMRYTEAKLSLLAEELLRDINKETVSFISNYDDTTLEPMVLPSRFPNLLVNGSTGISAGYATDIPPHNLAEVIQATLKYIDNPDITVNQLMKYIKGPDFPTGGIIQGIDGIKKAYESGKGRIIVRSKVEEETLRNGRKQLIITEIPYEVNKSSLVKRIDELRADKKVDGIVEVRDETDRTGLRIAIELKKDVNSESIKNYLYKNSDLQISYNFNMVAISDGRPKLMGIRQIIDSYLNHQIEVVANRTKFELDNAEKRMHIVEGLIKALSILDKVIELIRSSKNKRDAKENLIEVYEFTEEQAEAIVMLQLYRLTNTDIVALEGEHKELEALIKQLRHILDNHDALLNVIKEELNEIKKKFKSERLSLIEAEIEEIKIDKEVMVPSEEVILSMTRHGYIKRTSIRSYNASGVEDIGLKDGDSLLKHQEVNTQDTVLVFTNKGRYLFIPVHKLADIRWKELGQHVSQIVPIEEDEVVINVFNEKDFNTDAFYVFATQNGMIKKSTVPLFKTTRFNKPLIATKVKENDDLISVMRFEKDQLITIITNKGMSLTYNTSELSDTGLRAAGVKSINLKAEDFVVMTEGVSENDTILMATQRGSLKRISFKILQVAKRAQRGITLLKELKKNPHRIVAAHVVTGEHSQYTLYSKSNEEHGLINDIHKSEQYTNGSFIVDTDDFGEVIDMYIS"}}}}, "ARO_category": {"40471": {"category_aro_name": "fluoroquinolone self resistant parC", "category_aro_cvterm_id": "40471", "category_aro_accession": "3003786", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Inherent parC resistance to fluoroquinolone from an antibiotic producer. The presence of these genes confers self-resistance to the antibiotic it produces."}, "37009": {"category_aro_name": "grepafloxacin", "category_aro_cvterm_id": "37009", "category_aro_accession": "3000665", "category_aro_class_name": "Antibiotic", "category_aro_description": "Grepafloxacin is a broad-spectrum antibacterial quinoline. It is no longer taken due to its high toxicity."}, "37008": {"category_aro_name": "trovafloxacin", "category_aro_cvterm_id": "37008", "category_aro_accession": "3000664", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trovafloxacin is a trifluoroquinalone with a broad spectrum of activity that acts by inhibiting the uncoiling of supercoiled DNA. While potent against many Gram-positive and Gram-negative bacteria, it is less active against pseudomonads and Cl. difficile. It is usually taken as the prodrug trovafloxacin mesylate or alatrofloxacin mesylate for oral or intravenous administration, respectively."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "37004": {"category_aro_name": "lomefloxacin", "category_aro_cvterm_id": "37004", "category_aro_accession": "3000660", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lomefloxacin is a difluoropiperazinyl quinolone, sharing similar activities with other fluoroquinolones. It is used to treat urinary tract infections. Relative to other fluoroquinolones, it has a longer half life and has higher serum concentrations."}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37142": {"category_aro_name": "pefloxacin", "category_aro_cvterm_id": "37142", "category_aro_accession": "3000762", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pefloxacin is structurally and functionally similar to norfloxacin. It is poorly active against mycobacteria, while anaerobes are resistant."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36913": {"category_aro_name": "fluoroquinolone resistant parC", "category_aro_cvterm_id": "36913", "category_aro_accession": "3000619", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ParC is a subunit of topoisomerase IV, which decatenates and relaxes DNA to allow access to genes for transcription or translation. Point mutations in ParC prevent fluoroquinolone antibiotics from inhibiting DNA synthesis, and confer low-level resistance. Higher-level resistance results from both gyrA and parC mutations."}, "35942": {"category_aro_name": "enoxacin", "category_aro_cvterm_id": "35942", "category_aro_accession": "0000023", "category_aro_class_name": "Antibiotic", "category_aro_description": "Enoxacin belongs to a group called fluoroquinolones. Its mode of action depends upon blocking bacterial DNA replication by binding itself to DNA gyrase and causing double-stranded breaks in the bacterial chromosome."}}, "ARO_name": "Staphylococcus aureus parC conferring resistance to fluoroquinolone", "model_type": "protein variant model", "model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: \"strict\" and \"loose\". A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "ARO_id": "39896", "model_name": "Staphylococcus aureus parC conferring resistance to fluoroquinolone", "model_type_id": "40293"}, "2848": {"model_id": "2848", "ARO_accession": "3004325", "model_param": {"blastp_bit_score": {"param_value": "1000", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "MCR-4 is a plasmid-borne phosphoethanolamine transferase variant of MCR-1, isolated from Salmonella enterica serovar Typhimurium of porcine origin in Italy, Spain and Belgium through 2013 and 2015-2016. MCR-4 confers resistance to collistin via addition of a phosphoethanolamine group to lipid A, reducing the negative charge of the cell membrane. Described by Carattoli et al. 2017.", "model_sequences": {"sequence": {"4202": {"dna_sequence": {"fmax": "7433", "fmin": "5807", "accession": "MF543359.1", "strand": "-", "sequence": "CTAATACCTGCAAGGTGCAAAAATATCGAGTTGGCTCTGATAGACGGTGGTTTTTACATTCATAAGTCCTAGCAAACTGTCGAACAAATTGTCGTGGGAAAAGCCGCCCTGTTCTGCTCGCTGTGCAACACAAGTCATGTTCAACTGATTATCTTGGCTAAAGTCATTAGATACCCAAGCCAGCATTGGTACGCTAGTTTGTTCTTTCGGTGCAATACTATAGGGCGCACCATGTAAATACATGCCCTTTTCACCCAAAGACTCACCATGGTCAGAGAGATACAGCATTGCAGTATCGAACATATCCTGCTTACCTTTTAATTTATTCACCACTTCACTGAGAATAAAATCCGTATATAGAATAGTGTTGTCGTAGGTGTTAATCAGTTCTTCTTGACTGCAATTTTGAATATCACTGCGCGGACAATCCGGTATAAATTTACGATGCTCTGGCGGGTATCTAAGATAATAAGTTGGTCCATGACTACCAATGATATGCAAAAAAATTACTGTATCTTGACTTGGTGCTACTGCCAGAATTTTATCTAATTTGTTGAGCAATACTTGGTCAAAACAATATTGGCCAGAACACAGCTTCGGATCACTCTTCAAATCTATCGTGAGATTTTCAACCTGATCACACACACCTTTACAGCCAGAATCATTATCAAACCACTGTACTTTTATACCACTATGACTTAACACATCAATCACTGTGTCTTGAGCATTAGCACGGCGAGGATCATAGTCTGCCCGCCCCATTCGTGAAAACATACAGGGTAGAGACACCGCCGTGGCCGTGCCGCATGAGCTAGTATCGTTAAACGCAATCAGCCCCTGATTTTGGGTATGAGCATTGGTTGGCTTGTTATATCCATAATATTGATAGCTCATTGAGCGCGCAGTTTCACCCACAACAACCACTAATAAGTTAGGTTTAGTGTTCGGGTTACGACTGGCATTCTTCGCATCTAGGCCAAGTTGTTGGTATTCCATGGGCGTCTGCAAATAGTGCTCATTGAGATATTTAGATGCACTACTGACAAAATAGGTAGGGACAATGTAACGCCTTAACTCACTGTTGTTTCGAACAAATGCAGCATAATCTTGATAGTAAAAAAAGGCGACTATCCCAATGCCAACGAACATTAGCAGCATAAAGGCTAATTTATGCAATAACTCCTTAAAAAAGGGCTGATAATGAATATCGGCCTTATAAATAAGATATGACGGTAATAGCCCAGTCAGCAGTAGATTGGTAATTGATGCAAGATTTACATACATCAATGCTTCAGCAGGATGTGTTTGAAACGTGTTTTCTATCATGCCGTAGTCAAACACGACATTGTATTGATAGGCTGCAAAAAATACACTTGAGGAAAGTAACGTCAATACGATAAAAAAGGGCTTCAGCAGGTATTTGACGGTAAAAATTGAAAACAAAAAACTCAGCGCAAATGTTAAAAATAGCGGCATAGATGCGATGAAAAGGGGATCAACTTCTGGTTGTTTTTCAATTCCTTTTCGCACTATACCAAAGAGCGGTAGATTGAAAATGGCAACATAAAACAACGCAGTGATGAAAGTGAATTGGTTAACCGATAACGTCTTAAATCTAGAAATCAC"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Salmonella sp.", "NCBI_taxonomy_id": "599", "NCBI_taxonomy_cvterm_id": "41493"}, "protein_sequence": {"accession": "ASR73329.1", "sequence": "MISRFKTLSVNQFTFITALFYVAIFNLPLFGIVRKGIEKQPEVDPLFIASMPLFLTFALSFLFSIFTVKYLLKPFFIVLTLLSSSVFFAAYQYNVVFDYGMIENTFQTHPAEALMYVNLASITNLLLTGLLPSYLIYKADIHYQPFFKELLHKLAFMLLMFVGIGIVAFFYYQDYAAFVRNNSELRRYIVPTYFVSSASKYLNEHYLQTPMEYQQLGLDAKNASRNPNTKPNLLVVVVGETARSMSYQYYGYNKPTNAHTQNQGLIAFNDTSSCGTATAVSLPCMFSRMGRADYDPRRANAQDTVIDVLSHSGIKVQWFDNDSGCKGVCDQVENLTIDLKSDPKLCSGQYCFDQVLLNKLDKILAVAPSQDTVIFLHIIGSHGPTYYLRYPPEHRKFIPDCPRSDIQNCSQEELINTYDNTILYTDFILSEVVNKLKGKQDMFDTAMLYLSDHGESLGEKGMYLHGAPYSIAPKEQTSVPMLAWVSNDFSQDNQLNMTCVAQRAEQGGFSHDNLFDSLLGLMNVKTTVYQSQLDIFAPCRY"}}}}, "ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "41432": {"category_aro_name": "MCR phosphoethanolamine transferase", "category_aro_cvterm_id": "41432", "category_aro_accession": "3004268", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "A group of mobile colistin resistance genes encode the MCR family of phosphoethanolamine transferases, which catalyze the addition of phosphoethanolamine onto lipid A, thus interfering with the binding of colistin to the cell membrane."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36968": {"category_aro_name": "colistin B", "category_aro_cvterm_id": "36968", "category_aro_accession": "3000624", "category_aro_class_name": "Antibiotic", "category_aro_description": "Colistin B, or polymyxin E2, has a 6-heptanoic acid lipid tail. Polymyxins disrupt the cell membrane of Gram-negative bacteria."}, "36966": {"category_aro_name": "colistin A", "category_aro_cvterm_id": "36966", "category_aro_accession": "3000622", "category_aro_class_name": "Antibiotic", "category_aro_description": "Colistin A, or polymyxin E1, has a 6-octanoic acid lipid tail. Polymyxins disrupt the cell membrane of Gram-negative bacteria."}}, "ARO_name": "MCR-4", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "41492", "model_name": "MCR-4", "model_type_id": "40292"}, "2849": {"model_id": "2849", "ARO_accession": "3004332", "model_param": {"blastp_bit_score": {"param_value": "1000", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "MCR-5 is a transposon-associated phosphoethanolamine transferase gene, identified in Salmonella Paratyphi B dTa+ (d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B) isolates from food-producing animals. The isolates were collected between 2011 and 2013, and retrieved from the German National Reference Laboratory for Salmonella. MCR-5 confers resistance to collistin through the addition of a phosphoethanolamine group to lipid A, causing a reduction in negative charge of the cell membrane. Described by Borowiak et al, 2017.", "model_sequences": {"sequence": {"4203": {"dna_sequence": {"fmax": "6548", "fmin": "4940", "accession": "KY807921.1", "strand": "-", "sequence": "TCATTGTGGTTGTCCTTTTCTGCATGTTGCCAGAAGGTCCAACTCTGGCGTGTAGGCAGCGGTTTTCACGTCGAACATCCCGAGCAAGGTGTGAAACAGGTGATCGTGACTTACCGGTGCCCGAGAGGCATGAGTTTGCATACAGGCTTGGTCGGCATAAACCTGACTCGACTGCCACCAGATCATCGGCACCTTGATCTGCTCATCCGGCGCGATGACGTAAGGTATGCCATGGAGATACAGGCCTTTCTCGCCGAGCGATTCCCCATGATCGGAAACGTACAGCAGCGCCGTGTCGTGTGAGCGGATGCCGGACAGCAGGTCAATGGTACGGGCAAGCACATGATCGGTGTAAAGCACGGCGTTGTCGTAGGTGTTCACCAAGGCTTCATGCGAACAGCTGGCCAGATCGGTGGTGTCGCAGGTTGGCGACCAGCGTCGGTAGCTTGCGGGATAGCGCTGGAAATACGCTGGGCCGTGATTGCCCAGCATATGCAGAACGATCAGCATATCGCTGCGGCTTGTTGTTATCTTCTCGGCCAACCCTTCGAGCAGAATTTCATCCAGGCAGCGCTCGCCATGGCACAGTGTGGGATGGCCTGCCGAAGACAGGTTTTCAAAGGGCAGTCCATCACAGACGCCTTTACAGCCCGACTGGTTATCGCGCCAGAGAATGTTGACGTCACTACGGTTTAAAACGTGCAGCACGGACTCGCGCCGACGAATCTGGCGTTCGTCGTAGTCGCGCCGACCATTGAGGGAAAACATGCAGGGAAGGGATGTAGCCGTATCCGTCCCGCAACTGGTGACATCGGAAAAATTGATCACGTCGCGTGCGGCCAACTCAGGGGTGGTTTGTCGTTCATAGCCGCTCAACCCCCAATTAGCCGCCCTGACGGTTTCCCCGACAACCAGTACGAGAGCACGAGGACGGCGGCCTTGTTCTTGAGGCCCTCGATGCGCATCGGCTGCAACGACTTCCCTTGCTTCGTCTGCTGACGATGACGCCTGTTCAGTCAAAACCCGAATGCCCGAGATGACGTAGTTTGCAGGAGTGATCAAATAGCGAAGCGGCTTGTTTTCACGAAGCGTGGGTATCAGCACATCCATGACTGGCCACAGACCCATGGAAATCATGGCGAGAGCGCCAGCCAGACAAGCGCTGCGCATCATTACCGCTTGTTTCCAGCCCGTTCGTAAAACCCTGACTCTCGCAATCCACCACACGGATACGGCTGCAACCAACAAGTAGGGCAGCATTCTCCATTGCAACAGCTCACTGGCTTCCCTGACGTCCGTCTCCATCAGATTCCGCAGCATGGCCTTGTCGAGATAAACCCCGTAGTTGCGCATGAAATAAACGGCGGCGGGCGTCATGACAGCAAGCAGAATCAGTAGTGGCTTGACACTCCAGCGCGTGGCCACCAGAAGGAGCAACAACCATTGCAGCCCGGTGATCAGCAACCCAGTGCAAAGGAGCATTAGCCATGTTCCAGAAGTTAGGGAGTCGCGTCCAGCAAGAAGGGCATTCCAAAACACGCCATTGCACAGCAGGGTGAACACAAGGCTGATGAACAGAGTCAAAAATTCAGTGCGCACTTGCGGGCG"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Salmonella enterica subsp. enterica serovar Paratyphi B", "NCBI_taxonomy_id": "57045", "NCBI_taxonomy_cvterm_id": "35704"}, "protein_sequence": {"accession": "ASK40562.1", "sequence": "MRLSAFITFLKMRPQVRTEFLTLFISLVFTLLCNGVFWNALLAGRDSLTSGTWLMLLCTGLLITGLQWLLLLLVATRWSVKPLLILLAVMTPAAVYFMRNYGVYLDKAMLRNLMETDVREASELLQWRMLPYLLVAAVSVWWIARVRVLRTGWKQAVMMRSACLAGALAMISMGLWPVMDVLIPTLRENKPLRYLITPANYVISGIRVLTEQASSSADEAREVVAADAHRGPQEQGRRPRALVLVVGETVRAANWGLSGYERQTTPELAARDVINFSDVTSCGTDTATSLPCMFSLNGRRDYDERQIRRRESVLHVLNRSDVNILWRDNQSGCKGVCDGLPFENLSSAGHPTLCHGERCLDEILLEGLAEKITTSRSDMLIVLHMLGNHGPAYFQRYPASYRRWSPTCDTTDLASCSHEALVNTYDNAVLYTDHVLARTIDLLSGIRSHDTALLYVSDHGESLGEKGLYLHGIPYVIAPDEQIKVPMIWWQSSQVYADQACMQTHASRAPVSHDHLFHTLLGMFDVKTAAYTPELDLLATCRKGQPQ"}}}}, "ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "41432": {"category_aro_name": "MCR phosphoethanolamine transferase", "category_aro_cvterm_id": "41432", "category_aro_accession": "3004268", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "A group of mobile colistin resistance genes encode the MCR family of phosphoethanolamine transferases, which catalyze the addition of phosphoethanolamine onto lipid A, thus interfering with the binding of colistin to the cell membrane."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36968": {"category_aro_name": "colistin B", "category_aro_cvterm_id": "36968", "category_aro_accession": "3000624", "category_aro_class_name": "Antibiotic", "category_aro_description": "Colistin B, or polymyxin E2, has a 6-heptanoic acid lipid tail. Polymyxins disrupt the cell membrane of Gram-negative bacteria."}, "36966": {"category_aro_name": "colistin A", "category_aro_cvterm_id": "36966", "category_aro_accession": "3000622", "category_aro_class_name": "Antibiotic", "category_aro_description": "Colistin A, or polymyxin E1, has a 6-octanoic acid lipid tail. Polymyxins disrupt the cell membrane of Gram-negative bacteria."}}, "ARO_name": "MCR-5", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "41500", "model_name": "MCR-5", "model_type_id": "40292"}, "2846": {"model_id": "2846", "ARO_accession": "3004294", "model_param": {"blastp_bit_score": {"param_value": "500", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "A chromosome-encoded class C cephalosporinase and penicillinase from Buttiauxella spp. shown clinically to confer resistance to beta-lactam antibiotics. Described by Fihman et al. 2002.", "model_sequences": {"sequence": {"4198": {"dna_sequence": {"fmax": "2153", "fmin": "959", "accession": "AF440406.1", "strand": "+", "sequence": "ATGTGCCGGACCCTCTGTCATGTTACTTATGGAAGATTTTCAATGATGAAAAAAACACTCTGCTGCGCGCTGGTTCTGAGCGCCTCTTTCTCCGCCTTTGCTGCACAAAAAACATTGAGTGACAAACAGTTAGAAGAGGCTGTCAATCAAACGCTTAAACCGATGATTACAGCCCAGGCCATTCCCGGCATGGCGGTGGCGGTGATTTATCAGGGCAAGCCGCACTACTTTACCTACGGCGTGGCCGACATCGCGAAAAATCAGCCGGTGACGACACAGACGATTTTTGAGCTGGGCTCCGTGAGTAAAACTTTCACCGGCGTGCTGGGCGGCGATATCGTGGCGCGCGGGGAAGTGAAGCTGAGTGACCCGGCGATGAAATACTGGCCAGAACTGACGGGCAAGCAGTGGCAGGGCATCACGTTGCTGGATCTGGCGACCTACACCGCCGGCGGCTTGCCGTTGCAGGTGCCGGATGAGGTCGATAATCAGGCCGCGCTGCTGAAGTTTTACCAGAACTGGCAGCCGGACTGGGCGCCGGGAACCCGTCGTCAGTACGCCAACTCGAGCATTGGCCTGTTTGGTGCGTTGGCAGTGAAACCGTCCGGGATGACGTTTAACGATGCGATGCGCCAGCGCGTTCTGCAACCGCTGAACCTGAAACATACCTGGCTCACCGTTCCGGCCAGTGAAGAAAATCATTACGCCTGGGGCTATCGTGACGGCAAAGCCATGCACGTCGGGCCGGGCATGCTGGATACCGAAGCCTACGGTGTCAAATCCACCATCGAAGATATGGCGAGCTGGGTGCAATACAACATGAACCCGCAGCAGGTGAAACAGCCGACGCTGCAAAAAGGGCTGGAGATTGCGCAGTCGCGCTACTGGCGCAGCGGCAGTATGTATCAGGGCTTAGGCTGGGAAATGCTGAACTGGCCGGTTGCGGCGGCGACCGTCATTAACGGCAGCGATAACAAAGTGGCGCTGGCGGCTTCGCCCGTGACGGCCATTGAACCGCCGGTTGCGCCGGTGAAAGCTTCTCTGGTGCATAAAACCGGGTCGACCAACGGCTTCGGCGCGTACGTGGCGTTCATTCCTGAAAAACAAATCGGCATCGTGATGCTGGCTAACAAAATGTATCCGAATACCGAGCGGGTTAAAGCGGCAAATACTCTTCTCAACACGCTGCAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Buttiauxella agrestis", "NCBI_taxonomy_id": "82977", "NCBI_taxonomy_cvterm_id": "41461"}, "protein_sequence": {"accession": "AAN17791.1", "sequence": "MCRTLCHVTYGRFSMMKKTLCCALVLSASFSAFAAQKTLSDKQLEEAVNQTLKPMITAQAIPGMAVAVIYQGKPHYFTYGVADIAKNQPVTTQTIFELGSVSKTFTGVLGGDIVARGEVKLSDPAMKYWPELTGKQWQGITLLDLATYTAGGLPLQVPDEVDNQAALLKFYQNWQPDWAPGTRRQYANSSIGLFGALAVKPSGMTFNDAMRQRVLQPLNLKHTWLTVPASEENHYAWGYRDGKAMHVGPGMLDTEAYGVKSTIEDMASWVQYNMNPQQVKQPTLQKGLEIAQSRYWRSGSMYQGLGWEMLNWPVAAATVINGSDNKVALAASPVTAIEPPVAPVKASLVHKTGSTNGFGAYVAFIPEKQIGIVMLANKMYPNTERVKAANTLLNTLQ"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}}, "ARO_name": "BUT-1", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "41460", "model_name": "BUT-1", "model_type_id": "40292"}, "2844": {"model_id": "2844", "ARO_accession": "3004291", "model_param": {"blastp_bit_score": {"param_value": "500", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "A periplasmic cephalosporinase described in Rhodobacter sphaeroides shown to contribute to resistance of beta-lactam antibiotics.", "model_sequences": {"sequence": {"4196": {"dna_sequence": {"fmax": "875703", "fmin": "874560", "accession": "NC_007494.2", "strand": "+", "sequence": "ATGAAGCACCTTTCCCCCCTCTCCATCCTGCTCATGGTGGGCGCGCTGACGCCCGCGCTTGCGCAAGACACCACGCCGTCGTTCGAGAGCGCCGCCGCCGCGGCCTTCGAGAGCGTCATCGAGGAGCATGACATTCCCGGTCTGGTGGTGGGCGTGACCCACGGCGGACGGCACAGTTTCTATCAGACAGGCTTGGCCTCACGGGAAGATCAGCAGCCGGTAACCCCTGACACGCTTTTTGAGCTCGGTTCGATCAGCAAGATCTTCAACGTGACGCTGGCGGCCTTGGCAGAGGAGCGGGGCGCGCTGTCGCTCGATGCGCCGGTCGCCGACTATCTTCCCTCCCTGCGAGGTTCTCCTGCAGGAGAGCTGACGCTGATCGATCTGGCGACGCACCATACCGGCGGCCTCCCGTTGCAGGTGCCGGACGAAGTTGCAGATGTAGATCGCCTGGTCGACTGGCTACGGAGTTGGCGACCGCCCGAGCCCGGTACGCGCAGCTATTCCAACATCAGCATCGGCCTATTGGGGCACATCACCGCGGGCGTGCTGGGCATGAGCTATGCTGATGCGTCCCAGACGGTTATCTTCCCGGCGCTCGGATTGAAGAGCACGTGGATCGACGTCCCCACCGATGCGATGGGACGCTACGCCTTCGGCTATGACCGCAAGACAGACGCGCCAACCCGGGTTACGCCCGGCGTGCTGGACGATGAAGCGTACGGGGTAAAATCCTCCGCTCGCGACATGCTGACGCTGCTCGACCTCGAGCTTGGAACCGGCACTGCCTCGCCCGAAGTTCAAACGGCGGTGGCCACCACGCAGGAGGGCCGGTTCCAGACCCGCCTGTACACGCAGGCCATGATATGGGAGGCCTATCCTTGGCCTGTCGACCCAGAGCGTCTGGTGGAGGGGAACGGGTATGACTTCATCCTCCAGCCTCAGCCTGTGGACGAGGTGGACACGACACCCGATCGGAGGGTCATCCTGAACAAGACAGGTTCCACGAACGGCTTCGGTGGGTACATCGCGATCGTGCCAAGCGAGGATCTGGGCGTCGTCGTCCTTGCCAACCGCAACTACCCCAACGAGGCGCGGGTTCGAGCCACTTACGACCTGATCACTCACATCTTGGCCGAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Rhodobacter sphaeroides 2.4.1", "NCBI_taxonomy_id": "272943", "NCBI_taxonomy_cvterm_id": "41456"}, "protein_sequence": {"accession": "YP_355256.1", "sequence": "MKHLSPLSILLMVGALTPALAQDTTPSFESAAAAAFESVIEEHDIPGLVVGVTHGGRHSFYQTGLASREDQQPVTPDTLFELGSISKIFNVTLAALAEERGALSLDAPVADYLPSLRGSPAGELTLIDLATHHTGGLPLQVPDEVADVDRLVDWLRSWRPPEPGTRSYSNISIGLLGHITAGVLGMSYADASQTVIFPALGLKSTWIDVPTDAMGRYAFGYDRKTDAPTRVTPGVLDDEAYGVKSSARDMLTLLDLELGTGTASPEVQTAVATTQEGRFQTRLYTQAMIWEAYPWPVDPERLVEGNGYDFILQPQPVDEVDTTPDRRVILNKTGSTNGFGGYIAIVPSEDLGVVVLANRNYPNEARVRATYDLITHILAE"}}}}, "ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "36976": {"category_aro_name": "benzylpenicillin", "category_aro_cvterm_id": "36976", "category_aro_accession": "3000632", "category_aro_class_name": "Antibiotic", "category_aro_description": "Benzylpenicillin, commonly referred to as penicillin G, is effective against both Gram-positive and Gram-negative bacteria. It is unstable in acid."}, "41396": {"category_aro_name": "ampC-type beta-lactamase", "category_aro_cvterm_id": "41396", "category_aro_accession": "3004232", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "AmpC beta-lactamases are clinically important class C beta-lactamase enzymes which confer resistance to cephalosporins and penicillin-like antibiotics. AmpC beta-lactamases are typically found in Enterobacteriaceae, and were described in Escherichia coli in 1940 as the first reported enzymatic deactivation of penicillin. The name AmpC connects these enzymes functionally across many species, however these enzymes are generally unnamed and not phylogenetically related."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}, "ARO_name": "Rhodobacter sphaeroides ampC beta-lactamase", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "41455", "model_name": "Rhodobacter sphaeroides ampC beta-lactamase", "model_type_id": "40292"}, "2845": {"model_id": "2845", "ARO_accession": "3004292", "model_param": {"blastp_bit_score": {"param_value": "500", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "A chromosome-encoded class C beta-lactamase described in the pathogen Laribacter hongkongensis, often associated with gastroenteritis. Laribacter ampC has been shown to confer resistance to non-carbapenem beta-lactamases, as described by Lau et al. 2005.", "model_sequences": {"sequence": {"4197": {"dna_sequence": {"fmax": "1173", "fmin": "0", "accession": "AY632076.1", "strand": "+", "sequence": "ATGAAAAAACGGATTACCCCATTTTCCCGCTTTGCATCAAAAGGCCTTTTCGCCTGTAGCGCAGGCATGTTGCTGGTGACGGTGGCACATGCTGCCAATACGGCAGCAGCACCAGCCGGCATGGATGCCATGGTACAAACCGTGATGCAGGCACACCAGATTCCGGGCATGGCCATTGCCATCATCCAGCCAGGAAAGACCACTTATCACAATTATGGTGTCGCCTCCCGCGAAACCGGCCAGCCGGTCCGGGAAACCACCCTGTTTGAAATCGGGTCCCTTTCCAAACCGTTTACTGCACTGGTCGCCCAGCGGGCTGAAACCGAAGGCCGGATTGACCTGTCTGCACCGGCCAGCCGCTACGTTGCCGCCCTGCGAGGCAGTGCATTCGACCGGATCACCCTCAGGCAGCTCGGTACTTATAGCGCAGGCGGATTACCGCTCCAGTTTCCTGACAATGTCACCACCCCGGCAGACGTGCTGGCTTATTACCAGCATTGGCAACCTGTCCATCCGGCAGGTACCACCCGGCTGTATTCCAATCCGAGCATTGGCCTGATGGGGCTGGCTGCCAGTCAGGCAACCGGAGAGTCCTTTGCCGGCCTGCTCGGGACAACGGTGCTGCACCCCCTCGGCATGAACTCGACCTATCTGCAAGTGCCCCCGGAGGCCCGTTCACGTTATGCCATGGGATATACCGCCGCCGGAAAAGCGGTCAGGGTCAGCCCCGGTCCGCTGGATGAGGAAACCTACGGCGTCAAGTCCACAACCGCAGACATGGCCGGATTTTTATTGGCGCATATGGACCCTGCGCGCAGCAAAGGTGCATTGCAGTCGGCATTACAGCAAACACGTGTACCGGTTTATTGCGCCGGACAGACCCGGCAAGGACTGGGCTGGGAAAGTTATCAAGACTGGAAAAACCTAGACGTGCTGCTGGCGGGAAATTCAAATCAAATGGTGTTTGAGCCGCAGCCGGTAAAAGCCTGTCCTGCCGGCACCATGAATGATCCTGATGTGTGGGTCAACAAGACCGGTTCTACTGCGGGATTCGGCGCTTATGCCGTATTCCTGCCTGCCCGACAGACCGGCATTGTCATCCTGGCCAACCGTAATTTCCCGATTGCAGACCGTATCCGGCTCGCTCACGGGATTTTGACCGCATTGCACTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Laribacter hongkongensis", "NCBI_taxonomy_id": "168471", "NCBI_taxonomy_cvterm_id": "41458"}, "protein_sequence": {"accession": "AAT46346.1", "sequence": "MKKRITPFSRFASKGLFACSAGMLLVTVAHAANTAAAPAGMDAMVQTVMQAHQIPGMAIAIIQPGKTTYHNYGVASRETGQPVRETTLFEIGSLSKPFTALVAQRAETEGRIDLSAPASRYVAALRGSAFDRITLRQLGTYSAGGLPLQFPDNVTTPADVLAYYQHWQPVHPAGTTRLYSNPSIGLMGLAASQATGESFAGLLGTTVLHPLGMNSTYLQVPPEARSRYAMGYTAAGKAVRVSPGPLDEETYGVKSTTADMAGFLLAHMDPARSKGALQSALQQTRVPVYCAGQTRQGLGWESYQDWKNLDVLLAGNSNQMVFEPQPVKACPAGTMNDPDVWVNKTGSTAGFGAYAVFLPARQTGIVILANRNFPIADRIRLAHGILTALH"}}}}, "ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "41396": {"category_aro_name": "ampC-type beta-lactamase", "category_aro_cvterm_id": "41396", "category_aro_accession": "3004232", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "AmpC beta-lactamases are clinically important class C beta-lactamase enzymes which confer resistance to cephalosporins and penicillin-like antibiotics. AmpC beta-lactamases are typically found in Enterobacteriaceae, and were described in Escherichia coli in 1940 as the first reported enzymatic deactivation of penicillin. The name AmpC connects these enzymes functionally across many species, however these enzymes are generally unnamed and not phylogenetically related."}}, "ARO_name": "Laribacter hongkongensis ampC beta-lactamase", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "41457", "model_name": "Laribacter hongkongensis ampC beta-lactamase", "model_type_id": "40292"}, "2842": {"model_id": "2842", "ARO_accession": "3004289", "model_param": {"blastp_bit_score": {"param_value": "500", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "varG is an Ambler class B metallo-beta-lactamase found on the antibiotic resistance var regulon in Vibrio cholerae, along with an antibiotic efflux pump varABCDEF. These genes are organized as a regulon under the control of VarR transcriptional activator. VarG was shown to have beta-lactamase activity against penicillins, carbapenems and cephalosporins in-vitro. Described by Lin HV et al. 2017.", "model_sequences": {"sequence": {"4194": {"dna_sequence": {"fmax": "1675445", "fmin": "1674272", "accession": "AE003852.1", "strand": "+", "sequence": "ATGTTTGTTTCTCATTTATCTTTTCCCCACCTGATTGAGGAGAGAAAAATGAAACTATCCACCTTAGCTTTAGCCCCTATTACTGCAGCACTACTTACTTTTAATGCAAGTGCTAAAGGCCATGACCACGACAATCAACGCGCGATTTTTTTCCCTGGTGAAACTGTTCAAGACACTGTGAAAGTCGAAGTTGAGCCTTCTGCGACTCAGTCTCTGAAACTGGGACAAAAAATTAATAATCTGTATGAGCGCCAGTTTGATAACAGCCAAGCCACCGTTCAAAAATTGGGCAAGAATACCTACTGGATAGGGGTCAATTATTACAACGCTACCGTTGTGGTTAACGAAGACTCTGTCTTGCTGATTGACCCACTAGGCGATGGTCGTATTGATGCGCTTTTTAAAGGGGTGCAATCCATCACGAATAAACCGATCACTACGATTATGTATTCTCACTACCACTTAGATCATTTAGGTGGTGGCAACCAACTGGTTGACTTAATTAAGAAAAATTATCCAAAAGTAGATAAAATCCGCGTTATTGCTAGCCAAACCGTTGCGGACAAGATCAACCAACACGCCGAAGTAGGCGAAAACGGTGTGAAAACCCCGAAAGTTCCAGCGCCGAATGACATATACGACCTGACGAAGCCTCAAACGGTTCAATTTGGCTCAATGAAAATCAAGATGATGGCACCAAAAGGCTCTGGCCATACACCTGATAACACCATGATTCTGATCCCAAGCGATCGCGTGTTGCATTTCGCGGACATGATTAATCCCGATCAACTACCGTTTTACAATTTCGCGGGAGCAGAACATTTCCACGGTTACGAAGAAGATCTACAAAGCCTTCTGAGCAAACCGCTGAGCAAACAGTGGGACTTTATTAACGGTGGCCATGGCAATATAGGTTCGAAACAGGATGTAAAAGATCTGCTTGAGTATATTGCGGACATCAGAACTGAAGTGGGCAAGCAGCTAGAAGTCGCCCCCTACACTCCAGTGTTGAGTGACGGTAACCACTTTGTTTGGTTCAAACGCTGGCAAGATGAGATCACTAACAATGTACATACCGCACTGGCAAACAAGTATGGCCACATGTACGGTTTCGATTCAGGCGTGGTTGAAACACACGCGGCAATGATTCTCGCAGATATGATTGATCACTAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Vibrio cholerae O1 biovar El Tor str. N16961", "NCBI_taxonomy_id": "243277", "NCBI_taxonomy_cvterm_id": "39595"}, "protein_sequence": {"accession": "AAF94716.1", "sequence": "MFVSHLSFPHLIEERKMKLSTLALAPITAALLTFNASAKGHDHDNQRAIFFPGETVQDTVKVEVEPSATQSLKLGQKINNLYERQFDNSQATVQKLGKNTYWIGVNYYNATVVVNEDSVLLIDPLGDGRIDALFKGVQSITNKPITTIMYSHYHLDHLGGGNQLVDLIKKNYPKVDKIRVIASQTVADKINQHAEVGENGVKTPKVPAPNDIYDLTKPQTVQFGSMKIKMMAPKGSGHTPDNTMILIPSDRVLHFADMINPDQLPFYNFAGAEHFHGYEEDLQSLLSKPLSKQWDFINGGHGNIGSKQDVKDLLEYIADIRTEVGKQLEVAPYTPVLSDGNHFVWFKRWQDEITNNVHTALANKYGHMYGFDSGVVETHAAMILADMIDH"}}}}, "ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "41452": {"category_aro_name": "subclass B1 Vibrio cholerae varG beta-lactamase", "category_aro_cvterm_id": "41452", "category_aro_accession": "3004288", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "varG is an Ambler class B metallo-beta-lactamase found on the antibiotic resistance var regulon in Vibrio cholerae, along with an antibiotic efflux pump varABCDEF. These genes are organized as a regulon under the control of VarR transcriptional activator. VarG was shown to have beta-lactamase activity against penicillins, carbapenems and cephalosporins in-vitro."}, "35990": {"category_aro_name": "meropenem", "category_aro_cvterm_id": "35990", "category_aro_accession": "0000073", "category_aro_class_name": "Antibiotic", "category_aro_description": "Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem."}}, "ARO_name": "Vibrio cholerae varG", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "41453", "model_name": "Vibrio cholerae varG", "model_type_id": "40292"}, "2843": {"model_id": "2843", "ARO_accession": "3004290", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "A class C ampC beta-lactamase (cephalosporinase) enzyme described in Escherichia coli shown clinically to confer resistance to penicillin-like and cephalosporin-class antibiotics.", "model_sequences": {"sequence": {"4195": {"dna_sequence": {"fmax": "4378944", "fmin": "4377810", "accession": "NC_000913.3", "strand": "-", "sequence": "TTACTGTAGAGCGTTAAGAATCTGCCAGGCGGCGTCGACTCTCGCTGGATTGGGATAGTTTTTGTTTGCCAGCATCACGATACCCAGCTCTTTTTCTGGAATAAACGCGACATAGCTACCAAATCCGCCGGTCGCCCCTGTTTTATGTACCCATGATGCGCGTACTGCAGGAGTTGGGGGCGTAATCGCTTTTACGGGGCGTGCTGCCAGTGCAATTTTATTGTCACTGCCGTTAATGATGCTGTCAGGATTTACCGGCCAGTCCAGCATTTCCCAGCCCAGGCCCTGATACATATCGCCGGTTTGCCAGTAGCGAGATTGTGCCAGTTGTATCCCTTGTTGAAGCGTTTTCTCATTGATATCAAGGGGTTTTAAATTGCTTTGCACCCAGCGGGCCATATCTTCAATGGTCGACTTCACACCATAAGCTTCAGCATCTAACGCCCCAGGCGAAACATGCACTGCCTTACCTTCGCGATATCCCCAGGCGTAATTCTTTTCTTCTGCGGGCGGTACATTAATCCACGTATGGTTGAGTTTGAGTGGCTGGAAGACACGAGTTTGCATCGCCTGCTCAAAACTCAAACCAGACGGCTTCACAGCCAGTGCGCCGAACAAACCGATACTGGAGTTGGCATACAGACGTTGTGTTCCTGGAGCCCATGCAGGCTGCCAGTTTTGATAGAAGCGCAGCAAGTCGCTTGAGGATTTCACCTCATCCGGCACCTGCAATGGCAGGCCGCCAGCAGTGTAGGTTGCGAGATGTAATAGTGTGATCCCATTCCACTGTTTAGCGGTAAGTTCAGGCCAGTATTTTGTTGTGGGATCGCTTAACTTGATTTCCCCTCGAGCAATAGCGTCGCCACCAAGCACGCCAGTAAATGTTTTGCTGACCGAACCTAACTCAAACAACGTTTGCTGTGTGACGGGCTGCTTTTTGGCGATGTCCGCATAGCCCCAGGTAAAGTAATAAGGTTTACCCTGATAAATTACCGCCACCGCCATACCCGGGATCTTTTGTTGCTCTATAAGCGGGGTAATTGTGCGATGCACAATATCGTTGATTTGTTGAGGGGCAGCAAATGTGGAGCAAGAGGCGGTAATTAATAAGGCGCAGAGCGTCGTTTTGAACAT"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Escherichia coli str. K-12 substr. MG1655", "NCBI_taxonomy_id": "511145", "NCBI_taxonomy_cvterm_id": "36849"}, "protein_sequence": {"accession": "NP_418574.1", "sequence": "MFKTTLCALLITASCSTFAAPQQINDIVHRTITPLIEQQKIPGMAVAVIYQGKPYYFTWGYADIAKKQPVTQQTLFELGSVSKTFTGVLGGDAIARGEIKLSDPTTKYWPELTAKQWNGITLLHLATYTAGGLPLQVPDEVKSSSDLLRFYQNWQPAWAPGTQRLYANSSIGLFGALAVKPSGLSFEQAMQTRVFQPLKLNHTWINVPPAEEKNYAWGYREGKAVHVSPGALDAEAYGVKSTIEDMARWVQSNLKPLDINEKTLQQGIQLAQSRYWQTGDMYQGLGWEMLDWPVNPDSIINGSDNKIALAARPVKAITPPTPAVRASWVHKTGATGGFGSYVAFIPEKELGIVMLANKNYPNPARVDAAWQILNALQ"}}}}, "ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35971": {"category_aro_name": "penicillin", "category_aro_cvterm_id": "35971", "category_aro_accession": "0000054", "category_aro_class_name": "Antibiotic", "category_aro_description": "Penicillin (sometimes abbreviated PCN) is a beta-lactam antibiotic used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms. It works by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "41396": {"category_aro_name": "ampC-type beta-lactamase", "category_aro_cvterm_id": "41396", "category_aro_accession": "3004232", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "AmpC beta-lactamases are clinically important class C beta-lactamase enzymes which confer resistance to cephalosporins and penicillin-like antibiotics. AmpC beta-lactamases are typically found in Enterobacteriaceae, and were described in Escherichia coli in 1940 as the first reported enzymatic deactivation of penicillin. The name AmpC connects these enzymes functionally across many species, however these enzymes are generally unnamed and not phylogenetically related."}}, "ARO_name": "Escherichia coli ampC beta-lactamase", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "41454", "model_name": "Escherichia coli ampC", "model_type_id": "40292"}, "2841": {"model_id": "2841", "ARO_accession": "3004150", "model_param": {"blastn_bit_score": {"param_value": "5000", "param_type_id": "41093", "param_type": "BLASTN bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment. Higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. This parameter is used by AMR detection models without a protein reference sequence but including a nucleotide reference sequence, e.g. the rRNA gene variant model. The BLASTN bit-score parameter is a curated value determined from BLASTN analysis of the canonical nucleotide reference sequence of a specific AMR-associated gene against the database of CARD reference sequences. This value establishes a threshold for computational prediction of a specific gene amongst a batch of submitted sequences."}, "snp": {"param_type": "single resistance variant", "param_value": {"8226": "G2057A"}, "clinical": {"8226": "G2057A"}, "param_type_id": "36301", "param_description": "A nucleotide or amino acid substitution that confers elevated resistance to antibiotic(s) relative to wild type. The most common type encoded in the CARD is an amino acid substitution gleaned from the literature with format [wild-type][position][mutation], e.g. R184Q. When present in the associated gene or protein, a single resistance variant confers resistance to an antibiotic drug or drug class. Single resistance variants are used by the protein variant and rRNA mutation models to detect antibiotic resistance from submitted sequences."}}, "ARO_description": "Point mutation in the 23S rRNA of Escherichia coli shown clinically to confer resistance to chloramphenicol", "model_sequences": {"sequence": {"4193": {"dna_sequence": {"fmax": "240063", "fmin": "237159", "accession": "AE014075", "strand": "+", "sequence": "GGTTAAGCGACTAAGCGTACACGGTGGATGCCCTGGCAGTCAGAGGCGATGAAGGACGTGCTAATCTGCGATAAGCGTCGGTAAGGTGATATGAACCGTTATAACCGGCGATTTCCGAATGGGGAAACCCAGTGTGTTTCGACACACTATCATTAACTGAATCCATAGGTTAATGAGGCGAACCGGGGGAACTGAAACATCTAAGTACCCCGAGGAAAAGAAATCAACCGAGATTCCCCCAGTAGCGGCGAGCGAACGGGGAGGAGCCCAGAGCCTGAATCAGTGTGTGTGTTAGTGGAAGCGTCTGGAAAGGCGCGCGATACAGGGTGACAGCCCCGTACACAAAAATGCACATGCTGTGAGCTCGATGAGTAGGGCGGGACACGTGGTATCCTGTCTGAATATGGGGGGACCATCCTCCAAGGCTAAATACTCCTGACTGACCGATAGTGAACCAGTACCGTGAGGGAAAGGCGAAAAGAACCCCGGCGAGGGGAGTGAAAAAGAACCTGAAACCGTGTACGTACAAGCAGTGGGAGCATGCTTAGGCGTGTGACTGCGTACCTTTTGTATAATGGGTCAGCGACTTATATTCTGTAGCAAGGTTAACCGAATAGGGGAGCCGAAGGGAAACCGAGTCTTAACTGGGCGTTAAGTTGCAGGGTATAGACCCGAAACCCGGTGATCTAGCCATGGGCAGGTTGAAGGTTGGGTAACACTAACTGGAGGACCGAACCGACTAATGTTGAAAAATTAGCGGATGACTTGTGGCTGGGGGTGAAAGGCCAATCAAACCGGGAGATAGCTGGTTCTCCCCGAAAGCTATTTAGGTAGCGCCTCGTGAACTCATCTCCGGGGGTAGAGCACTGTTTCGGCAAGGGGGTCATCCCGACTTACCAACCCGATGCAAACTGCGAATACCGGAGAATGTTATCACGGGAGACACACGGCGGGTGCTAACGTCCGTCGNGAAGAGGGAAACAACCCAGACCGCCAGCTAAGGTCCCAAAGTCATGGTTAAGTGGGAAACGATGTGGGAAGGCCCAGACAGCCAGGATGTTGGCTTAGAAGCAGCCATCATTTAAAGAAAGCGTAATAGCTCACTGGTCGAGTCGGCCTGCGCGGAAGATGTAACGGGGCTAAACCATGCACCGAAGCTGCGGCAGCGACGCTTATGCGTTGTTGGGTAGGGGAGCGTTCTGTAAGCCTGTGAAGGTGTACTGTGAGGTATGCTGGAGGTATCAGAAGTGCGAATGCTGACATAAGTAACGATAAAGCGGGTGAAAAGCCCGCTCGCCGGAAGACCAAGGGTTCCTGTCCAACGTTAATCGGGGCAGGGTGAGTCGACCCCTAAGGCGAGGCCGAAAGGCGTAGTCGATGGGAAACAGGTTAATATTCCTGTACTTGGTGTTACTGCGAAGGGGGGACGGAGAAGGCTATGTTGGCCGGGCGACGGTTGTCCCGGTTTAAGCGTGTAGGCTGGTTTTCCAGGCAAATCCGGAAAATCAAGGCTGAGGCGTGATGACGAGGCACTACGGTGCTGAAGCAACAAATGCCCTGCTTCCAGGAAAAGCCTCTAAGCATCAGGTAACATCAAATCGTACCCCAAACCGACACAGGTGGTCAGGTAGAGAATACCAAGGCGCTTGAGAGAACTCGGGTGAAGGAACTAGGCAAAATGGTGCCGTAACTTCGGGAGAAGGCACGCTGATATGTAGGTGAAGCGACTTGCTCGTGGAGCTGAAATCAGTCGAAGATACCAGCTGGCTGCAACTGTTTATTAAAAACACAGCACTGTGCAAACACGAAAGTGGACGTATACGGTGTGACGCCTGCCCGGTGCCGGAAGGTTAATTGATGGGGTTAGCGCAAGCGAAGCTCTTGATCGAAGCCCCGGTAAACGGCGGCCGTAACTATAACGGTCCTAAGGTAGCGAAATTCCTTGTCGGGTAAGTTCCGACCTGCACGAATGGCGTAATGATGGCCAGGCTGTCTCCACCCGAGACTCAGTGAAATTGAACTCGCTGTGAAGATGCAGTGTACCCGCGGCAAGACGGAAAGACCCCGTGAACCTTTACTATAGCTTGACACTGAACATTGAGCCTTGATGTGTAGGATAGGTGGGAGGCTTTGAAGTGTGGACGCCAGTCTGCATGGAGCCGACCTTGAAATACCACCCTTTAATGTTTGATGTTCTAACGTTGACCCGTAATCCGGGTTGCGGACAGTGTCTGGTGGGTAGTTTGACTGGGGCGGTCTCCTCCTAAAGAGTAACGGAGGAGCACGAAGGTTGGCTAATCCTGGTCGGACATCAGGAGGTTAGTGCAATGGCATAAGCCAGCTTGACTGCGAGCGTGACGGCGCGAGCAGGTGCGAAAGCAGGTCATAGTGATCCGGTGGTTCTGAATGGAAGGGCCATCGCTCAACGGATAAAAGGTACTCCGGGGATAACAGGCTGATACCGCCCAAGAGTTCATATCGACGGCGGTGTTTGGCACCTCGATGTCGGCTCATCACATCCTGGGGCTGAAGTAGGTCCCAAGGGTATGGCTGTTCGCCATTTAAAGTGGTACGCGAGCTGGGTTTAGAACGTCGTGAGACAGTTCGGTCCCTATCTGCCGTGGGCGCTGGAGAACTGAGGGGGGCTGCTCCTAGTACGAGAGGACCGGAGTGGACGCATCACTGGTGTTCGGGTTGTCATGCCAATGGCACTGCCCGGTAGCTAAATGCGGAAGAGATAAGTGCTGAAAGCATCTAAGCACGAAACTTGCCCCGAGATGAGTTCTCCCTGACTCCTTGAGGGTCCTGAAGGAACGTTGAAGACGACGACGTTGATAGGCCGGGTGTGTAAGCGCAGCGATGCGTTGAGCTAACCGGTACTAATGAACCGTGAGGCTTAACCTT"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Escherichia coli CFT073", "NCBI_taxonomy_id": "199310", "NCBI_taxonomy_cvterm_id": "36763"}, "protein_sequence": {"accession": "", "sequence": ""}}}}, "ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36220": {"category_aro_name": "glycopeptide antibiotic", "category_aro_cvterm_id": "36220", "category_aro_accession": "3000081", "category_aro_class_name": "Drug Class", "category_aro_description": "Glycopeptide antibiotics are natural products produced non-ribosomally by Actinomycetales bacteria. With the exception of bleomycins, they act by binding the terminal D-Ala-D-Ala in peptidoglycan precursors of the growing bacterial cell wall and are generally active against Gram-positive bacteria. This inhibits transglycosylation leading to cell death due to osmotic stress."}, "37022": {"category_aro_name": "vernamycin B-gamma", "category_aro_cvterm_id": "37022", "category_aro_accession": "3000678", "category_aro_class_name": "Antibiotic", "category_aro_description": "Vernamycin B-gamma is a class B streptogramin derived from virginiamycin S1."}, "35919": {"category_aro_name": "macrolide antibiotic", "category_aro_cvterm_id": "35919", "category_aro_accession": "0000000", "category_aro_class_name": "Drug Class", "category_aro_description": "Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins."}, "36600": {"category_aro_name": "florfenicol", "category_aro_cvterm_id": "36600", "category_aro_accession": "3000461", "category_aro_class_name": "Antibiotic", "category_aro_description": "Florfenicol is a fluorine derivative of chloramphenicol, where the nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3) and the hydroxyl group (-OH), by a fluorine group (-F). The action mechanism is the same as chloramphenicol's, where the antibiotic binds to the 23S RNA of the 50S subunit of bacterial ribosomes to inhibit protein synthesis."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}, "36595": {"category_aro_name": "thiamphenicol", "category_aro_cvterm_id": "36595", "category_aro_accession": "3000456", "category_aro_class_name": "Antibiotic", "category_aro_description": "Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3)."}, "41350": {"category_aro_name": "23S rRNA with mutation conferring resistance to phenicol antibiotics", "category_aro_cvterm_id": "41350", "category_aro_accession": "3004188", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Point mutations in the 23S rRNA subunit shown clinically to confer resistance to phenicol class antibiotics, including chloramphenicol and florfenicol, by disrupting antibiotic binding-site affinity"}, "35983": {"category_aro_name": "clindamycin", "category_aro_cvterm_id": "35983", "category_aro_accession": "0000066", "category_aro_class_name": "Antibiotic", "category_aro_description": "Clindamycin is a lincosamide antibiotic that blocks A-site aminoacyl-tRNA binding. It is usually used to treat infections with anaerobic bacteria but can also be used to treat some protozoal diseases, such as malaria."}, "37018": {"category_aro_name": "dalfopristin", "category_aro_cvterm_id": "37018", "category_aro_accession": "3000674", "category_aro_class_name": "Antibiotic", "category_aro_description": "Dalfopristin is a water-soluble semi-synthetic derivative of pristinamycin IIA. It is produced by Streptomyces pristinaespiralis and is used in combination with quinupristin in a 7:3 ratio. Both work together to inhibit protein synthesis, and is active against Gram-positive bacteria."}, "37019": {"category_aro_name": "pristinamycin IB", "category_aro_cvterm_id": "37019", "category_aro_accession": "3000675", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IB is a class B streptogramin similar to pristinamycin IA, the former containing a N-methyl-4-(methylamino)phenylalanine instead of a N-methyl-4-(dimethylamino)phenylalanine in its class A streptogramin counterpart (one less methyl group)."}, "36723": {"category_aro_name": "quinupristin", "category_aro_cvterm_id": "36723", "category_aro_accession": "3000584", "category_aro_class_name": "Antibiotic", "category_aro_description": "Quinupristin is a type B streptogramin and a semisynthetic derivative of pristinamycin 1A. It is a component of the drug Synercid and interacts with the 50S subunit of the bacterial ribosome to inhibit protein synthesis."}, "36722": {"category_aro_name": "pristinamycin IA", "category_aro_cvterm_id": "36722", "category_aro_accession": "3000583", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin 1A is a type B streptogramin antibiotic produced by Streptomyces pristinaespiralis. It binds to the P site of the 50S subunit of the bacterial ribosome, preventing the extension of protein chains."}, "37036": {"category_aro_name": "bleomycin B2", "category_aro_cvterm_id": "37036", "category_aro_accession": "3000692", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin B2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37034": {"category_aro_name": "bleomycinic acid", "category_aro_cvterm_id": "37034", "category_aro_accession": "3000690", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycinic acid is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37035": {"category_aro_name": "bleomycin A2", "category_aro_cvterm_id": "37035", "category_aro_accession": "3000691", "category_aro_class_name": "Antibiotic", "category_aro_description": "Bleomycin A2 is a glycopeptide antibiotic produced by Streptomyces verticillus taken as a mixture of bleomycins. It induces stand breaks in bacterial nucleic acids."}, "37013": {"category_aro_name": "pristinamycin IIA", "category_aro_cvterm_id": "37013", "category_aro_accession": "3000669", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pristinamycin IIA is a streptogramin A antibiotic."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "37016": {"category_aro_name": "madumycin II", "category_aro_cvterm_id": "37016", "category_aro_accession": "3000672", "category_aro_class_name": "Antibiotic", "category_aro_description": "Madumycin II is a streptogramin A antibiotic."}, "37017": {"category_aro_name": "griseoviridin", "category_aro_cvterm_id": "37017", "category_aro_accession": "3000673", "category_aro_class_name": "Antibiotic", "category_aro_description": "Griseoviridin is a streptogramin A antibiotic."}, "35964": {"category_aro_name": "lincomycin", "category_aro_cvterm_id": "35964", "category_aro_accession": "0000046", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It binds to the 23s portion of the 50S subunit of bacterial ribosomes and inhibit early elongation of peptide chain by inhibiting transpeptidase reaction."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "36521": {"category_aro_name": "azidamfenicol", "category_aro_cvterm_id": "36521", "category_aro_accession": "3000382", "category_aro_class_name": "Antibiotic", "category_aro_description": "Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit."}, "36526": {"category_aro_name": "phenicol antibiotic", "category_aro_cvterm_id": "36526", "category_aro_accession": "3000387", "category_aro_class_name": "Drug Class", "category_aro_description": "Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome."}, "36524": {"category_aro_name": "chloramphenicol", "category_aro_cvterm_id": "36524", "category_aro_accession": "3000385", "category_aro_class_name": "Antibiotic", "category_aro_description": "Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation."}}, "ARO_name": "Escherichia coli 23S rRNA with mutation conferring resistance to chloramphenicol", "model_type": "rRNA gene variant model", "model_description": "The rRNA gene variant model is an AMR detection model used to identify ribosomal RNA (rRNA) genes with mutations shown clinically to confer resistance to known antibiotic(s) relative to the wild-type rRNA sequence. Like the protein variant model, rRNA gene variant models detect the presence of an rRNA sequence based on its homolog, and then secondarily search submitted query sequences for a curated mutation. This model includes an rRNA gene reference sequence, a BLASTN bitscore cutoff, and a set of mapped resistance variants. A submitted sequence must have both high homolog to the reference sequence and include a known resistance variant to be detected.", "ARO_id": "41297", "model_name": "Escherichia coli 23S rRNA with mutation conferring resistance to chloramphenicol", "model_type_id": "40295"}, "2859": {"model_id": "2859", "ARO_accession": "3004343", "model_param": {"blastp_bit_score": {"param_value": "750", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "An AmpC-like beta-lactamase found in Pseudomonas aeruginosa", "model_sequences": {"sequence": {"4216": {"dna_sequence": {"fmax": "1116", "fmin": "0", "accession": "KR057749.1", "strand": "+", "sequence": "GGCGAGGCCCCGGCGGATCGCCTGAAGGCACTGGTCGACGCCGCCGTACAACCGGTGATGAAGGCCAATGACATTCCGGGCCTGGCCGTAGCCATCAGCCTGAAAGGAGAACCGCATTACTTCAGCTATGGGCTGGCCTCGAAAGAGGACGGCCGCCGGGTGACGCCGGAGACCCTGTTCGAGATCGGCTCGGTGAGCAAGACCTTCACCGCCACCCTCGCCGGCTATGCCCTGACCCAGGACAAGATGCGCCTCGACGACCGCGCCAGCCAGCACTGGCCGGCACTGCAGGGCAGCCGCTTCGACGGCATCAGCCTGCTCGACCTCGCGACCTATACCGCCGGCGGCTTGCCGCTGCAGTTCCCCGACTCGGTGCAGAAGGACCAGGCACAGATCCGCGACTACTACCGCCAGTGGCAGCCGACCTACGCGCCGGGCAGCCAGCGCCTCTATTCCAACCCGAGCATCGGCCTGTTCGGCTATCTCGCCGCGCGCAGCCTGGGCCAGCCGTTCGAACGGCTCATGGAGCAGCAAGTGTTCCCGGCACTGGGCCTCGAACAGACCCACCTCGACGTGCCCGAGGCGGCGCTGGCGCAGTACGCCCAGGGCTACGGCAAGGACGACCGCCCGCTACGGGTCGGTCCCGGCCCGCTGGATGCCGGAGGCTACGGGGTGAAGACCAGCGCGGCCGACCTGCTGCGCTTCGTCGATGCCAACCTGCATCCGGAGCGCCTGGACAGGCCCTGGGCGCAGGCGCTCGATGCCACCCATCGCGGTTACTACAAGGTCGGCGACATGACCCAGGGCCTGGGCTGGGAAGCCTACGACTGGCCGATCTCCCTGAAGCGCCTGCAGGCCGGCAACTCGACGCCGATGGCACTGCAACCGCACAGGATCGCCAGGCTGCCCGCGCCACAGGCGCTGGAGGGCCAGCGCCTGCTGAACAAGACCGGTTCCACCAACGGCTTCGGCGCCTACGTGGCGTTCGTCCCGGGCCGCGACCTGGGACTGGTGATCCTGGCCAACCGCAACTATCCCAATGCCGAGCGGGTGAAGATCGCCTACGCCATCCTCAGCGGCCTGGAGCAGCAGGGCAAGGTGCCGCTGAAGCGCTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa", "NCBI_taxonomy_id": "287", "NCBI_taxonomy_cvterm_id": "36752"}, "protein_sequence": {"accession": "AKR18020.1", "sequence": "GEAPADRLKALVDAAVQPVMKANDIPGLAVAISLKGEPHYFSYGLASKEDGRRVTPETLFEIGSVSKTFTATLAGYALTQDKMRLDDRASQHWPALQGSRFDGISLLDLATYTAGGLPLQFPDSVQKDQAQIRDYYRQWQPTYAPGSQRLYSNPSIGLFGYLAARSLGQPFERLMEQQVFPALGLEQTHLDVPEAALAQYAQGYGKDDRPLRVGPGPLDAGGYGVKTSAADLLRFVDANLHPERLDRPWAQALDATHRGYYKVGDMTQGLGWEAYDWPISLKRLQAGNSTPMALQPHRIARLPAPQALEGQRLLNKTGSTNGFGAYVAFVPGRDLGLVILANRNYPNAERVKIAYAILSGLEQQGKVPLKR"}}}}, "ARO_category": {"36237": {"category_aro_name": "PDC beta-lactamase", "category_aro_cvterm_id": "36237", "category_aro_accession": "3000098", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PDC beta-lactamases are class C beta-lactamases that are found in Pseudomonas aeruginosa."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}, "ARO_name": "PDC-80", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "41511", "model_name": "PDC-80", "model_type_id": "40292"}, "2858": {"model_id": "2858", "ARO_accession": "3004342", "model_param": {"blastp_bit_score": {"param_value": "750", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "An AmpC-like beta-lactamase found in Pseudomonas aeruginosa", "model_sequences": {"sequence": {"4215": {"dna_sequence": {"fmax": "1116", "fmin": "0", "accession": "KR057748.1", "strand": "+", "sequence": "GGCGAGGCCCCGGCGGATCGCCTGAAGGCACTGGTCGACGCCGCCGTACAACCGGTGATGAAGGCCAATGACATTCCGGGCCTGGCCGTAGCCATCAGCCTGAAAGGAGAACCGCATTACTTCAGCTATGGGCTGGCCTCGAAAGAGGACGGCCGCCGGGTGACGCCGGAGACCCTGTTCGAGATCGGCTCGGTGAGCAAGACCTTCACCGCCACCCTCGCCGGCTATGCCCTGACCCAGGACAAGATGCGCCTCGACGACCGCGCCAGCCAGCACTGGCCGGCACTGCAGGGCAGCCGCTTCGACGGCATCAGCCTGCTCGACCTCGCGACCTATACCGCCGGCGGCTTGCCGCTGCAGTTTCCCGACTCGGTGCAGAAGGACCAGGCACAGATCCGCGACTACTACCGCCAGTGGCAGCCGACCTACGCGCCGGGCAGCCAGCGCCTCTATTCCAACCCGAGCATCGGCCTGTTCGGCTATCTCGCCGCGCGCAGCCTGGGCCAGCCGTTCGAACGGCTCATGGAGCAGCAAGTGTTCCCGGCACTGGGCCTCGAACAGACCCACCTCGACGTGCCCGAGGCGGCGCTGGCGCAGTACGCCCAGGGCTACGGCAAGGACGACCGCCCGCTACGGGTCGGTCCCGGCCCGCTGGATGCCAAAGGCTACGGGGTGAAGACCAGCGCGGCCGACCTGCTGCGCTTCGTCGATGCCAACCTGCATCCGGAGCGCCTGGACAGGCCCTGGGCGCAGGCGCTCGATGCCACCCATCGCGGTTACTACAAGGTCGGCGACATGACCCAGGGCCTGGGCTGGGAAGCCTACGACTGGCCGATCTCCCTGAAGCGCCTGCAGGCCGGCAACTCGACGCCGATGGCGCTGCAACCGCACAGGATCGCCAGGCTGCCCGCGCCACAGGCGCTGGAGGGCCAGCGCCTGCTGAACAAGACCGGTTCCACCAACGGCTTCGGCGCCTACGTGGCGTTCGTCCCGGGCCGCGACCTGGGACTGGTGATCCTGGCCAACCGCAACTATCCCAATGCCGAGCGGGTGAAGATCGCCTACGCCATCCTCAGCGGCCTGGAGCAGCAGGGCAAGGTGCCGCTGAAGCGCTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa", "NCBI_taxonomy_id": "287", "NCBI_taxonomy_cvterm_id": "36752"}, "protein_sequence": {"accession": "AKR18019.1", "sequence": "GEAPADRLKALVDAAVQPVMKANDIPGLAVAISLKGEPHYFSYGLASKEDGRRVTPETLFEIGSVSKTFTATLAGYALTQDKMRLDDRASQHWPALQGSRFDGISLLDLATYTAGGLPLQFPDSVQKDQAQIRDYYRQWQPTYAPGSQRLYSNPSIGLFGYLAARSLGQPFERLMEQQVFPALGLEQTHLDVPEAALAQYAQGYGKDDRPLRVGPGPLDAKGYGVKTSAADLLRFVDANLHPERLDRPWAQALDATHRGYYKVGDMTQGLGWEAYDWPISLKRLQAGNSTPMALQPHRIARLPAPQALEGQRLLNKTGSTNGFGAYVAFVPGRDLGLVILANRNYPNAERVKIAYAILSGLEQQGKVPLKR"}}}}, "ARO_category": {"36237": {"category_aro_name": "PDC beta-lactamase", "category_aro_cvterm_id": "36237", "category_aro_accession": "3000098", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PDC beta-lactamases are class C beta-lactamases that are found in Pseudomonas aeruginosa."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}, "ARO_name": "PDC-79", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "41510", "model_name": "PDC-79", "model_type_id": "40292"}, "2851": {"model_id": "2851", "ARO_accession": "3004335", "model_param": {"blastp_bit_score": {"param_value": "1500", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}, "snp": {"param_type": "single resistance variant", "param_value": {"8276": "D87G", "8275": "S83F"}, "clinical": {"8276": "D87G", "8275": "S83F"}, "param_type_id": "36301", "param_description": "A nucleotide or amino acid substitution that confers elevated resistance to antibiotic(s) relative to wild type. The most common type encoded in the CARD is an amino acid substitution gleaned from the literature with format [wild-type][position][mutation], e.g. R184Q. When present in the associated gene or protein, a single resistance variant confers resistance to an antibiotic drug or drug class. Single resistance variants are used by the protein variant and rRNA mutation models to detect antibiotic resistance from submitted sequences."}}, "ARO_description": "Point mutations in Escherichia coli which have been shown to increase the minimum inhibitory concentration of the antibiotic triclosan. It is hypothesized that decreased susceptibility to triclosan in E. coli gyrA mutants occurs indirectly due to alterations in the stress response pathways.", "model_sequences": {"sequence": {"4208": {"dna_sequence": {"fmax": "2339420", "fmin": "2336792", "accession": "U00096.3", "strand": "-", "sequence": "TTATTCTTCTTCTGGCTCGTCGTCAACGTCCACTTCCGGAGCGATTTCATCGTCCCCTTCCGCGGCACTGCCGTCGATGGTATCCAGATCTTCCTCGTCAACCGGTTCAGCAACACGTTGCAGACCCACTACGTTTTCATCTTCCGCAGTACGGATGAGGATCACGCCCTGGGTGTTACGGCCCACGATGCTGATTTCCGAAACGCGAGTACGTACCAGCGTACCGGCATCGGTGATCATCATGATCTGGTCGCAGTCATCTACCTGTACCGCGCCAACAACTAAACCGTTACGTTCGGTAACCTTGATGGAGATAACCCCTTTCGTCGCACGCGACTTGGTTGGGTATTCCGCCACTGCGGTACGTTTACCGTAACCGTTTTGCGTTGCGGTGAGGATTGCGCCATCGCCACGAGGCACGATCAGAGAGACGACTTTATCGCCTTCACCTAAGCGAATACCGCGAACACCGGTGGTGTTGCAGCCCATCGCACGGACAGAAGACTCTTTAAAGCGCACCACTTTACCTTCAGCGGAGAACAGCATTACTTCGTCTTCGCCGCTGGTCAGGTCAACGCCGATCAGCTCATCGCCGTCAACCAGTTTGATCGCCACTTTACCGGCGGTACGCAGACGGTTGAACTCGGTGAGGACAGTTTTCTTCACGGTACCGTTAGCGGTCGCCATGAAGACTTTCACGCCTTCTTCAAACTCGGTCACTGGCAGGATCGCAGTGATACGTTCGTCCTGCTCCAGCGGCAGCAGGTTGACGATCGGACGACCGCGCGCGCCACGAGTGGCTTCCGGCAACTGATAAACTTTCATCGAATAGACGCGACCACGGCTGGAGAAGCACAGAATATGGTCGTGAGTGTTCGCCACCAGCAGTCGGTCGATAAAGTCTTCTTCTTTAATACGTGCGGCAGATTTACCTTTCCCGCCACGACGCTGCGCTTCGTATTCAGAAAGCGGCTGATACTTAACGTAGCCCTGGTGAGAGAGCGTCACGACCACATCTTCCTGGGTGATCAGATCTTCCAGGTTGATGTCTGCGCTGTTGGCGGTGATTTCAGTACGACGTTTGTCACCGAACTGTTCACGAACCAGCTCCAGCTCTTCACGGATCACTTCCATCAGACGATCGGCGCTACCAAGAATACGCAACAGTTCCGCGATCTGATCCAGCAGCTCTTTGTATTCGTCGAGCAGTTTTTCGTGCTCAAGACCGGTCAGTTTCTGCAAACGCAGATCCAGAATCGCCTGAGCTTGCTGTTCGGTCAGGTAGTACAGACCATCACGCACGCCGAACTCTGGCTCCAGCCATTCCGGACGCGCAGCATCGTCGCCAGCACGTTCGAGCATCGCGGCAACGTTGCCCAGCTGCCACGGATTAGCAACCAGCGCAGTTTTCGCTTCTGCAGGCGTCGGCGCATGACGGATCAGTTCGATGATCGGGTCGATGTTCGCCAGCGCCACGGCTAATGCTTCAAGGATATGAGCACGATCGCGAGCTTTACGCAGTTCGAAAATAGTACGACGGGTCACCACTTCACGGCGGTGACGAACAAACGCCGCGATGATGTCTTTCAGGTTCATGATCTTCGGCTGACCATGGTGCAATGCCACCATGTTGATACCGAAAGAAACCTGCAACTGGGTCTGGGAGTAGAGGTTGTTGAGCACAACTTCACCGACCGCATCGCGTTTCACTTCAATCACGATGCGCATACCGTCTTTGTCAGACTCGTCACGCAGCGCGCTGATGCCTTCCACGCGTTTTTCTTTTACCAGTTCCGCAATCTTCTCGATCAGGCGCGCTTTGTTTACCTGATACGGAATTTCGTGGACGATAATGGTTTCACGACCGGTTTTGGCGTCAACTTCCACTTCTGCGCGAGCGCGGATATACACCTTGCCGCGACCGGTACGGTAAGCTTCTTCAATACCGCGACGACCGTTAATGATTGCCGCCGTCGGGAAGTCCGGCCCCGGGATGTGTTCCATCAGCCCTTCAATGCTGATGTCTTCATCATCAATATACGCCAGACAACCGTTGATGACTTCCGTCAGGTTGTGCGGCGGGATGTTGGTTGCCATACCTACGGCGATACCGGAAGAACCGTTCACCAGCAGGTTAGGAATTTTGGTTGGCATGACGTCCGGAATTTTTTCCGTGCCGTCATAGTTATCAACGAAATCGACCGTCTCTTTTTCGAGATCGGCCATCAGTTCATGGGCAATTTTCGCCAGACGGATTTCCGTATAACGCATTGCCGCCGCAGAGTCGCCGTCGATAGAACCGAAGTTACCCTGACCGTCTACCAGCATATAACGCAGCGAGAATGGCTGCGCCATGCGGACGATCGTGTCATAGACCGCCGAGTCACCATGGGGATGGTATTTACCGATTACGTCACCAACGACACGGGCAGATTTTTTATAGGCTTTGTTCCAGTCATTGCCTAGTACGTTCATGGCGTAAAGTACGCGACGGTGTACCGGCTTCAGGCCATCTCGGACATCTGGCAGCGCACGGCCAACAATGACCGACATCGCATAATCCAGATAGGAGCTCTTCAGCTCTTCCTCAATGTTGACCGGTGTAATTTCTCTCGCAAGGTCGCTCAT"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Escherichia coli str. K-12 substr. MG1655", "NCBI_taxonomy_id": "511145", "NCBI_taxonomy_cvterm_id": "36849"}, "protein_sequence": {"accession": "AAC75291.1", "sequence": "MSDLAREITPVNIEEELKSSYLDYAMSVIVGRALPDVRDGLKPVHRRVLYAMNVLGNDWNKAYKKSARVVGDVIGKYHPHGDSAVYDTIVRMAQPFSLRYMLVDGQGNFGSIDGDSAAAMRYTEIRLAKIAHELMADLEKETVDFVDNYDGTEKIPDVMPTKIPNLLVNGSSGIAVGMATNIPPHNLTEVINGCLAYIDDEDISIEGLMEHIPGPDFPTAAIINGRRGIEEAYRTGRGKVYIRARAEVEVDAKTGRETIIVHEIPYQVNKARLIEKIAELVKEKRVEGISALRDESDKDGMRIVIEVKRDAVGEVVLNNLYSQTQLQVSFGINMVALHHGQPKIMNLKDIIAAFVRHRREVVTRRTIFELRKARDRAHILEALAVALANIDPIIELIRHAPTPAEAKTALVANPWQLGNVAAMLERAGDDAARPEWLEPEFGVRDGLYYLTEQQAQAILDLRLQKLTGLEHEKLLDEYKELLDQIAELLRILGSADRLMEVIREELELVREQFGDKRRTEITANSADINLEDLITQEDVVVTLSHQGYVKYQPLSEYEAQRRGGKGKSAARIKEEDFIDRLLVANTHDHILCFSSRGRVYSMKVYQLPEATRGARGRPIVNLLPLEQDERITAILPVTEFEEGVKVFMATANGTVKKTVLTEFNRLRTAGKVAIKLVDGDELIGVDLTSGEDEVMLFSAEGKVVRFKESSVRAMGCNTTGVRGIRLGEGDKVVSLIVPRGDGAILTATQNGYGKRTAVAEYPTKSRATKGVISIKVTERNGLVVGAVQVDDCDQIMMITDAGTLVRTRVSEISIVGRNTQGVILIRTAEDENVVGLQRVAEPVDEEDLDTIDGSAAEGDDEIAPEVDVDDEPEEE"}}}}, "ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "41501": {"category_aro_name": "triclosan resistant gyrA", "category_aro_cvterm_id": "41501", "category_aro_accession": "3004333", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DNA gyrase is responsible for DNA supercoiling and consists of two alpha and two beta subunits. Point mutations in gyrA have been shown to decrease susceptibility to the antibiotic triclosan. Although the mechanism is unclear, it is hypothesized that changes in supercoiling activity of mutant DNA gyrase proteins alters expression of stress response pathways thereby indirectly decreasing triclosan susceptibility. It has been shown that triclosan does not interact directly with gyrA."}}, "ARO_name": "Escherichia coli gyrA with mutation conferring resistance to triclosan", "model_type": "protein variant model", "model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: \"strict\" and \"loose\". A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "ARO_id": "41503", "model_name": "Escherichia coli gyrA with mutation conferring resistance to triclosan", "model_type_id": "40293"}, "2850": {"model_id": "2850", "ARO_accession": "3004334", "model_param": {"blastp_bit_score": {"param_value": "1500", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}, "snp": {"param_type": "single resistance variant", "param_value": {"8273": "D87G", "8272": "S83F"}, "clinical": {"8273": "D87G", "8272": "S83F"}, "param_type_id": "36301", "param_description": "A nucleotide or amino acid substitution that confers elevated resistance to antibiotic(s) relative to wild type. The most common type encoded in the CARD is an amino acid substitution gleaned from the literature with format [wild-type][position][mutation], e.g. R184Q. When present in the associated gene or protein, a single resistance variant confers resistance to an antibiotic drug or drug class. Single resistance variants are used by the protein variant and rRNA mutation models to detect antibiotic resistance from submitted sequences."}}, "ARO_description": "Point mutations in Salmonella enterica serovar Typhimurium which have been shown to increase the minimum inhibitory concentration of the antibiotic triclosan. It is hypothesized that decreased susceptibility to triclosan in Salmonella gyrA mutants occurs indirectly due to alterations in the stress response pathways.", "model_sequences": {"sequence": {"4207": {"dna_sequence": {"fmax": "2376346", "fmin": "2373709", "accession": "NC_003197.2", "strand": "-", "sequence": "TTACTCGTCAGCGTCATCCGCAACGTCGTCATCGCTTTCCGCTTCCGGGGCGATATCCTCATCCCCTTCCGCCACGCTGCCGTCGATAGCGTCGAGTTCTTCGTCATCTACCGGTTCAGCAACGCGTTGCAGACCCACCACGTTTTCATCTTCCGCCGTGCGGATAAGGATAACGCCCTGGGTATTACGTCCCACTACGCTGATCTCGGACACACGGGTACGCACCAGAGTACCGGCATCCGTGATCATCATGATCTGGTCGCAATCGTCTACCTGTACCGCACCGACAACGGAACCGTTGCGCTCGGTCACTTTGATAGAGATAACGCCCTGCGTCGCACGAGACTTGGTCGGGTACTCGTCCGCTGCGGTACGCTTCCCGTAGCCGTTTTGCGTTACGGTCAGAATAGCGCCTTCGCCGCGTGGGATGATCAGAGAGACGACTTTATCGTCTCCCGCCAGCTTAATACCGCGCACACCGGTCGCGGTACGCCCCATCGCACGGACGGCGTCTTCTTTGAAGCGCACCACTTTACCCGCGGCCGAGAACAGCATGACTTCGTCAGAACCAGAAGTCAGGTCAACGCCAATCAGCTCGTCGCCGTCGTTGAGGTTCACCGCGATAATACCGGCGGAACGCGGACGGCTGAATTCGGTCAGCGCCGTTTTCTTCACGGTACCGCTGGCGGTCGCCATAAAGACGTTGACGCCTTCTTCATACTCACGAACCGGCAGAATCGCGGTGATACGTTCGTTGGCTTCCAGCGGCAGCAGGTTGACGATCGGACGACCGCGCGCGCCGCGGCTGGCTTCCGGCAGCTGATAGACCTTCATCCAGTACAGACGGCCCCGGCTGGAGAAGCAGAGGATGGTGTCATGGGTGTTAGCCACCAGCAGGCGGTCGATAAAGTCTTCTTCTTTAATACGCGCGGCAGATTTACCTTTCCCACCACGACGTTGCGCTTCGTAATCTGTCAGCGGTTGATATTTGACGTAACCCTGGTGAGACAGCGTCACGACAACATCTTCCTGGCTAATCAGATCTTCGATATTAATATCGGCGCTGTTGGCGGTGATTTCGGTACGACGCTCATCGCCGAACTGATCGCGAATTAACTCCATCTCTTCGCGGATCACTTCCATCAGGCGATCGGCGCTGCCCAGAATGTGCAGCAATTCAGCAATCTGCTCCAGCAGCTCTTTGTATTCGTCGAGCAGTTTTTCATGCTCCAGGCCGGTCAGTTTCTGCAAACGCAGATCCAGAATCGCCTGCGCCTGCTGTTCAGTCAGGTAGTACTGACCGTCACGCACGCCAAATTCTGGCTCCAGCCATTCCGGACGCGCGGCGTCATCACCAGCGCGCTCCAGCATCGCAGCAACGTTGCCCAGATCCCACGGACGCGAAATCAGCGCCGCTTTTGCTTCCGCCGGCGTTGGCGCGCGGCGAATCAGTTCGATAATCGGGTCGATGTTGGCCAGCGCAATCGCCAGAGCTTCAAGGATATGCGCACGGTCACGGGCTTTACGCAGTTCAAAAATAGTCCGACGCGTCACCACTTCACGGCGGTGGCGCACGAACGCTGAAATGATATCTTTCAGGTTCATGATCTTCGGCTGGCCGTGATGCAGCGCCACCATGTTAATACCGAAGGAAACCTGTAGCTGGGTCTGGGAGTAGAGATTATTAAGCACCACCTCGCCCACCGCATCGCGTTTCACTTCAATCACGATGCGCATCCCGTCTTTGTCGGATTCGTCACGCAGCGCGCTGATGCCTTCCACGCGTTTATCTTTCACCAGCTCGGCGATTTTCTCGATCAGGCGCGCTTTGTTCACCTGATAGGGAATTTCATGGACGATGATGGTTTCACGGCCCGTTTTGGCGTCAGCTTCAACTTCCGCGCGGGCGCGAATGTACACTTTGCCACGACCGGTGCGGTAGGCTTCTTCGATACCACGACGACCGTTGATGATCGCGGCGGTCGGGAAGTCCGGCCCCGGAATATGTTCCATCAGCCCTTCAATGCTGATGTCTTCGTTGTCGATATACGCCAGGCAGCCGTTAATCACTTCCGTCAGGTTGTGCGGCGGGATATTCGTCGCCATACCTACTGCGATACCGGAAGAACCGTTCACCAGCAGATTCGGAATTTTGGTCGGCATGACGTCCGGAATTTTTTCCGTACCGTCATAGTTATCCACGAAATCCACCGTCTCTTTTTCGAGATCGGCCATCAGTTCGTGGGCGATTTTCGCCAGACGGATCTCCGTATAACGCATTGCCGCCGCGGAGTCGCCGTCAATAGAACCGAAGTTACCCTGACCATCCACCAGCATGTAACGCAGCGAGAATGGCTGCGCCATACGAACGATGGTGTCATACACTGCGGAATCGCCGTGGGGATGGTATTTACCGATTACGTCACCAACGACACGGGCAGATTTTTTATAGGCTTTGTTCCAGTCATTGCCCAATACGTTCATGGCGTAAAGTACGCGACGGTGTACCGGCTTCAGGCCATCTCGGACATCCGGCAGCGCACGGCCAACAATGACCGACATCGCATAATCCAGATAGGAGCTCTTCAGCTCCTCCTCAATGTTGACCGGTGTAATTTCTCTCGCAAGGTCGCTCAT"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Salmonella enterica subsp. enterica serovar Typhimurium str. LT2", "NCBI_taxonomy_id": "99287", "NCBI_taxonomy_cvterm_id": "35734"}, "protein_sequence": {"accession": "NP_461214.1", "sequence": "MSDLAREITPVNIEEELKSSYLDYAMSVIVGRALPDVRDGLKPVHRRVLYAMNVLGNDWNKAYKKSARVVGDVIGKYHPHGDSAVYDTIVRMAQPFSLRYMLVDGQGNFGSIDGDSAAAMRYTEIRLAKIAHELMADLEKETVDFVDNYDGTEKIPDVMPTKIPNLLVNGSSGIAVGMATNIPPHNLTEVINGCLAYIDNEDISIEGLMEHIPGPDFPTAAIINGRRGIEEAYRTGRGKVYIRARAEVEADAKTGRETIIVHEIPYQVNKARLIEKIAELVKDKRVEGISALRDESDKDGMRIVIEVKRDAVGEVVLNNLYSQTQLQVSFGINMVALHHGQPKIMNLKDIISAFVRHRREVVTRRTIFELRKARDRAHILEALAIALANIDPIIELIRRAPTPAEAKAALISRPWDLGNVAAMLERAGDDAARPEWLEPEFGVRDGQYYLTEQQAQAILDLRLQKLTGLEHEKLLDEYKELLEQIAELLHILGSADRLMEVIREEMELIRDQFGDERRTEITANSADINIEDLISQEDVVVTLSHQGYVKYQPLTDYEAQRRGGKGKSAARIKEEDFIDRLLVANTHDTILCFSSRGRLYWMKVYQLPEASRGARGRPIVNLLPLEANERITAILPVREYEEGVNVFMATASGTVKKTALTEFSRPRSAGIIAVNLNDGDELIGVDLTSGSDEVMLFSAAGKVVRFKEDAVRAMGRTATGVRGIKLAGDDKVVSLIIPRGEGAILTVTQNGYGKRTAADEYPTKSRATQGVISIKVTERNGSVVGAVQVDDCDQIMMITDAGTLVRTRVSEISVVGRNTQGVILIRTAEDENVVGLQRVAEPVDDEELDAIDGSVAEGDEDIAPEAESDDDVADDADE"}}}}, "ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37250": {"category_aro_name": "triclosan", "category_aro_cvterm_id": "37250", "category_aro_accession": "3000870", "category_aro_class_name": "Drug Class", "category_aro_description": "Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI)."}, "41501": {"category_aro_name": "triclosan resistant gyrA", "category_aro_cvterm_id": "41501", "category_aro_accession": "3004333", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DNA gyrase is responsible for DNA supercoiling and consists of two alpha and two beta subunits. Point mutations in gyrA have been shown to decrease susceptibility to the antibiotic triclosan. Although the mechanism is unclear, it is hypothesized that changes in supercoiling activity of mutant DNA gyrase proteins alters expression of stress response pathways thereby indirectly decreasing triclosan susceptibility. It has been shown that triclosan does not interact directly with gyrA."}}, "ARO_name": "Salmonella enterica gyrA with mutation conferring resistance to triclosan", "model_type": "protein variant model", "model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: \"strict\" and \"loose\". A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "ARO_id": "41502", "model_name": "Salmonella enterica gyrA with mutation conferring resistance to triclosan", "model_type_id": "40293"}, "2853": {"model_id": "2853", "ARO_accession": "3004337", "model_param": {"blastp_bit_score": {"param_value": "750", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "An AmpC-like beta-lactamase found in Pseudomonas aeruginosa", "model_sequences": {"sequence": {"4210": {"dna_sequence": {"fmax": "1116", "fmin": "0", "accession": "KR057743.1", "strand": "+", "sequence": "GGCGAGGCCCCGGCGGATCGCCTGAAGGCACTGGTCGACGCCGCCGTACAACCGGTGATGAAGGCCAATGACATTCCGGGCCTGGCCGTAGCCATCAGCCTGAAAGGAGAACCGCATTACTTCAGCTATGGGCTGGCCTCGAAAGAGGACGGCCGCCGGGTGACGCCGGAGACCCTGTTCGAGATCGGCTCGGTGAGCAAGACCTTCACCGCCACCCTCGCCGGCTATGCCCTGGCCCAGGACAAGATGCGCCTCGACGACCGCGCCAGCCAGCACTGGCCGGCACTGCAGGGCAGCCGCTTCGACGGCATCAGCCTGCTCGACCTCGCGACCTATACCGCCGGCGGCTTGCCGCTGCAGTTCCCCGACTCGGTGCAGAAGGACCAGGCACAGATCCGCGACTACTACCGCCAGTGGCAGCCGACCTATGCGCCGGGCAGCCAGCGCCTCTATTCCAACCCGAGCATCGGCCTGTTCGGCTATCTCGCCGCGCGCAGCCTGGGCCAGCCGTTCGAACGACTCATGGAGCAGCAAGTGTTCCCGGCACTGGGCCTCGAACAGACCCACCTCGACGTGCCCGAGGCGGCGCTGGCGCAGTACGCCCAGGGCTACGGCAAGGACGACCGCCCGCTACGGGTCGGTCCCCGCCCGCTGGATGCCGAAGGCTACGGGGTGAAGACCAGCGCGGCCGACCTGCTGCGCTTCGTCGATGCCAACCTGCATCCGGAGCGCCTGGACAGGCCCTGGGCGCAGGCGCTCGATGCCACCCATCGCGGTTACTACAAGGTCGGCGACATGACCCAGGGCCTGGGCTGGGAAGCCTACGACTGGCCGATCTCCCTGAAGCGCCTGCAGGCCGGCAACTCGACGCCGATGGCGCTGCAACCGCACAGGATCGCCAGGCTGCCCGCGCCACAGGCGCTGGAGGGCCAGCGCCTGCTGAACAAGACCGGTTCCACCAACGGCTTCGGCGCCTACGTGGCGTTCGTCCCGGGCCGCGACCTGGGACTGGTGATCCTGGCCAACCGCAACTATCCCAATGCCGAGCGGGTGAAGATCGCCTACGCCATCCTCAGCGGCCTGGAGCAGCAGGGCAAGGTGCCGCTGAAGCGCTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa", "NCBI_taxonomy_id": "287", "NCBI_taxonomy_cvterm_id": "36752"}, "protein_sequence": {"accession": "AKR18014.1", "sequence": "GEAPADRLKALVDAAVQPVMKANDIPGLAVAISLKGEPHYFSYGLASKEDGRRVTPETLFEIGSVSKTFTATLAGYALAQDKMRLDDRASQHWPALQGSRFDGISLLDLATYTAGGLPLQFPDSVQKDQAQIRDYYRQWQPTYAPGSQRLYSNPSIGLFGYLAARSLGQPFERLMEQQVFPALGLEQTHLDVPEAALAQYAQGYGKDDRPLRVGPRPLDAEGYGVKTSAADLLRFVDANLHPERLDRPWAQALDATHRGYYKVGDMTQGLGWEAYDWPISLKRLQAGNSTPMALQPHRIARLPAPQALEGQRLLNKTGSTNGFGAYVAFVPGRDLGLVILANRNYPNAERVKIAYAILSGLEQQGKVPLKR"}}}}, "ARO_category": {"36237": {"category_aro_name": "PDC beta-lactamase", "category_aro_cvterm_id": "36237", "category_aro_accession": "3000098", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PDC beta-lactamases are class C beta-lactamases that are found in Pseudomonas aeruginosa."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}, "ARO_name": "PDC-74", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "41505", "model_name": "PDC-74", "model_type_id": "40292"}, "2852": {"model_id": "2852", "ARO_accession": "3004336", "model_param": {"blastp_bit_score": {"param_value": "750", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "An AmpC-like beta-lactamase found in Pseudomonas aeruginosa.", "model_sequences": {"sequence": {"4209": {"dna_sequence": {"fmax": "1116", "fmin": "0", "accession": "KR057742.1", "strand": "+", "sequence": "GGCGAGGCCCCGGCGGATCGCCTGAAGGCACTGGTCGACGCCGCCGTACAACCGGTGATGAAGGCCAATGACATTCCGGGCCTGGCCGTAGCCATCAGCCTGAAAGGAGAACCGCATTACTTCAGCTATGGGCTGGCCTCGAAAGAGGACGGCCGCCGGGTGACGCCGGAGACCCTGTTCGAGATCGGCTCGGTGAGCAAGACCTTCACCGCCACCCTCGCCGGCTATGCCCTGGCCCAGGACAAGATGCGCCTCGACGACCGCGCCAGCCAGCACTGGCCGGCACTGCAGGGCAGCCGCTTCGACGGCATCAGCCTGCTCGACCTCGCGACCTATACCGCCGGCGGCTTGCCGCTGCAGTTCCCCGACTCGGTGCAGAAGGACCAGGCACAGATCCGCGACTACTACCGCCAGTGGCAGCCGACCTATGCGCCGGGCAGCCAGCGCCTCTATTCCAACCTGAGCATCGGCCTGTTCGGCTATCTCGCCGCGCGCAGCCTGGGCCAGCCGTTCGAACGACTCATGGAGCAGCAAGTGTTCCCGGCACTGGGCCTCGAACAGACCCACCTCGACGTGCCCGAGGCGGCGCTGGCGCAGTACGCCCAGGGCTACGGCAAGGACGACCGCCCGCTACGGGTCGGTCCCGGCCCGCTGGATGCCGAAGGCTACGGGGTGAAGACCAGCGCGGCCGACCTGCTGCGCTTCGTCGATGCCAACCTGCATCCGGAGCGCCTGGACAGGCCCTGGGCGCAGGCGCTCGATGCCACCCATCGCGGTTACTACAAGGTCGGCGACATGACCCAGGGCCTGGGCTGGGAAGCCTACGACTGGCCGATCTCCCTGAAGCGCCTGCAGGCCGGCAACTCGACGCCGATGGCGCTGCAACCGCACAGGATCGCCAGGCTGCCCGCGCCACAGGCGCTGGAGGGCCAGCGCCTGCTGAACAAGACCGGTTCCACCAACGGCTTCGGCGCCTACGTGGCGTTCGTCCCGGGCCGCGACCTGGGACTGGTGATCCTGGCCAACCGCAACTATCCCAATGCCGAGCGGGTGAAGATCGCCTACGCCATCCTCAGCGGCCTGGAGCAGCAGGGCAAGGTGCCGCTGAAGCGCTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa", "NCBI_taxonomy_id": "287", "NCBI_taxonomy_cvterm_id": "36752"}, "protein_sequence": {"accession": "AKR18013.1", "sequence": "GEAPADRLKALVDAAVQPVMKANDIPGLAVAISLKGEPHYFSYGLASKEDGRRVTPETLFEIGSVSKTFTATLAGYALAQDKMRLDDRASQHWPALQGSRFDGISLLDLATYTAGGLPLQFPDSVQKDQAQIRDYYRQWQPTYAPGSQRLYSNLSIGLFGYLAARSLGQPFERLMEQQVFPALGLEQTHLDVPEAALAQYAQGYGKDDRPLRVGPGPLDAEGYGVKTSAADLLRFVDANLHPERLDRPWAQALDATHRGYYKVGDMTQGLGWEAYDWPISLKRLQAGNSTPMALQPHRIARLPAPQALEGQRLLNKTGSTNGFGAYVAFVPGRDLGLVILANRNYPNAERVKIAYAILSGLEQQGKVPLKR"}}}}, "ARO_category": {"36237": {"category_aro_name": "PDC beta-lactamase", "category_aro_cvterm_id": "36237", "category_aro_accession": "3000098", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PDC beta-lactamases are class C beta-lactamases that are found in Pseudomonas aeruginosa."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}, "ARO_name": "PDC-73", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "41504", "model_name": "PDC-73", "model_type_id": "40292"}, "2855": {"model_id": "2855", "ARO_accession": "3004339", "model_param": {"blastp_bit_score": {"param_value": "750", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "An AmpC-like beta-lactamase found in Pseudomonas aeruginosa", "model_sequences": {"sequence": {"4212": {"dna_sequence": {"fmax": "1116", "fmin": "0", "accession": "KR057745.1", "strand": "+", "sequence": "GGCGAGGCCCCGGCGGATCGCCTGAAGGCACTGGTCGACGCCGCCGTACAACCGGTGATGAAGGCCAATGACATTCCGGGCCTGGCCGTAGCCATCAGCCTGAAAGGAGAACCGCATTACTTCAGCTATGGGCTGGCCTCGAAAGAGGACGGCCGCCGGGTGACGCCGGAGACCCTGTTCGAGATCGGCTCGGTGAGCAAGACCTTCACCGCCACCCTCGCCGGCTATGCCCTGGCCCAGGACAAGATGCGTCTCGACGACCGCGCCAGCCAGCACTGGCCGGCACTGCAGGGCAGCCGCTTCGACGGCATCAGCCTGCTCGACCTCGCGACCTATACCGCCGGCGGCTTGCCGCTGCAGTTCCCCGACTCGGTGCAGAAGGACCAGGCACAGATCCGCGACTACTACCGCCAGTGGCAGCCGACCTACGCGCCGGGCAGCCAGCGCCTCTATTCCAACCCGAGCATCGGCCTGTTCGGCTATCTCGCCGCGCGCAGCCTGGGCCAGCCGTTCGAACGGCTCATGGAGCAGCAAGTGTTCCCGGCACTGGGCCTCGAACAGACCCACCTCGACGTGCCCGAGGCGGCGCTGGCGCAGTACGCCCAGGGCTACGGCAAGGACGACCGCCCCCTACGGGTCGGTCCCGGCCCGCTGGATGCCGAAGGCTACGGGGTGAAGACCAGCGCGGCCGACCTGCTGCGCTTCGTCGATGCCAACCTGCATCCGGAGCGCCTGGACAGGCCCTGGGCGCAGGCGCTCGATGCCACCCATCGCGGTTACTACAAGGTCGGCGACATGACCCAGGGCCTGGGCTGGGAAGCCTACGACTGGCCGATCTCCCTGAAGCGCCTGCAGGCCGGCAACTCGACGCCGATGGCGCTGCAACCGCACAGGATCGCCAGGCTGCCCGCGCCACAGGCGCTGGAGGGCCAGCGCCTGCTGAACAAGACCGGCTCCACCAACGGCTTCGGCGCCTACGTGGCGTTCGTCCCGGGCCGCGACCTGGGCCTGGTGATCCTGGCCAACCGCAACTATCCCATTGCCGAGCGGGTGAAGATCGCCTACGCCATCCTCAGCGGCCTGGAGCAGCAGGGCAAGGTGCCGCTGAAGCGCTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa", "NCBI_taxonomy_id": "287", "NCBI_taxonomy_cvterm_id": "36752"}, "protein_sequence": {"accession": "AKR18016.1", "sequence": "GEAPADRLKALVDAAVQPVMKANDIPGLAVAISLKGEPHYFSYGLASKEDGRRVTPETLFEIGSVSKTFTATLAGYALAQDKMRLDDRASQHWPALQGSRFDGISLLDLATYTAGGLPLQFPDSVQKDQAQIRDYYRQWQPTYAPGSQRLYSNPSIGLFGYLAARSLGQPFERLMEQQVFPALGLEQTHLDVPEAALAQYAQGYGKDDRPLRVGPGPLDAEGYGVKTSAADLLRFVDANLHPERLDRPWAQALDATHRGYYKVGDMTQGLGWEAYDWPISLKRLQAGNSTPMALQPHRIARLPAPQALEGQRLLNKTGSTNGFGAYVAFVPGRDLGLVILANRNYPIAERVKIAYAILSGLEQQGKVPLKR"}}}}, "ARO_category": {"36237": {"category_aro_name": "PDC beta-lactamase", "category_aro_cvterm_id": "36237", "category_aro_accession": "3000098", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PDC beta-lactamases are class C beta-lactamases that are found in Pseudomonas aeruginosa."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}, "ARO_name": "PDC-76", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "41507", "model_name": "PDC-76", "model_type_id": "40292"}, "2854": {"model_id": "2854", "ARO_accession": "3004338", "model_param": {"blastp_bit_score": {"param_value": "750", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "An AmpC-like beta-lactamase found in Pseudomonas aeruginosa", "model_sequences": {"sequence": {"4211": {"dna_sequence": {"fmax": "1116", "fmin": "0", "accession": "KR057744.1", "strand": "+", "sequence": "GGCGAGGCCCCGGCGGATCGCCTGAAGGCACTGGTCGACGCCGCCGTACAACCGGTGATGAAGGCCAATGACATTCCGGGCCTGGCCGTAGCCATCAGCCTGAAAGGAGAACCGCATTACTTCAGCTATGGGCTGGCCTCGAAAGAGGACGGCCGCCGGGTGACGCCGGAGACCCTGTTCGAGATCGGCTCGGTGAGCAAGACCTTCACCGCCACCCTCGCCGGCTATGCCCTGGCCCAGGACAAGATGCGCCTCGACGACCGCGCCAGCCAGCACTGGCCGGCACTGCAGGGCAGCCGCTTCGACGGCATCAGCCTGCTCGACCTCGCGACCTATACCGCCGGCGGCTTGCCGCTGCAGTTCCCCGACTCGGTGCAGAAGGACCAGGCACAGATCCGCGACTACTACCGCCAGTGGCAGCCGACCTATGCGCCGGGCAGCCAGCGCCTCTATTCCAACCCGAGCATCGGCCTGTTCGGCTATCTCGCCGCGCGCAGCCTGGGCCAGCCGTTCGAACGACTCATGGAGCAGCAAGTGTTCCCGGCACTGGGCCTCGAACAGACCCACCTCGACGTGCCCGAGGCGGCGCTGGCGCAGTACGCCCAGGGCTACGGCAAGGACGACCGCCCCCTACGGGTCGGTCCCCGCCCGCTGGATGCCGAAGGCTACGGGGTGAAGACCAGCGCGGCCGACCTGCTGCGCTTCGTCGATGCCAACCTGCATCCGGAGCGCCTGGACAGGCCATGGGCGCAGGCGCTCGATGCCACCCATCGCGGTTACTACAAGGTCGGCGACATGACCCAGGGCCTGGGCTGGGAAGCCTACGACTGGCCGATCTCCCTGAAGCGCCTGCAGGCCGGCAACTCGACGCCGATGGCGCTGCAACCGCACAGGATCGCCAGGCTGCCCGCGCCACAGGCGCTGGAGGGCCAGCGCCTGCTGAACAAGACCGGTTCCACCAACGGCTTCGGCGCCTACGTGGCGTTCATCCCGGGCCGCGACCTGGGACTGGTGATCCTGGCCAACCGCAACTATCCCAATGCCGAGCGGGTGAAGATCGCCTACGCCATCCTCAGCGGCCTGGAGCAGCAGGGCAAGGTGCCGCTGAAGCGCTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa", "NCBI_taxonomy_id": "287", "NCBI_taxonomy_cvterm_id": "36752"}, "protein_sequence": {"accession": "AKR18015.1", "sequence": "GEAPADRLKALVDAAVQPVMKANDIPGLAVAISLKGEPHYFSYGLASKEDGRRVTPETLFEIGSVSKTFTATLAGYALAQDKMRLDDRASQHWPALQGSRFDGISLLDLATYTAGGLPLQFPDSVQKDQAQIRDYYRQWQPTYAPGSQRLYSNPSIGLFGYLAARSLGQPFERLMEQQVFPALGLEQTHLDVPEAALAQYAQGYGKDDRPLRVGPRPLDAEGYGVKTSAADLLRFVDANLHPERLDRPWAQALDATHRGYYKVGDMTQGLGWEAYDWPISLKRLQAGNSTPMALQPHRIARLPAPQALEGQRLLNKTGSTNGFGAYVAFIPGRDLGLVILANRNYPNAERVKIAYAILSGLEQQGKVPLKR"}}}}, "ARO_category": {"36237": {"category_aro_name": "PDC beta-lactamase", "category_aro_cvterm_id": "36237", "category_aro_accession": "3000098", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PDC beta-lactamases are class C beta-lactamases that are found in Pseudomonas aeruginosa."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}, "ARO_name": "PDC-75", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "41506", "model_name": "PDC-75", "model_type_id": "40292"}, "2857": {"model_id": "2857", "ARO_accession": "3004341", "model_param": {"blastp_bit_score": {"param_value": "750", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "An AmpC-like beta-lactamase found in Pseudomonas aeruginosa", "model_sequences": {"sequence": {"4214": {"dna_sequence": {"fmax": "1116", "fmin": "0", "accession": "KR057747.1", "strand": "+", "sequence": "GGCGAGGCCCCGGCGGATCGCCTGAAGGCACTGGTCGACGCCGCCGTACAACCGGTGATGAAGGCCAATGACATTCCGGGCCTGGCCGTAGCCATCAGCCTGAAAGGAGAACCGCATTACTTCAGCTATGGGCTGGCCTCGAAAGAGGACGGCCGCCGGGTGACGCCGGAGACCCTGTTCGAGATCGGCTCGGTGAGCAAGACCTTCACCGCCACCCTCGCCGGCTATGCCCTGACCCAGGACAAGATGCGCCTCGACGACCGCGCCAGCCAGCACTGGCCGGCACTGCAGGGCAGCCACTTCGACGGCATCAGCCTGCTCGACCTCGCGACCTATACCGCCGGCGGCTTGCCGCTGCAGTTTCCCGACTCGGTGCAGAAGGACCAGGCACAGATCCGCGACTACTACCGCCAGTGGCAGCCGACCTACGCGCCGGGCAGCCAGCGCCTCTATTCCAACCCGAGCATCGGCCTGTTCGGCTATCTCGCCGCGCGCAGCCTGGGCCAGCCGTTCGAACGGCTCATGGAGCAGCAAGTGTTCCCGGCACTGGGCCTCGAACAGACCCACCTCGACGTGCCCGAGGCGGCGCTGGCGCAGTACGCCCAGGGCTACGGCAAGGACGACCGCCCGCTACGGGTCGGTCCCCGCCCGCTGGATGCCGAAGGCTACGGGGTGAAGACCAGCGCGGCCGACCTGCTGCGCTTCGTCGATGCCAACCTGCATCCGGAGCGCCTGGACAGGCCCTGGGCGCAGGCGCTCGATGCCACCCATCGCGGTTACTACAAGGTCGGCGACATGACCCAGGGCCTGGGCTGGGAAGCCTACGACTGGCCGATCTCCCTGAAGCGCCTGCAGGCCGGCAACTCGACGCCGATGGCGCTGCAACCGCACAGGATCGCCAGGCTGCCCGCGCCACAGGCGCTGGAGGGCCAGCGCCTGCTGAACAAGACCGGTTCCACCAACGGCTTCGGCGCCTACGTGGCGTTCGTCCCGGGCCGCGACCTGGGACTGGTGATCCTGGCCAACCGCAACTATCCCAATGCCGAGCGGGTGAAGATCGCCTACGCCATCCTCAGCGGCCTGGAGCAGCAGGGCAAGGTGCCGCTGAAGCGCTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa", "NCBI_taxonomy_id": "287", "NCBI_taxonomy_cvterm_id": "36752"}, "protein_sequence": {"accession": "AKR18018.1", "sequence": "GEAPADRLKALVDAAVQPVMKANDIPGLAVAISLKGEPHYFSYGLASKEDGRRVTPETLFEIGSVSKTFTATLAGYALTQDKMRLDDRASQHWPALQGSHFDGISLLDLATYTAGGLPLQFPDSVQKDQAQIRDYYRQWQPTYAPGSQRLYSNPSIGLFGYLAARSLGQPFERLMEQQVFPALGLEQTHLDVPEAALAQYAQGYGKDDRPLRVGPRPLDAEGYGVKTSAADLLRFVDANLHPERLDRPWAQALDATHRGYYKVGDMTQGLGWEAYDWPISLKRLQAGNSTPMALQPHRIARLPAPQALEGQRLLNKTGSTNGFGAYVAFVPGRDLGLVILANRNYPNAERVKIAYAILSGLEQQGKVPLKR"}}}}, "ARO_category": {"36237": {"category_aro_name": "PDC beta-lactamase", "category_aro_cvterm_id": "36237", "category_aro_accession": "3000098", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PDC beta-lactamases are class C beta-lactamases that are found in Pseudomonas aeruginosa."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}, "ARO_name": "PDC-78", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "41509", "model_name": "PDC-78", "model_type_id": "40292"}, "2856": {"model_id": "2856", "ARO_accession": "3004340", "model_param": {"blastp_bit_score": {"param_value": "750", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "An AmpC-like beta-lactamase found in Pseudomonas aeruginosa", "model_sequences": {"sequence": {"4213": {"dna_sequence": {"fmax": "1116", "fmin": "0", "accession": "KR057746.1", "strand": "+", "sequence": "GGCGAGGCCCCGGCGGATCGCCTGAAGGCACTGGTCGACGCCGCCGTACAACCGGTGATGAAGGCCAATGACATTCCGGGCCTGGCCGTAGCCATCAGCCTGAAAGGAGAACCGCATTACTTCAGCTATGGGCTGGCCTCGAAAGAGGACGGCCGCCGGGTGACGCCGGAGACCCTGTTCGAGATCGGCTCGGTGAGCAAGACCTTCACCGCCACCCTCGCCGGCTATGCCCTGACCCAGGACAAGATGCGCCTCGACGACCGCGCCAGCCAGCACTGGCCGGCACTGCAGGGCAGCCGCTTCGACGGCATCAGCCTGCTCGACCTCGCGACCTATACCGCCGGCGGCTTGCCGCTGCAGTTTCCCGACTCGGTGCAGAAGGACCAGGCACAGATCCGCGACTACTACCGCCAGTGGCAGCCGACCTACGCGCCGGGCAGCCAGCGCCTCTATTCCAACCCGAGCATCGGCCTGTTCGGCTATCTCGCCGCGCGCAGCCTGGGCCAGCCGTTCGAACGGCTCATGGAGCAGCAAGTGTTCCCGGCACTGGGCCTCGAACAGACCCACCTCGACGTGCCCGAGGCGGCGCTGGCGCAGTACGCCCAGGGCTACGGCAAGGACGACCGCCCGCTACGGGTCGGTCCCCGCCCGCTGGATGCCGAAGGCTACGGGGTGAAGACCAGCGCGGCCGACCTGCTGCGCTTCGTCGATGCCAACCTGCATCCGGAGCGCCTGGACAGGCCCTGGGCGCAGGCGCTCGATGCCACCCATCGCGGTTACTACAAGGTCGGCGACATGACCCAGGGCCTGGGCTGGGAAGCCTACGACTGGCCGATCTCCCTGAAGCGCCTGCAGGCCGGCAACTCGACGCCGATGGCGCTGCAACCGCACAGGATCGCCAGGCTGCCCGCGCCACAGGCGCTGGAGGGCCAGCGCCTGCTGAACAAGACCGGTTCCACCAACGGCTTCGGCGCCTACGTGGCGTTCGTCCCGGGCCGCGACCTGGGACTGGTGATCCTGGCCAACCGCAACTATCCCAATGCCGAGCGGGTGAAGATCGCCTACGCCATCCTCAGCGGCCTGGAGCAGCAGGGCAAGGTGCCGCTGAAGCGCTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa", "NCBI_taxonomy_id": "287", "NCBI_taxonomy_cvterm_id": "36752"}, "protein_sequence": {"accession": "AKR18017.1", "sequence": "GEAPADRLKALVDAAVQPVMKANDIPGLAVAISLKGEPHYFSYGLASKEDGRRVTPETLFEIGSVSKTFTATLAGYALTQDKMRLDDRASQHWPALQGSRFDGISLLDLATYTAGGLPLQFPDSVQKDQAQIRDYYRQWQPTYAPGSQRLYSNPSIGLFGYLAARSLGQPFERLMEQQVFPALGLEQTHLDVPEAALAQYAQGYGKDDRPLRVGPRPLDAEGYGVKTSAADLLRFVDANLHPERLDRPWAQALDATHRGYYKVGDMTQGLGWEAYDWPISLKRLQAGNSTPMALQPHRIARLPAPQALEGQRLLNKTGSTNGFGAYVAFVPGRDLGLVILANRNYPNAERVKIAYAILSGLEQQGKVPLKR"}}}}, "ARO_category": {"36237": {"category_aro_name": "PDC beta-lactamase", "category_aro_cvterm_id": "36237", "category_aro_accession": "3000098", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PDC beta-lactamases are class C beta-lactamases that are found in Pseudomonas aeruginosa."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}, "ARO_name": "PDC-77", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "41508", "model_name": "PDC-77", "model_type_id": "40292"}, "2314": {"model_id": "2314", "ARO_accession": "3003817", "model_param": {"blastp_bit_score": {"param_value": "1500", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}, "snp": {"param_type": "single resistance variant", "param_value": {"4497": "G81C", "4498": "S83L"}, "clinical": {"4497": "G81C", "4498": "S83L"}, "param_type_id": "36301", "param_description": "A nucleotide or amino acid substitution that confers elevated resistance to antibiotic(s) relative to wild type. The most common type encoded in the CARD is an amino acid substitution gleaned from the literature with format [wild-type][position][mutation], e.g. R184Q. When present in the associated gene or protein, a single resistance variant confers resistance to an antibiotic drug or drug class. Single resistance variants are used by the protein variant and rRNA mutation models to detect antibiotic resistance from submitted sequences."}}, "ARO_description": "Mutations in the A subunit of DNA gyrase reduce its affinity for fluoroquinolones, thereby conferring resistance.", "model_sequences": {"sequence": {"3583": {"dna_sequence": {"fmax": "2992755", "fmin": "2990040", "accession": "CP010781.1", "strand": "-", "sequence": "TTACTCTTCAGAAGTATCTTCATTATTAGATACAGCTTCTTCGCTATCAGTTTCAGTCGTATCTACTTCACCTTCAAGAAGTTCTTCTTCGTCTTCTACAGCTTCAATTGAAACTACGCCAACGAGCGTTTCTTCTTCGCTTAAACGGATCAGACGAACACCTTGAGCATTACGGCCTGTCATTGCAACTTCTGCAGCACGCGTACGAACAAGCGTACCACCATCAGAAATTAATAATAACTCTTTGGTTTCATCAATAGAAACTGCACCAACTAGCTCACCGTTACGTTCACTTGTCTTGATCGCAATAACACCCTTACCACCACGTTTCTTGGTCGGGAAGTCATTTACTGGAGTACGTTTACCATAACCGTTGGCACTCGCACACAGTACTTCGCCTGTCTCAGGTACAACAACAAGCGATACGATGCGACTTACTAGACTTGAATCTGTTGAATCATCATTATCATCTGAATCATCATTTTCAACATCTGCATCTTCTTCACTTAAGGTGCTGCTTGCAAAACTCACGCGCATACCGCGTACACCTTTCGCTGTACGACCCATTGCACGTACGTCAGTTTCAGCAAAACGAATTGCCTTACCTTCGTTAGAGAACAACATGATTTGCTGATTACCATCAGTAATCGCAACACCAATTAAAGTATCTTCTTCATTAAGTTCAATAGCACGTAGACCATTTGAACGAATGTTTGCAAATTGCTCTAACTCAACACGCTTAACCGTACCAGAAGCTGTCGCCATAAACACATAGTGGTTTTCCGGGAACTCGGTTAACGGCAAGATTGCGGTTACGGTTTCTGTTGCATCTAGAGGTAACAAGTTCACGATTGGACGGCCTTTTGCCCCACGTGATGCTTGAGGAACTTCAAATACTTTCAGACGGTACACTTTACCCACATTGGTAAAGCAAAGTACGGTCGCATGGTTCGATGCCACAATCAGATGTTGAATAAAGTCATCATCTTTCATTGAGGTTGCAGACTTACCACGTCCACCACGGCGCTGTGCCTGATAGTCTGAAAGAGGTTGAGTTTTTGCATAACCCGTTTGCGAAACCGTTAATACCACTTGCTCTTCAGGAATTAAATCTTCACGGCAGAAATCCACACGAGATTCAACAATTTCGGTACGACGTGCATCGCCATATTGTTGTAAAACTTGTGCCAACTCTTCGCGAATAACACCCATTAACAAGTTAAAGTCATTTAAAATTGCAGTAAGTTCAGCAATTTGACCTAAAATTTCAGTATATTCCGCATGTAACTTGTCTTGTTCAAGACCAGTTAAACGGTGTAAACGTAATTCTAAAATTGCGCCTACTTGTGTTGGTGACAGACGATAAATTGAATCACTTAAACCAAATGGACGATTTGGATCTTCACCTTCAATTTCATCTGGGCGAACAGAAATTGCACCAGCTTTTTCAAGTAGTGCAACAACGCCACCACCTGCCCACTCACCCGCAAGTAAACGCTCACGCGCTTCAGCAGGGTTTGCAGAAGTTTTGATGGTTTCAATAATTTCATCAATATTGGCTAAGGCAACTGTCAAGCCTTCCAAGATATGACCACGTTCACGTGCTTTACGTAATTCGAACATGGTACGGCGTGTCACAACTTCTTGGCGGTGACGAATAAATGCCGCAATAATATCTTTTAGATTCATCAATTTTGGTTGTCCATTGTCTAGACAAACCATGTTGATGCTGAATGAGTTTTCAAGCTGGGTATTTAAGAATAAGTTATTTACAACGACTTCTGCGTTTTCACCGCGTTTCAAGTCAATTGCAATACGCATACCTTCTTTATCAGACTCATCACGAAGTTCTGAAATACCTTCAAGCTTTTTCTCTTTTACTAACTCGGCAATACGTTCAATAACTCTTGCTTTGTTTACTTGATATGGAATTTCAGTAAAGACGATGGTTGTACGACCTGTCTTTTCATCTTCTTCGAAATGGTATTTACCACGAATGTGTAAACGACCTTTACCGGTACGGTAGGCATCAACAATACCTGATTTACCGTAAATAATACCGCCTGTAGGGAAGTCAGGACCAGTAATGTATTCCATCAATCCTTCAATCGAGATATTCGGATTGTCAGCATAAGCCAAACAAGCATTCACAACTTCTGTCATGTTGTGTGGTGCCATGTTAGTTGCCATACCTACAGCAATACCAGCAGCACCGTTAATTAATAAGTTTGGAACACGTGTCGGAAGTACTTCAGGGATACGTTCCGAACCGTCGTAGTTATCTTCCCAGTCAACTGTGTCTTTTTCTAAATCTGCAAGAAGCTCATGTGCCAGCTTAGTCATACGGACTTCGGTATAACGCATTGCCGCAGCGCTATCACCATCGATCGAACCGAAGTTACCCTGACCATCAACCAATAAATAACGTAAGCTAAAGTCTTGAGCCATACGAACAATGGTTTCATAAACAGCTGAGTCACCATGCGGGTGATATTTACCGATTACGTCCCCAACGACACGAGCAGATTTCTTGTAGGCTTTGTTATAGTCATTGCCCAATTCGTGCATGGCATAAAGCACACGACGGTGAACAGGTTTAAGACCGTCTCTCACATCCGGCAATGCACGAGATACAATTACACTCATCGCGTAATCTAAATATGAATGCTTGAGTTCGTCCTCAATGGCAATCGGTCGGATTTCCGATACGCTCAT"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter baumannii", "NCBI_taxonomy_id": "470", "NCBI_taxonomy_cvterm_id": "35507"}, "protein_sequence": {"accession": "AJF82744.1", "sequence": "MSVSEIRPIAIEDELKHSYLDYAMSVIVSRALPDVRDGLKPVHRRVLYAMHELGNDYNKAYKKSARVVGDVIGKYHPHGDSAVYETIVRMAQDFSLRYLLVDGQGNFGSIDGDSAAAMRYTEVRMTKLAHELLADLEKDTVDWEDNYDGSERIPEVLPTRVPNLLINGAAGIAVGMATNMAPHNMTEVVNACLAYADNPNISIEGLMEYITGPDFPTGGIIYGKSGIVDAYRTGKGRLHIRGKYHFEEDEKTGRTTIVFTEIPYQVNKARVIERIAELVKEKKLEGISELRDESDKEGMRIAIDLKRGENAEVVVNNLFLNTQLENSFSINMVCLDNGQPKLMNLKDIIAAFIRHRQEVVTRRTMFELRKARERGHILEGLTVALANIDEIIETIKTSANPAEARERLLAGEWAGGGVVALLEKAGAISVRPDEIEGEDPNRPFGLSDSIYRLSPTQVGAILELRLHRLTGLEQDKLHAEYTEILGQIAELTAILNDFNLLMGVIREELAQVLQQYGDARRTEIVESRVDFCREDLIPEEQVVLTVSQTGYAKTQPLSDYQAQRRGGRGKSATSMKDDDFIQHLIVASNHATVLCFTNVGKVYRLKVFEVPQASRGAKGRPIVNLLPLDATETVTAILPLTEFPENHYVFMATASGTVKRVELEQFANIRSNGLRAIELNEEDTLIGVAITDGNQQIMLFSNEGKAIRFAETDVRAMGRTAKGVRGMRVSFASSTLSEEDADVENDDSDDNDDSTDSSLVSRIVSLVVVPETGEVLCASANGYGKRTPVNDFPTKKRGGKGVIAIKTSERNGELVGAVSIDETKELLLISDGGTLVRTRAAEVAMTGRNAQGVRLIRLSEEETLVGVVSIEAVEDEEELLEGEVDTTETDSEEAVSNNEDTSEE"}}}}, "ARO_category": {"40463": {"category_aro_name": "nybomycin", "category_aro_cvterm_id": "40463", "category_aro_accession": "3003780", "category_aro_class_name": "Drug Class", "category_aro_description": "A heterocyclic antibiotic that targets mutant gyrA (type II topoisomerase) containing an S84L substitution, counteracting acquired quinolone resistance. It is effective against quinolone-resistant Gram-positive bacteria including S. aureus and E. faecalis. Due to its ability to counteract quinolone resistance by targeting the mutant form of the gyrA protein, it is classified as a reverse antibiotic (RA)."}, "37009": {"category_aro_name": "grepafloxacin", "category_aro_cvterm_id": "37009", "category_aro_accession": "3000665", "category_aro_class_name": "Antibiotic", "category_aro_description": "Grepafloxacin is a broad-spectrum antibacterial quinoline. It is no longer taken due to its high toxicity."}, "37008": {"category_aro_name": "trovafloxacin", "category_aro_cvterm_id": "37008", "category_aro_accession": "3000664", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trovafloxacin is a trifluoroquinalone with a broad spectrum of activity that acts by inhibiting the uncoiling of supercoiled DNA. While potent against many Gram-positive and Gram-negative bacteria, it is less active against pseudomonads and Cl. difficile. It is usually taken as the prodrug trovafloxacin mesylate or alatrofloxacin mesylate for oral or intravenous administration, respectively."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "37004": {"category_aro_name": "lomefloxacin", "category_aro_cvterm_id": "37004", "category_aro_accession": "3000660", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lomefloxacin is a difluoropiperazinyl quinolone, sharing similar activities with other fluoroquinolones. It is used to treat urinary tract infections. Relative to other fluoroquinolones, it has a longer half life and has higher serum concentrations."}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}, "39876": {"category_aro_name": "fluoroquinolone resistant gyrA", "category_aro_cvterm_id": "39876", "category_aro_accession": "3003292", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "DNA gyrase is responsible for DNA supercoiling and consists of two alpha and two beta subunits. GyrA point mutations confer resistance by preventing fluoroquinolone antibiotics from binding the alpha-subunit."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37142": {"category_aro_name": "pefloxacin", "category_aro_cvterm_id": "37142", "category_aro_accession": "3000762", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pefloxacin is structurally and functionally similar to norfloxacin. It is poorly active against mycobacteria, while anaerobes are resistant."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "35942": {"category_aro_name": "enoxacin", "category_aro_cvterm_id": "35942", "category_aro_accession": "0000023", "category_aro_class_name": "Antibiotic", "category_aro_description": "Enoxacin belongs to a group called fluoroquinolones. Its mode of action depends upon blocking bacterial DNA replication by binding itself to DNA gyrase and causing double-stranded breaks in the bacterial chromosome."}}, "ARO_name": "Acinetobacter baumannii gyrA conferring resistance to fluoroquinolones", "model_type": "protein variant model", "model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: \"strict\" and \"loose\". A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "ARO_id": "40507", "model_name": "Acinetobacter baumannii gyrA conferring resistance to fluoroquinolones", "model_type_id": "40293"}, "2315": {"model_id": "2315", "ARO_accession": "3003818", "model_param": {"blastp_bit_score": {"param_value": "1400", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}, "snp": {"param_type": "single resistance variant", "param_value": {"3988": "S80L", "3989": "S83L", "3990": "D87E"}, "clinical": {"3988": "S80L", "3989": "S83L", "3990": "D87E"}, "param_type_id": "36301", "param_description": "A nucleotide or amino acid substitution that confers elevated resistance to antibiotic(s) relative to wild type. The most common type encoded in the CARD is an amino acid substitution gleaned from the literature with format [wild-type][position][mutation], e.g. R184Q. When present in the associated gene or protein, a single resistance variant confers resistance to an antibiotic drug or drug class. Single resistance variants are used by the protein variant and rRNA mutation models to detect antibiotic resistance from submitted sequences."}}, "ARO_description": "Mutations in Acinetobacter baumannii parC that result in resistance to fluoroquinolones.", "model_sequences": {"sequence": {"3584": {"dna_sequence": {"fmax": "3863522", "fmin": "3861302", "accession": "CP012952.1", "strand": "-", "sequence": "TTATCTCTGAATCAACAGTTTATTTGCTTTTTGATATCCACGTGGTAAGAGCTGACCTTTCGAAGCACGTTTACCCATGTATTTTTGTAGATCATCACCTTTTAATTTGAGATGTTGTTGACCTGCAACCACCTGAATTATTTCATCTAAGTTCAGGGTTGTCATGGATAAAATTTGCTCTTTGCCTTCAAGTTGTATCAACTTATTACCTTTACCTTTATTTAAATTTGGTAGTTCTGCCAAATCTAAAATTAACAAACGCCCTGCTGAGCTCAGTACAGCCAAATGCGTCATGTTTTGGGCAGAAATGAGTGGTAAAGCCTTTGCCTTATCCGGAACCGTTAAGAATGTCTTACCGGCTTTCGCATTGGTATCTAATTGCTTGGTTTGCGTTTTAAAACCATAACCTGCCGAACTTGCAGCAATCAATTCAGACTCATCATCATCTAAATAAACCTGAATAAACGATACGCCACTTGCTGGTGATAATTTAGAACTTAATGGATCCCCCAAGCCTCTCGCTGAAGGTAAGTTACTAATTGGCAAGGCATAGCTGCGCCCTGTTTCATCAAGGAAGTAAACTCGCTGATTGGTTTTCCCGACAGCATGACTTAAATATTGGTCCCCAGCACGGTAGTTGAGATTTTCGGCATCCACATCCGCACCTTTTGCCGCACGAACCCAGCCTGCTTCAGACAAAACCACCGTTACCGTTTCAGCTGGCATTAAATCCTGTTCTTTAATTTGAACTGCTTCAGCACGTGCAACAATTGGAGAACGGCGCTCATCACCGAACTTTTTCGCATCTTCTTTTAATTCACTGATAATTAGGTTTTTTAAAGATTCAGGATTTTCGAGTTGTTCACGAATAATGGCAGCTTTCGCAGAAAGTTCATCTTGTTCATGACGGATTTCCATCTCTTCAAGCTTTGCCAAATGACGTAATTTAAGCTCTAAAATCGCCTCGGCCTGTATCTCATCAATATTAAAGTGTTCCATCAAGACTGGCTTAGGCTGGTCTTCTTCACGAATAATACGAATGACTGTATCAATATCGAGATAAGCAATTAAAAGACCTGCCAAAATATGCAGGCGCTTTTCAATACGGTTTAAATGGTACTGCAAACGACGAGTTACCGTTTTTTTACGGATCTCGATCCATTCAAGCAAAATACGACGAATTGATTTCACCTGAGGACGGCCATCTTCGCCAATCATGTTCAAATTGACACGATAGCTTGATTCTAAATCGGTGGTCGCAAATAAGTGGCTCATCACTGCTTCCGCATCAATACGGTTAGAGCGCAGTACAATCACGAGTCGTGTCGGGTTTTCATGATCCGATTCATCACGCACGTCGACAACTAATGGCAGCTTTTTAGCCTGCATCTGGTCAGCAATTTGAGTAATTACCTTAGAACCAGAGACTTGATATGGCAGCTCAGTAATTACAATTTCATTTTTCTCAATGGTATATACCGCTCGCATACGATAACTACCACGACCAGTGGTCTGGATTTTGAGTAATTCTTCTGGCGGGGTAATAATTTCAGCTTTGGTTGGTAAATCCGGAGCCGGAATATATTCAGCTAATTTTTCGTCCGAGGTTTGCGGATTACGGATTAAAGCAATTGTGCCTTTTACAACTTCACGCAAATTATGTGGCGGGATATCAGTTGCCATCCCAACAGCAATACCTGTCGTACCATTAAGAAGAATATTAGGTACACGCGCAGGTAAAGTGATCGGTTCTTTTAAAGAACCATCAAAGTTATCTTGCCATTCGCTAGTGCCCTGACCTAATTCGCTCAGCAATAATTCACTATAAGCCGAGAGTTTTGCTTCGGTATAACGCATCGCAGCAAAAGACTTAGGATCATCAGGTGAGCCCCAGTTCCCCTGACCTTCGATTAAAGGATAGCGGTAACTAAATGGCTGAGCCATGAGTACCATGGCTTCATAACATGCCAAGTCACCATGTGGGTGGTATTTACCAAGTACATCACCCACTGTACGCGCTGATTTTTTTGGCTTGCCACTGCTTTTTAAGCCTAGCTCGCTCATGGCATAGACAATACGGCGCTGTACGGGCTTTAAGCCATCACTGATATGCGGTAATGCACGGTCCATAATGACGTACATGGCATAATTCAAGTAAGCCTGTTCAGTAAATTCGGCTACAGAGCGGTTTTCTGTCGCATGATGCGCAAGGCTGGTCAT"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter baumannii", "NCBI_taxonomy_id": "470", "NCBI_taxonomy_cvterm_id": "35507"}, "protein_sequence": {"accession": "ALJ89624.1", "sequence": "MTSLAHHATENRSVAEFTEQAYLNYAMYVIMDRALPHISDGLKPVQRRIVYAMSELGLKSSGKPKKSARTVGDVLGKYHPHGDLACYEAMVLMAQPFSYRYPLIEGQGNWGSPDDPKSFAAMRYTEAKLSAYSELLLSELGQGTSEWQDNFDGSLKEPITLPARVPNILLNGTTGIAVGMATDIPPHNLREVVKGTIALIRNPQTSDEKLAEYIPAPDLPTKAEIITPPEELLKIQTTGRGSYRMRAVYTIEKNEIVITELPYQVSGSKVITQIADQMQAKKLPLVVDVRDESDHENPTRLVIVLRSNRIDAEAVMSHLFATTDLESSYRVNLNMIGEDGRPQVKSIRRILLEWIEIRKKTVTRRLQYHLNRIEKRLHILAGLLIAYLDIDTVIRIIREEDQPKPVLMEHFNIDEIQAEAILELKLRHLAKLEEMEIRHEQDELSAKAAIIREQLENPESLKNLIISELKEDAKKFGDERRSPIVARAEAVQIKEQDLMPAETVTVVLSEAGWVRAAKGADVDAENLNYRAGDQYLSHAVGKTNQRVYFLDETGRSYALPISNLPSARGLGDPLSSKLSPASGVSFIQVYLDDDESELIAASSAGYGFKTQTKQLDTNAKAGKTFLTVPDKAKALPLISAQNMTHLAVLSSAGRLLILDLAELPNLNKGKGNKLIQLEGKEQILSMTTLNLDEIIQVVAGQQHLKLKGDDLQKYMGKRASKGQLLPRGYQKANKLLIQR"}}}}, "ARO_category": {"37009": {"category_aro_name": "grepafloxacin", "category_aro_cvterm_id": "37009", "category_aro_accession": "3000665", "category_aro_class_name": "Antibiotic", "category_aro_description": "Grepafloxacin is a broad-spectrum antibacterial quinoline. It is no longer taken due to its high toxicity."}, "37008": {"category_aro_name": "trovafloxacin", "category_aro_cvterm_id": "37008", "category_aro_accession": "3000664", "category_aro_class_name": "Antibiotic", "category_aro_description": "Trovafloxacin is a trifluoroquinalone with a broad spectrum of activity that acts by inhibiting the uncoiling of supercoiled DNA. While potent against many Gram-positive and Gram-negative bacteria, it is less active against pseudomonads and Cl. difficile. It is usually taken as the prodrug trovafloxacin mesylate or alatrofloxacin mesylate for oral or intravenous administration, respectively."}, "37007": {"category_aro_name": "ofloxacin", "category_aro_cvterm_id": "37007", "category_aro_accession": "3000663", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ofloxacin is a 6-fluoro, 7-piperazinyl quinolone with a methyl-substituted oxazine ring. It has a broad spectrum of activity including many enterobacteria and mycoplasma but most anaerobes are resistant."}, "37006": {"category_aro_name": "norfloxacin", "category_aro_cvterm_id": "37006", "category_aro_accession": "3000662", "category_aro_class_name": "Antibiotic", "category_aro_description": "Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes."}, "37005": {"category_aro_name": "nalidixic acid", "category_aro_cvterm_id": "37005", "category_aro_accession": "3000661", "category_aro_class_name": "Antibiotic", "category_aro_description": "Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments."}, "37004": {"category_aro_name": "lomefloxacin", "category_aro_cvterm_id": "37004", "category_aro_accession": "3000660", "category_aro_class_name": "Antibiotic", "category_aro_description": "Lomefloxacin is a difluoropiperazinyl quinolone, sharing similar activities with other fluoroquinolones. It is used to treat urinary tract infections. Relative to other fluoroquinolones, it has a longer half life and has higher serum concentrations."}, "37003": {"category_aro_name": "gatifloxacin", "category_aro_cvterm_id": "37003", "category_aro_accession": "3000659", "category_aro_class_name": "Antibiotic", "category_aro_description": "Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa."}, "35991": {"category_aro_name": "moxifloxacin", "category_aro_cvterm_id": "35991", "category_aro_accession": "0000074", "category_aro_class_name": "Antibiotic", "category_aro_description": "Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases."}, "35988": {"category_aro_name": "levofloxacin", "category_aro_cvterm_id": "35988", "category_aro_accession": "0000071", "category_aro_class_name": "Antibiotic", "category_aro_description": "Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication."}, "37010": {"category_aro_name": "sparfloxacin", "category_aro_cvterm_id": "37010", "category_aro_accession": "3000666", "category_aro_class_name": "Antibiotic", "category_aro_description": "Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes."}, "37142": {"category_aro_name": "pefloxacin", "category_aro_cvterm_id": "37142", "category_aro_accession": "3000762", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pefloxacin is structurally and functionally similar to norfloxacin. It is poorly active against mycobacteria, while anaerobes are resistant."}, "35954": {"category_aro_name": "ciprofloxacin", "category_aro_cvterm_id": "35954", "category_aro_accession": "0000036", "category_aro_class_name": "Antibiotic", "category_aro_description": "Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35920": {"category_aro_name": "fluoroquinolone antibiotic", "category_aro_cvterm_id": "35920", "category_aro_accession": "0000001", "category_aro_class_name": "Drug Class", "category_aro_description": "The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death."}, "36913": {"category_aro_name": "fluoroquinolone resistant parC", "category_aro_cvterm_id": "36913", "category_aro_accession": "3000619", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ParC is a subunit of topoisomerase IV, which decatenates and relaxes DNA to allow access to genes for transcription or translation. Point mutations in ParC prevent fluoroquinolone antibiotics from inhibiting DNA synthesis, and confer low-level resistance. Higher-level resistance results from both gyrA and parC mutations."}, "35942": {"category_aro_name": "enoxacin", "category_aro_cvterm_id": "35942", "category_aro_accession": "0000023", "category_aro_class_name": "Antibiotic", "category_aro_description": "Enoxacin belongs to a group called fluoroquinolones. Its mode of action depends upon blocking bacterial DNA replication by binding itself to DNA gyrase and causing double-stranded breaks in the bacterial chromosome."}}, "ARO_name": "Acinetobacter baumannii parC conferring resistance to fluoroquinolone", "model_type": "protein variant model", "model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: \"strict\" and \"loose\". A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "ARO_id": "40508", "model_name": "Acinetobacter baumannii parC conferring resistance to fluoroquinolone", "model_type_id": "40293"}, "2394": {"model_id": "2394", "ARO_accession": "3003917", "model_param": {"blastp_bit_score": {"param_value": "550", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}, "snp": {"param_value": {"4430": "G33D"}, "param_type_id": "36301", "param_type": "single resistance variant", "param_description": "A nucleotide or amino acid substitution that confers elevated resistance to antibiotic(s) relative to wild type. The most common type encoded in the CARD is an amino acid substitution gleaned from the literature with format [wild-type][position][mutation], e.g. R184Q. When present in the associated gene or protein, a single resistance variant confers resistance to an antibiotic drug or drug class. Single resistance variants are used by the protein variant and rRNA mutation models to detect antibiotic resistance from submitted sequences.", "experimental": {"4430": "G33D"}}}, "ARO_description": "menA encodes a 1,4-dihydroxy-2-naphthoate octaprenyltransferase, with mutations to the protein conferring resistance to lysocin E.", "model_sequences": {"sequence": {"3718": {"dna_sequence": {"fmax": "952740", "fmin": "951801", "accession": "NC_007795.1", "strand": "-", "sequence": "TTAAATGCCTGCAAATAATGCACTAATATAAATACCTAATGCATATAATAAACCGAAAAATGTATTTGTTTTACCAGCAGCAGCCATTGCTGGCATCATTGTAGGCGGTGTATCATTCTTCTTGAAACGTCTGATAACTTTAACAGGCATTGGGAATGATAACAACGCAAGTAAGTAAAATAATGAGCCACCAGGTTTAATAATGATCGTAAGTACAATAAAGGCATAAGCGATAAAGTACATGATTGCCATAAATGTTAAAGAAGCATTTTTACCTAATAGAATGGGTAAAGTTTTGCGACCACTTGCTTTATCTTTGACACGGTCGCGAATATTGTTAGCCATATTAATTAAACCGATAGTGATTACTATAGGTACACTTAACCAAATTACATAACTTTGAATATTGCCAGTTTGAATAAAGAATGCAATAACGATAATAAACATACCCATAAATACGCCTGAGAATAATTCACCGAAAGGCGTCCATGAAATAGGGAAAGGGCCACCTGTATATAGGTAACCAACAGCCATACATACTAATCCAACTGGTAATAACCAAAATGAAGAGTTAGCAGCTAAAAACAAACCTAATATTGCTGCTAAGATGTAAAATGCAATGGCTAATCGTAGCACAAGCTCTGGGCTCATACCGTTGCGAACAATGGCACCACCAATGCCTACAGATTCATGATCATCGAGGCCTTTTTTATAATCATAGTATTCATTAAACATATTAGTTGCTGCTTGAATAAGTAAGCATGCTAGTAACATGGCAATGAATAGGCTGATTTTAATATGATCTTCGCTACCAAGAAAATATATTTTAGATGCTGCTGTACCAACTAAAACGGGTACTACGGAAGCAGTTAATGTATGAGGACGCATTAAATGCCAATATTTCTTAACTGTAGAATATTGCTGATATTGATTACTCAT"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Staphylococcus aureus subsp. aureus NCTC 8325", "NCBI_taxonomy_id": "93061", "NCBI_taxonomy_cvterm_id": "35511"}, "protein_sequence": {"accession": "YP_499533.1", "sequence": "MSNQYQQYSTVKKYWHLMRPHTLTASVVPVLVGTAASKIYFLGSEDHIKISLFIAMLLACLLIQAATNMFNEYYDYKKGLDDHESVGIGGAIVRNGMSPELVLRLAIAFYILAAILGLFLAANSSFWLLPVGLVCMAVGYLYTGGPFPISWTPFGELFSGVFMGMFIIVIAFFIQTGNIQSYVIWLSVPIVITIGLINMANNIRDRVKDKASGRKTLPILLGKNASLTFMAIMYFIAYAFIVLTIIIKPGGSLFYLLALLSFPMPVKVIRRFKKNDTPPTMMPAMAAAGKTNTFFGLLYALGIYISALFAGI"}}}}, "ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "40623": {"category_aro_name": "Lysocin E", "category_aro_cvterm_id": "40623", "category_aro_accession": "3003915", "category_aro_class_name": "Antibiotic", "category_aro_description": "A drug which binds to menaquinone in the bacterial cell membrane. Binding of Lysocin to menaquinone facilitates lysis of the cell."}, "41429": {"category_aro_name": "lysocin resistant menA", "category_aro_cvterm_id": "41429", "category_aro_accession": "3004265", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Mutations to demA confer lycosin resistance."}}, "ARO_name": "Staphylococcus aureus menA with mutation conferring resistance to lysocin", "model_type": "protein variant model", "model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: \"strict\" and \"loose\". A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "ARO_id": "40625", "model_name": "Staphylococcus aureus menA with mutation conferring resistance to lysocin", "model_type_id": "40293"}, "2256": {"model_id": "2256", "ARO_accession": "3003737", "model_param": {"blastp_bit_score": {"param_value": "300", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}, "snp": {"param_type": "single resistance variant", "param_value": {"3414": "Q140L"}, "clinical": {"3414": "Q140L"}, "param_type_id": "36301", "param_description": "A nucleotide or amino acid substitution that confers elevated resistance to antibiotic(s) relative to wild type. The most common type encoded in the CARD is an amino acid substitution gleaned from the literature with format [wild-type][position][mutation], e.g. R184Q. When present in the associated gene or protein, a single resistance variant confers resistance to an antibiotic drug or drug class. Single resistance variants are used by the protein variant and rRNA mutation models to detect antibiotic resistance from submitted sequences."}}, "ARO_description": "The mutations to the rplF gene encoding riboprotein L6 have been shown to cause fusidic acid resistance, demonstrating a potential secondary site of action of the antibiotic that is blocked through these mutations. Several types of mutations have been identified that cause resistance, including SNPs, frameshift mutations and early stop codons.", "model_sequences": {"sequence": {"3504": {"dna_sequence": {"fmax": "2307531", "fmin": "2306994", "accession": "CP002114", "strand": "-", "sequence": "TTATTTACCAGTTTTACCTTCTTTACGGCGAACGTATTCACCTTGGTAACGAATACCTTTACCTTTGTAAGGCTCTGGAGGTCTTACTGAACGGATGTTAGATGCTAATGCTCCAACTTGTTCTTTTGAAATACCTTCAACTTTAACGACTGTGTTTTTCTCAACTGAGAAAGTAATGTTTTCTTCAGCTTTAATTTCTACTGGGTGAGAATAACCAACGTTAAGGATTAAGTCTTTACCTTGCATTTGAGCACGGTAACCTACACCAACAAGTTCAAGTACTTTTACGTATCCTTGAGAAACACCTTGTACCATATTGTTTAATAAAGCACGAGTTGTACCATGGTTTGTTCTATCTTCTTTAGAATCAGATGGTCTTACAACTTCAATTGTGTTTTCTTCTTGTTTGAATGTCATTCTTTCATTTAAAGTTCTTGATAATTCACCTTTAGGACCTTTAACAGTTACATGATTTCCATCAAAAGTTACTGTTACGTCACTAGGGATGTCAATAATTTTCTTACCAACACGACTCAT"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Staphylococcus aureus subsp. aureus JKD6159", "NCBI_taxonomy_id": "869816", "NCBI_taxonomy_cvterm_id": "40393"}, "protein_sequence": {"accession": "ADL24064", "sequence": "MSRVGKKIIDIPSDVTVTFDGNHVTVKGPKGELSRTLNERMTFKQEENTIEVVRPSDSKEDRTNHGTTRALLNNMVQGVSQGYVKVLELVGVGYRAQMQGKDLILNVGYSHPVEIKAEENITFSVEKNTVVKVEGISKEQVGALASNIRSVRPPEPYKGKGIRYQGEYVRRKEGKTGK"}}}}, "ARO_category": {"40391": {"category_aro_name": "antibiotic resistant fusE", "category_aro_cvterm_id": "40391", "category_aro_accession": "3003736", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Antibiotic resistant fusE is caused by mutations in a region of the rplF gene encoding riboprotein L6, and confers resistance to fusidic acid."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37139": {"category_aro_name": "fusidic acid", "category_aro_cvterm_id": "37139", "category_aro_accession": "3000759", "category_aro_class_name": "Drug Class", "category_aro_description": "Fusidic acid is the only commercially available fusidane, a group of steroid-like antibiotics. It is most active against Gram-positive bacteria, and acts by inhibiting elongation factor G to block protein synthesis."}}, "ARO_name": "Staphylococcus aureus fusE with mutation conferring resistance to fusidic acid", "model_type": "protein variant model", "model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: \"strict\" and \"loose\". A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "ARO_id": "40392", "model_name": "Staphylococcus mutant fusE gene conferring resistance to fusidic acid", "model_type_id": "40293"}, "2254": {"model_id": "2254", "ARO_accession": "3003735", "model_param": {"blastp_bit_score": {"param_value": "1350", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}, "snp": {"param_description": "A nucleotide or amino acid substitution that confers elevated resistance to antibiotic(s) relative to wild type. The most common type encoded in the CARD is an amino acid substitution gleaned from the literature with format [wild-type][position][mutation], e.g. R184Q. When present in the associated gene or protein, a single resistance variant confers resistance to an antibiotic drug or drug class. Single resistance variants are used by the protein variant and rRNA mutation models to detect antibiotic resistance from submitted sequences.", "clinical": {"3368": "M453I", "3369": "P404L", "3379": "L461F", "3377": "L461S", "3367": "H457Q", "3373": "V90I", "3372": "V90A", "3371": "F441Y", "3370": "A376V", "3357": "L461K", "3356": "H457Y"}, "param_type": "single resistance variant", "param_value": {"3386": "G452C", "3387": "G452V", "3384": "D434N", "3385": "G451V", "3368": "M453I", "3383": "V407F", "3380": "F88L", "3381": "Q115L", "3364": "R464C", "3366": "P406L", "3367": "H457Q", "3360": "T436I", "3361": "G452S", "3362": "L456F", "3389": "R464H", "3357": "L461K", "3356": "H457Y", "3382": "P404Q", "3369": "P404L", "3391": "R464L", "3390": "R464S", "3379": "L461F", "3377": "L461S", "3373": "V90I", "3372": "V90A", "3371": "F441Y", "3370": "A376V"}, "param_type_id": "36301", "experimental": {"3386": "G452C", "3387": "G452V", "3384": "D434N", "3385": "G451V", "3382": "P404Q", "3383": "V407F", "3380": "F88L", "3381": "Q115L", "3364": "R464C", "3366": "P406L", "3360": "T436I", "3361": "G452S", "3362": "L456F", "3389": "R464H", "3390": "R464S", "3391": "R464L"}}, "40330": {"param_value": {"3376": "A70V,A160V,H457Y", "3375": "T387I,E449K", "3374": "D189V,L430S", "3388": "G452C,R659L", "3355": "A67T,P406L", "3365": "F652S,Y654N", "3359": "V90I,H457Q,L461K,A655V", "3358": "H457Y,S416F"}, "param_type_id": "40330", "param_type": "multiple resistance variants", "param_description": "A set of nucleotide or amino acid substitutions that are each required to confer resistance to an antibiotic drug or drug class by co-mutation. Compare to single resistance variant, where only one substitution is required. Multiple resistance variants parameters are indicated on appropriate models using the following notation: [wild-type 1][position 1][mutation 1],[wild-type 2][position 2][mutation 2],...,[wild-type n][position n][mutation n]. When each included substitution is detected in a protein sequence, resistance is conferred. This parameter is not currently included in any detection algorithms."}}, "ARO_description": "The mutations to this gene are involved in altering the translation elongation factor G (EF-G) in association with the ribosome to prevent fusidic acid from binding EF-G and preventing translation.", "model_sequences": {"sequence": {"3510": {"dna_sequence": {"fmax": "601784", "fmin": "599702", "accession": "BX571856", "strand": "+", "sequence": "ATGGCTAGAGAATTTTCATTAGAAAAAACTCGTAATATCGGTATCATGGCTCACATTGATGCTGGTAAAACGACTACGACTGAACGTATTCTTTATTACACTGGCCGTATCCACAAAATTGGTGAAACACATGAAGGTGCTTCACAAATGGACTGGATGGAGCAAGAACAAGACCGTGGTATTACTATCACATCTGCTGCAACAACAGCAGCTTGGGAAGGTCACCGTGTAAACATTATCGATACACCTGGACACGTAGACTTCACTGTAGAAGTTGAACGTTCATTACGTGTACTTGACGGAGCAGTTACAGTACTTGATGCACAATCAGGTGTTGAACCTCAAACTGAAACAGTTTGGCGTCAGGCTACAACTTATGGTGTTCCACGTATCGTATTTGTAAACAAAATGGACAAATTAGGTGCTAACTTCGAATACTCTGTAAGTACATTACATGATCGTTTACAAGCTAACGCTGCTCCAATCCAATTACCAATTGGTGCGGAAGACGAATTCGAAGCAATCATTGACTTAGTTGAAATGAAATGTTTCAAATATACAAATGATTTAGGTACTGAAATTGAAGAAATTGAAATTCCTGAAGACCACTTAGATAGAGCTGAAGAAGCTCGTGCTAGCTTAATCGAAGCAGTTGCAGAAACTAGCGACGAATTAATGGAAAAATATCTTGGTGACGAAGAAATTTCAGTTTCTGAATTAAAAGAAGCTATCCGCCAAGCTACTACTAACGTAGAATTCTACCCAGTACTTTGTGGTACAGCTTTCAAAAACAAAGGTGTTCAATTAATGCTTGACGCTGTAATTGATTACTTACCTTCACCACTAGACGTTAAACCAATTATTGGTCACCGTGCTAGCAACCCTGAAGAAGAAGTAATCGCGAAAGCAGACGATTCAGCTGAATTCGCTGCATTAGCGTTCAAAGTTATGACTGACCCTTATGTTGGTAAATTAACATTCTTCCGTGTGTACTCAGGTACAATGACATCTGGTTCATACGTTAAGAACTCTACTAAAGGTAAACGTGAACGTGTAGGTCGTTTATTACAAATGCACGCTAACTCACGTCAAGAAATCGATACTGTATACTCTGGAGATATCGCTGCTGCGGTAGGTCTTAAAGATACAGGTACTGGTGATACTTTATGTGGTGAGAAAAATGACATTATCTTGGAATCAATGGAATTCCCAGAGCCAGTTATTCACTTATCAGTAGAGCCAAAATCTAAAGCTGACCAAGATAAAATGACTCAAGCTTTAGTTAAATTACAAGAAGAAGACCCAACATTCCATGCACACACTGACGAAGAAACTGGACAAGTTATCATCGGTGGTATGGGTGAGCTTCACTTAGACATCTTAGTAGACCGTATGAAGAAAGAATTCAACGTTGAATGTAACGTAGGTGCTCCAATGGTTTCATATCGTGAAACATTCAAATCATCTGCACAAGTTCAAGGTAAATTCTCTCGTCAATCTGGTGGTCGTGGTCAATACGGTGATGTTCACATTGAATTCACACCAAACGAAACAGGCGCAGGTTTCGAATTCGAAAACGCTATCGTTGGTGGTGTAGTTCCTCGTGAATACATTCCATCAGTAGAAGCTGGTCTTAAAGATGCTATGGAAAATGGTGTCTTAGCAGGTTATCCATTAATTGATGTTAAAGCTAAATTATATGATGGTTCATACCATGATGTCGATTCATCTGAAATGGCCTTCAAAATTGCTGCATCATTAGCACTTAAAGAAGCTGCTAAAAAATGTGATCCTGTAATCTTAGAACCAATGATGAAAGTAACTATTGAAATGCCTGAAGAGTACATGGGTGATATCATGGGTGACGTAACATCTCGTCGTGGACGTGTTGATGGTATGGAACCTCGTGGTAATGCACAAGTTGTTAATGCTTATGTACCACTTTCAGAAATGTTCGGTTATGCAACATCATTACGTTCAAACACTCAAGGTCGCGGTACTTACACTATGTACTTCGATCACTATGCTGAAGTTCCAAAATCAATCGCTGAAGATATTATCAAGAAAAATAAAGGTGAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Staphylococcus aureus subsp. aureus MRSA252", "NCBI_taxonomy_id": "282458", "NCBI_taxonomy_cvterm_id": "35517"}, "protein_sequence": {"accession": "CAG39573", "sequence": "MAREFSLEKTRNIGIMAHIDAGKTTTTERILYYTGRIHKIGETHEGASQMDWMEQEQDRGITITSAATTAAWEGHRVNIIDTPGHVDFTVEVERSLRVLDGAVTVLDAQSGVEPQTETVWRQATTYGVPRIVFVNKMDKLGANFEYSVSTLHDRLQANAAPIQLPIGAEDEFEAIIDLVEMKCFKYTNDLGTEIEEIEIPEDHLDRAEEARASLIEAVAETSDELMEKYLGDEEISVSELKEAIRQATTNVEFYPVLCGTAFKNKGVQLMLDAVIDYLPSPLDVKPIIGHRASNPEEEVIAKADDSAEFAALAFKVMTDPYVGKLTFFRVYSGTMTSGSYVKNSTKGKRERVGRLLQMHANSRQEIDTVYSGDIAAAVGLKDTGTGDTLCGEKNDIILESMEFPEPVIHLSVEPKSKADQDKMTQALVKLQEEDPTFHAHTDEETGQVIIGGMGELHLDILVDRMKKEFNVECNVGAPMVSYRETFKSSAQVQGKFSRQSGGRGQYGDVHIEFTPNETGAGFEFENAIVGGVVPREYIPSVEAGLKDAMENGVLAGYPLIDVKAKLYDGSYHDVDSSEMAFKIAASLALKEAAKKCDPVILEPMMKVTIEMPEEYMGDIMGDVTSRRGRVDGMEPRGNAQVVNAYVPLSEMFGYATSLRSNTQGRGTYTMYFDHYAEVPKSIAEDIIKKNKGE"}}}}, "ARO_category": {"35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37139": {"category_aro_name": "fusidic acid", "category_aro_cvterm_id": "37139", "category_aro_accession": "3000759", "category_aro_class_name": "Drug Class", "category_aro_description": "Fusidic acid is the only commercially available fusidane, a group of steroid-like antibiotics. It is most active against Gram-positive bacteria, and acts by inhibiting elongation factor G to block protein synthesis."}, "40389": {"category_aro_name": "antibiotic resistant fusA", "category_aro_cvterm_id": "40389", "category_aro_accession": "3003734", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Antibiotic resistant fusA is caused by mutations to the elongation factor G (EF-G) and confers resistance to fusidic acid."}}, "ARO_name": "Staphylococcus aureus fusA with mutation conferring resistance to fusidic acid", "model_type": "protein variant model", "model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: \"strict\" and \"loose\". A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "ARO_id": "40390", "model_name": "Staphylococcus mutant fusA gene conferring resistance to fusidic acid", "model_type_id": "40293"}, "2250": {"model_id": "2250", "ARO_accession": "3003733", "model_param": {"blastp_bit_score": {"param_value": "375", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "FusC is a fusidic acid resistance gene enabling ribosomal translocase EF-G dissociation from the ribosome that has been detected in Staphylococcus aureus and Staphylococcus intermedius. Its mechanism is believed to be similar to fusB due to its high level of sequence homology.", "model_sequences": {"sequence": {"3507": {"dna_sequence": {"fmax": "53458", "fmin": "52819", "accession": "NC_002953", "strand": "+", "sequence": "ATGAATAAAATAGAAGTGTATAAGTTTGTTAAAGTAAAGCAGTTAGTATATCAATTGATTAAGTTATATCGTACAAACGATATGAATTCCCATAAAACACAAAAAGATTTTTTACTAAATGAAATTAATGATATCTTTAAAGAAAAAGATATTGATATCTCGGACTTTATTACATCGATTGACGATGTAAAATTAACTAAGAAAAAAGCAGAACATCTTTTAAATGAATTAAAAGTGTACATCCAAGATTTTGAAATACCTTCATCAAGTCAACTGGAGAAAATTTTTCGTAAAGTAAAAAAATTAAAGAGACCAGATATAAATTTAATTGATACAAAAGAAATTTCATATTTAGGATGGAATGATAATTCTTCTAACCGAAAATATATCGTTTATAAAAATTTAGATGATAAATTCGAAGGTATATATGGCGAAATTTCACCAAATAAAGTAAAAGGATTCTGTAAAATTTGTAATCAGGAATCTGATACATCACTCTTTCTCAATAAAACTAAACATAATAAGAGTAGTGGAACATATACTAAAAAAGGAGATTACATTTGTTATGACAGTTTTAAATGTAATCAGAACCTAGATGATATAAATAATCTTTACGAATTTATTGTTAAAATAAAATAG"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Staphylococcus", "NCBI_taxonomy_id": "1279", "NCBI_taxonomy_cvterm_id": "37074"}, "protein_sequence": {"accession": "WP_001033157", "sequence": "MNKIEVYKFVKVKQLVYQLIKLYRTNDMNSHKTQKDFLLNEINDIFKEKDIDISDFITSIDDVKLTKKKAEHLLNELKVYIQDFEIPSSSQLEKIFRKVKKLKRPDINLIDTKEISYLGWNDNSSNRKYIVYKNLDDKFEGIYGEISPNKVKGFCKICNQESDTSLFLNKTKHNKSSGTYTKKGDYICYDSFKCNQNLDDINNLYEFIVKIK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "37139": {"category_aro_name": "fusidic acid", "category_aro_cvterm_id": "37139", "category_aro_accession": "3000759", "category_aro_class_name": "Drug Class", "category_aro_description": "Fusidic acid is the only commercially available fusidane, a group of steroid-like antibiotics. It is most active against Gram-positive bacteria, and acts by inhibiting elongation factor G to block protein synthesis."}, "39459": {"category_aro_name": "fusidic acid inactivation enzyme", "category_aro_cvterm_id": "39459", "category_aro_accession": "3003025", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Enzymes that confer resistance to fusidic acid by inactivation"}}, "ARO_name": "fusC", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40388", "model_name": "fusC", "model_type_id": "40292"}, "2308": {"model_id": "2308", "ARO_accession": "3003809", "model_param": {"blastp_bit_score": {"param_value": "800", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "An outer member protein (OMP) found in Acinetobacter baumannii involved in the uptake of imipenem and basic amino acids. This porin is homologous to Pseudomonas aeruginosa OprD, which performs an identical function.", "model_sequences": {"sequence": {"3577": {"dna_sequence": {"fmax": "3515414", "fmin": "3514886", "accession": "CP006768.1", "strand": "-", "sequence": "TTATTTTTTAGCAGCTTCGATTGCTTTCAATACTTCCGCTTTAGCAACGTCAGCACCTTCCCAACCGCTGATTTTCACCCATTTGCCTGGTTCTAAATCTTTATAGTGGCTGAAGAAATGCTCAACTTGGCTAATCAACAATGGAGGAAGATCTGTATATTCCTGAACGTCTTTGTAAAGTGGAGATAATTTTTCGTGTGGAACAGCGATTAATTTCGCGTCGATACCACCGTCATCTTCCATGTTTAATTTGCCCACTGGGCGGCAACGAATTACAGAACCAGCAGCAACAGGATGTGGAGTTACAACAAGTACGTCTAATGGGTCACCATCTTCAGACAAAGTATTTGGTACATAACCGTAGTTTGCTGGATAGAACATTGCTGTACCCATGAAACGGTCTACAAACAATGCATCAGAATCTTTGTCAATTTCATATTTAATTGGCGCTGCATTTGCAGGAATTTCAATGATGACATAGATGTCATTTGGTGCATCTTTACCTGCTGGGATATTGCTGTAACTCAT"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter baumannii ZW85-1", "NCBI_taxonomy_id": "1400867", "NCBI_taxonomy_cvterm_id": "40496"}, "protein_sequence": {"accession": "AHB92962.1", "sequence": "MLKAQKLTLAVLISAAIISSAQASEQSEAKGFVEDANGSILFRTGYISRDKKNGVDDTSSFAQTAIVNIESGFTPGIVGFGVGVVGDGSFKIGANKNAGNNMIPRETGFNDEGVLTKGAGDSYDHWARGGGSVKARFSNTTVRYGTQVLDLPVLASNTARLVPEYFTGTLLTSHEIKDLEVIAGKFTKDQYSDQVNTDGRHLDRAIVWGAKYKFDDNLNASYYGLDSKDKLERHYLNVNYKQPLANDSSLTYDFSGYHTKFDEGASTYSQTTDDLSNRKNNIWAISTAYNTGPHNIMVAYQQNSGNVGYDYGENADGGQSIYLPNSYLSDFIGNDEKSAQIQYSLDFGKLGVLPGLNWTTAFVYGWDIKVKGLTDDAEEREFFNQVKYTVQSGFAKDASLRIRNSYYRASNAYQTNAYIGDTNEWRIFLDIPVKLF"}}}}, "ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "41442": {"category_aro_name": "Outer Membrane Porin (Opr)", "category_aro_cvterm_id": "41442", "category_aro_accession": "3004278", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The Opr family consists of porins in Pseudomonas species, and other Gram-negative bacteria, that exhibit a variety of substrate selectivities."}, "36309": {"category_aro_name": "imipenem", "category_aro_cvterm_id": "36309", "category_aro_accession": "3000170", "category_aro_class_name": "Antibiotic", "category_aro_description": "Imipenem is a broad-spectrum antibiotic and is usually taken with cilastatin, which prevents hydrolysis of imipenem by renal dehydropeptidase-I. It is resistant to hydrolysis by most other beta-lactamases. Notable exceptions are the KPC beta-lactamases and Ambler Class B enzymes."}, "40360": {"category_aro_name": "penem", "category_aro_cvterm_id": "40360", "category_aro_accession": "3003706", "category_aro_class_name": "Drug Class", "category_aro_description": "Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur."}, "36383": {"category_aro_name": "reduced permeability to antibiotic", "category_aro_cvterm_id": "36383", "category_aro_accession": "3000244", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Reduction in permeability to antibiotic, generally through reduced production of porins, can provide resistance."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35962": {"category_aro_name": "cephamycin", "category_aro_cvterm_id": "35962", "category_aro_accession": "0000044", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40429": {"category_aro_name": "resistance by absence", "category_aro_cvterm_id": "40429", "category_aro_accession": "3003764", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mechanism of antibiotic resistance conferred by deletion of gene (usually a porin)"}}, "ARO_name": "Acinetobacter baumannii OprD conferring resistance to imipenem", "model_type": "protein knockout model", "model_description": "An AMR detection model for instances where the absence of a protein - due to large-scale insertion elements, large deletions, or other methods of protein knockout - confers clinical resistance to a known antibiotic. These models include reference sequences. Protein knockout models are currently in development.", "ARO_id": "40495", "model_name": "Acinetobacter OprD conferring resistance to imipenem", "model_type_id": "40354"}, "2301": {"model_id": "2301", "ARO_accession": "3003797", "model_param": {"blastp_bit_score": {"param_value": "1250", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}, "snp": {"param_value": {"3878": "I440S"}, "param_type_id": "36301", "param_type": "single resistance variant", "param_description": "A nucleotide or amino acid substitution that confers elevated resistance to antibiotic(s) relative to wild type. The most common type encoded in the CARD is an amino acid substitution gleaned from the literature with format [wild-type][position][mutation], e.g. R184Q. When present in the associated gene or protein, a single resistance variant confers resistance to an antibiotic drug or drug class. Single resistance variants are used by the protein variant and rRNA mutation models to detect antibiotic resistance from submitted sequences.", "experimental": {"3878": "I440S"}}}, "ARO_description": "YybT has phosphodiesterase activity towards cyclic dinucleotides using a c-di-GMP hydrolyzing phosphodiesterase domain. Mutations to the gene confer resistance to daptomycin.", "model_sequences": {"sequence": {"3568": {"dna_sequence": {"fmax": "1907725", "fmin": "1905748", "accession": "NZ_CP014949", "strand": "+", "sequence": "ATGCAAAAGAAGAGAATTCAAAAAAACGGTTTCTTAATTGTTGTGGGTCTTCTCTTAGTAGAATTTCTCCTCTATTTCTTACTAACAAATAAATGGCTGCTATTGGCGGTAATTATCGCATTAGATATCTTTCTCTTAGTGGTTATTCGGCTGTTGATTAGAGATGTAGAAATTACGAACGTAGAAAAGATTCAAGAAGCAAGTTCCATTGCTGAACAATCGTTGGATTATGTTGTAAATGAAGTACCTGTGGGAATTATTACGTATAACGGGGAAACACGCGCGGTAGAATGGCTTAATCCTTATGCTGCTTCTATTTTTAATAAAGACAATCAGCTAACGTTAACCGCTAGCCAAGTGACGTCTTATTTAGAATTAGCAGAACGAAACCAAGATATTTTTACGATTGACGAAAATACCTATCGCTTTAGCGTCAATAAAGAACAACATACAATTACTTTTGAAGATATCACTAAAGAAAGTAATTTGTATCAAGAAAAAGTCGAAATGCAAACGGCTATTGGCATTGTGTCTGTCGATAATTATGATGATGTCACCGATACAATGGACGAGAAAGAAATTTCTTATTTGAATAGTTTCATTACGACGATGGTTTCTGATTGGATGGACCAATACAAAGTTTTTTATAAGCGAATCAACGCAGAACGTTATTTTTTCATTGCCCAATGGGAAGATATTCAAAAAATGATGGACGAAAAATTTTCTATTTTGGATACGATCCGTAAGGAATCAGCTAACCATGAAGTAGCCATTACGTTAAGTATGGGGATTGCTTATGGGGGGCCAACCTTAGATCAAACCGGGACCACGGCTCAAACAAACCTAGATACAGCTTTAGTACGTGGCGGCGATCAAGTGGTTGTAAAAGAAGCCAAAGATGAAGCGAAGCCGTTATTTTTTGGTGGAAAAACGGCAGTAACGACGAAACGTTCCCAAGTACGTTCTCGCGCAATGAGCATGGCAATTAAGGGAATTATTGCGGAATCAGCTGACATCTATATTATGGGCCATCGTTATCCAGATATGGATGCGTTAGGTTCAGCATTTGGTGTTGCTCGTTTAGCCTCGTTTAATAATCGAAAAGCGTGGATTGTTTTAGATGAAAATGAAATCATTCCCGATGTCAAAAGAGTGTTAGAGGCGATTAAAGAGTACCCAGAATTAGAAGAGCGCATTATTAGTCCTAAAGAGGCCATGAAGCGCAAGAAAGAAAGTAGCTTATTAGTTATGGTAGATTACCATAAACCGTCTCTATCGATCTCACAAGAGCTCTATGAGCGTTTTGATAAAGTGGTAATCATTGATCACCATCGACGAGGAGACGAATTTCCAGCAAAACCCTTGCTTTCTTATATTGAATCTTCTGCCTCTTCTGCTTCAGAATTAGTCACAGAATTGATCGAATACCAAAGTAATAGCGCAAATAAACTGCAGGCCTTTGAAGCAACCATGATGTTGGCGGGAATTGTGGTTGATACGAAAAGTTTCAATACACGAACGACGGCGCGAACATTTGATGTGGCTAGTTATTTACGAACTTGTGGAGCAGACTCATCTTTAGTACAATATCTATTAAGTTCTGATCTTACAAGCTATCTGGAAATGAACAACTTAATCTCTAAAAGCGAATATGTCACAAAAGATACCGTCGTTGTTGCAGGGAGTGAAGACAAAGAATATGATAGTGTCACAGCTGCCAAAACAGCGGACACATTACTTTCTATGGCAGGGATTAATGCAGCATTTGTCATTACCAAGCGGACGGATCAACAGATTGGCATTAGTGCTCGGAGTAATGGTTCAATTAATGTCCAAATTATTATGGAAAATTTAGGTGGTGGCGGTCACTTTACTAATGCGGCAGTACAATTATCAAACGTAACAGTAGCAGAAGTAAAAGAGCAACTACTTGATGTAATTCGTCAAAATATTAATGAAATGTATGAACAGGAGTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Enterococcus", "NCBI_taxonomy_id": "1350", "NCBI_taxonomy_cvterm_id": "37056"}, "protein_sequence": {"accession": "WP_002356022", "sequence": "MQKKRIQKNGFLIVVGLLLVEFLLYFLLTNKWLLLAVIIALDIFLLVVIRLLIRDVEITNVEKIQEASSIAEQSLDYVVNEVPVGIITYNGETRAVEWLNPYAASIFNKDNQLTLTASQVTSYLELAERNQDIFTIDENTYRFSVNKEQHTITFEDITKESNLYQEKVEMQTAIGIVSVDNYDDVTDTMDEKEISYLNSFITTMVSDWMDQYKVFYKRINAERYFFIAQWEDIQKMMDEKFSILDTIRKESANHEVAITLSMGIAYGGPTLDQTGTTAQTNLDTALVRGGDQVVVKEAKDEAKPLFFGGKTAVTTKRSQVRSRAMSMAIKGIIAESADIYIMGHRYPDMDALGSAFGVARLASFNNRKAWIVLDENEIIPDVKRVLEAIKEYPELEERIISPKEAMKRKKESSLLVMVDYHKPSLSISQELYERFDKVVIIDHHRRGDEFPAKPLLSYIESSASSASELVTELIEYQSNSANKLQAFEATMMLAGIVVDTKSFNTRTTARTFDVASYLRTCGADSSLVQYLLSSDLTSYLEMNNLISKSEYVTKDTVVVAGSEDKEYDSVTAAKTADTLLSMAGINAAFVITKRTDQQIGISARSNGSINVQIIMENLGGGGHFTNAAVQLSNVTVAEVKEQLLDVIRQNINEMYEQE"}}}}, "ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35985": {"category_aro_name": "daptomycin", "category_aro_cvterm_id": "35985", "category_aro_accession": "0000068", "category_aro_class_name": "Antibiotic", "category_aro_description": "Daptomycin is a novel lipopeptide antibiotic used in the treatment of certain infections caused by Gram-positive organisms. Daptomycin interferes with the bacterial cell membrane, reducing membrane potential and inhibiting cell wall synthesis."}, "40483": {"category_aro_name": "daptomycin resistant YybT", "category_aro_cvterm_id": "40483", "category_aro_accession": "3003798", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Mutations to the YybT gene confers daptomycin resistance"}}, "ARO_name": "Enterococcus faecalis YybT with mutation conferring daptomycin resistance", "model_type": "protein variant model", "model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: \"strict\" and \"loose\". A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "ARO_id": "40482", "model_name": "Enterococcus faecalis YybT with mutation conferring daptomycin resistance", "model_type_id": "40293"}, "2300": {"model_id": "2300", "ARO_accession": "3003796", "model_param": {"blastp_bit_score": {"param_value": "750", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "A class C beta-lactamase found in Acinetobacter baumannii that confers resistance to piperacillin and cefepime.", "model_sequences": {"sequence": {"3566": {"dna_sequence": {"fmax": "2874451", "fmin": "2873299", "accession": "CP001182.1", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGTCTACTTTTATCCCCGCTTTTTATTTTTAGTACCTCAATTTATGCGGGCAATACACCAAAAGACCAAGAAATTAAAAAACTGGTAGATCAAAACTTTAAACCGTTATTAGAAAAATATGATGTGCCAGGTATGGCTGTGGGTGTTATTCAAAATAATAAAAAGTATGAAATGTATTATGGTCTTCAATCTGTTCAAGATAAAAAAGCCGTAAATCGCAGTACCATTTTTGAGCTAGGTTCTGTCAGTAAATTATTTACCGCGACAGCAGGTGGATATGCAAAAAATAAAGGAAAAATCTCTTTTGACGATACGCCTGGTAAATATTGGAAAGAACTAAAAAACACACCGATTGACCAAGTTAACTTACTTCAACTCGCGACGTATACAAGTGGTAACCTTGCCTTGCAGTTTCCAGATGAAGTACAAACAGACCAACAAGTTTTAACTTTTTTCAAAGACTGGCAACCTAAAAACCCAATCGGTGAATACAGACAATATTCAAATCCAAGTATTGGCCTATTTGGAAAGGTTGTGGCTTTGTCTATGAATAAACCTTTCGACCAAGTCTTAGAAAAAACAATTTTTCCGGCCCTTGGCTTAAAACATAGCTATGTAAATGTACCTAAGACCCAGATGCAAAACTATGCATTTGGTTATAACCAAGAAAATCAGCCGATTCGAGTTAACCCCGGCCCACTCGATGCCCCTGCATATGGCGTCAAATCGACACTACCCGACATGTTGAGTTTTATTCATGCCAACCTTAACCCACAGAAATATCCGGCTGATATTCAACGGGCAATTAATGAAACACATCAAGGGTTCTATCAAGTAAATACCATGTATCAGGCACTCGGTTGGGAAGAGTTTTCTTATCCGGCAACGTTACAAACTTTATTAGACAGTAATTCAGAACAGATTGTGATGAAACCTAATAAAGTGACTGCTATTTCAAAGGAACCTTCAGTTAAGATGTACCATAAAACTGGCTCAACTAACGGTTTCGGAACATATGTAGTGTTTATTCCTAAAGAAAATATTGGTTTAGTCATGTTAACCAATAAACGTATTCCAAATGAAGAGCGCATTAAGGCAGCTTATGCTGTGCTGAATGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter baumannii AB0057", "NCBI_taxonomy_id": "480119", "NCBI_taxonomy_cvterm_id": "35531"}, "protein_sequence": {"accession": "ACJ42146.1", "sequence": "MRFKKISCLLLSPLFIFSTSIYAGNTPKDQEIKKLVDQNFKPLLEKYDVPGMAVGVIQNNKKYEMYYGLQSVQDKKAVNRSTIFELGSVSKLFTATAGGYAKNKGKISFDDTPGKYWKELKNTPIDQVNLLQLATYTSGNLALQFPDEVQTDQQVLTFFKDWQPKNPIGEYRQYSNPSIGLFGKVVALSMNKPFDQVLEKTIFPALGLKHSYVNVPKTQMQNYAFGYNQENQPIRVNPGPLDAPAYGVKSTLPDMLSFIHANLNPQKYPADIQRAINETHQGFYQVNTMYQALGWEEFSYPATLQTLLDSNSEQIVMKPNKVTAISKEPSVKMYHKTGSTNGFGTYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLNAIKK"}}}}, "ARO_category": {"36017": {"category_aro_name": "penam", "category_aro_cvterm_id": "36017", "category_aro_accession": "3000008", "category_aro_class_name": "Drug Class", "category_aro_description": "Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35976": {"category_aro_name": "cefepime", "category_aro_cvterm_id": "35976", "category_aro_accession": "0000059", "category_aro_class_name": "Antibiotic", "category_aro_description": "Cefepime (INN) is a fourth-generation cephalosporin antibiotic developed in 1994. It contains an aminothiazolyl group that decreases its affinity with beta-lactamases. Cefepime shows high binding affinity with penicillin-binding proteins and has an extended spectrum of activity against Gram-positive and Gram-negative bacteria, with greater activity against both Gram-negative and Gram-positive organisms than third-generation agents."}, "35995": {"category_aro_name": "piperacillin", "category_aro_cvterm_id": "35995", "category_aro_accession": "0000078", "category_aro_class_name": "Antibiotic", "category_aro_description": "Piperacillin is an acetylureidopenicillin and has an extended spectrum of targets relative to other beta-lactam antibiotics. It inhibits cell wall synthesis in bacteria, and is usually taken with the beta-lactamase inhibitor tazobactam to overcome penicillin-resistant bacteria."}, "41396": {"category_aro_name": "ampC-type beta-lactamase", "category_aro_cvterm_id": "41396", "category_aro_accession": "3004232", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "AmpC beta-lactamases are clinically important class C beta-lactamase enzymes which confer resistance to cephalosporins and penicillin-like antibiotics. AmpC beta-lactamases are typically found in Enterobacteriaceae, and were described in Escherichia coli in 1940 as the first reported enzymatic deactivation of penicillin. The name AmpC connects these enzymes functionally across many species, however these enzymes are generally unnamed and not phylogenetically related."}}, "ARO_name": "Acinetobacter baumannii ampC beta-lactamase", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40481", "model_name": "Acinetobacter baumannii AmpC beta-lactamase", "model_type_id": "40292"}, "2305": {"model_id": "2305", "ARO_accession": "3003805", "model_param": {"blastp_bit_score": {"param_value": "1500", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}, "snp": {"param_value": {"3891": "E554K"}, "param_type_id": "36301", "param_type": "single resistance variant", "param_description": "A nucleotide or amino acid substitution that confers elevated resistance to antibiotic(s) relative to wild type. The most common type encoded in the CARD is an amino acid substitution gleaned from the literature with format [wild-type][position][mutation], e.g. R184Q. When present in the associated gene or protein, a single resistance variant confers resistance to an antibiotic drug or drug class. Single resistance variants are used by the protein variant and rRNA mutation models to detect antibiotic resistance from submitted sequences.", "experimental": {"3891": "E554K"}}}, "ARO_description": "gshF is a bifunctional glutamate-cysteine ligase/ glutathione synthetase that when mutated, confers daptomycin resistance.", "model_sequences": {"sequence": {"3572": {"dna_sequence": {"fmax": "1663635", "fmin": "1661364", "accession": "NZ_CP014949", "strand": "-", "sequence": "TTATTGAACCACTTCTGGGTATAAAAGTTTTAAAACGTCCATTGTCAAGCGTCTACCCTGTCCAGCGTATGGATACACATGCATGTGCATGGCTGGATTAAAGTTTGCTTCGATAATCCCGTACGTTAAGCTATCACGTGTGCCTTTTACGTCTTTGTCAGGAATGATTAAATCAATGCCACAAATTTTGGCTCCTAAAGCAGCTACGGCCTCAATGGCGATTTGTTTATAACTATCATCAATGACATCGGTCATATCAATCGAATCCCCGCCCGTGCTAACATTAGAATTTTCTCGCAAGTACACGATTTGCTCTTTTTCTGGCACAGAATAGATAGTTAAACCTTGTTCTTTCAACATTAGTTTTTCTAAATCATTTAACTGGATTAATTCTAGTGGTGCACGGTGATTGGTCCCCCGCAATGGATCACTATTTTTAGCGGCCACCAATTCTTCTACAGTGTGTTTGCCATCTCCGGTAACATTGGCTGGCACGCGCAACATGATGGCTTTTACATCATTATCTAACACAAAGAACCGATATTCTGTTCCAGGTAAAAACTCTTCAATTAAAACCGCTGTGTCCTCTTTAAAAGCAATCCGTAACGCTTCCGTAAAGTCTTCCAACGAAGCGCCTTCTTTAAAAATGGTAATTCCTAAACCGTAATTCGTTGATTTTGGTTTCACGACAAACGCTTTATTGGCGTAGCGTAAATGTGCTTCTTGTGCCTCAATAAAAGATGAAAATTCTTCACCGCCAGGCACATGGAACCCTGCTGCAGACAAAATTTTCTTTGTCACGGTTTTGTTTTCCATAATCAATGGTACCACGTAGTTATCTTTGCTAGTCATGTTGGCATTTTTGACGTATTCAATGTGCTCGCCATGTTGCAGTTTCAAAAATTGCTCTTGTTCATCTAAAATTTCGATTTCCAAACCTTTTTGAATCGCATCAAACAAGAAAATTTGTGTGGATAATTCCATCTCACGGAAACCAGCTAATTGATAAGGGCGTTCAAAGGCCATACTTTGATATTGGTTTCCAAAAATATTTCCCAGTTCACTGTTGGAGTTTTCTTGAATAATCGTCCACATTTTGCCAGAAACGGTGTCTTGTGGATTCCGCAGTTGTTGATAATACTTACCGACAACTTCTTTGCCTTTACGAATGCCTAGAGCATCTAACATATCAATCATTTCTGAAAAAATCCGATCGCCTTCTGCAATTAACTTAATCGTTTCATGAGGATGACCAAGAGCCACTTGTTCATTTAAAATATCGCCAGTTTTTACCCATTCATCCGCTTCTTCTTTTTCATCTGTCCACAATAAATACAACATGAAATAATGTAAGAAATCCACAGTATCTTCCACAATGCCTAAACGTGAAAAAGGATTTAAGTCTAAATTACGCAACTCGATATAGCGAATACCTGTTTTAGGCAGATCAGACATTTGTTTCCCACCACGTAAGCGCACAGGCGCATAAAATTCTTTTTCTTCAGAAAGTAAACCATTTTCCACCATGCGATGAATATCTTCTAAATAGCGTTCCAATGAGGCATACGATACTTTCACATTGTCATGATTTCTGTAGCCATACGTACTATTCCGAATACTGCGAATGGGTTCTTGCGGTTGGTCGTCATAGACTCTAAAGTAGCCGTCTTCACTAACTGGCGAAGCCCCAAAAAGATACGTAATTAACCAACGATAACGTAAAAAGTTACGGGCAACTTTCATGTACACTTTCGTTTTAAATTGTTTGCAATCTGTCACTTCGGATTGTTCATCATATAATTGCTGAATCAGGGCTTGGTCATATTCAAAATTAAAATGAATTCCGCTGACCATTTGTTTTCGTTTGCCATACTCTTTTGCCAAATAACGACGATATAACACTGCATCATATTGATCTAATTTAGCAATTTTAATCTCTTCATCTTTTGTTGGTAATTGTGGCGGCATACTTAATGGCCACAGCATTTCATCTTCTGGAATCGAACGACGAGCCACATCGTGAATGGCATCTAAAAAACGAAGCATTTCTGTGCCGCTATTTGCTACAGGCGTGATTAGTTCTAATTGTGTTTCACTAAAATCTGTTTGAATATATGGATGATAAGAACGGTTACCAAAAACCGTGGGATGATCAGTTGTCGCTAAAAGCCCTTCTCGTGTACTACGTTGGTTTTCTTTTTCTAAACCAAAACGAGCCATCAATACGTAAGGACGAACATTTTTCTTTTGCATTAATTCTCTATAATTCAT"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Enterococcus faecalis", "NCBI_taxonomy_id": "1351", "NCBI_taxonomy_cvterm_id": "35918"}, "protein_sequence": {"accession": "WP_002389492", "sequence": "MNYRELMQKKNVRPYVLMARFGLEKENQRSTREGLLATTDHPTVFGNRSYHPYIQTDFSETQLELITPVANSGTEMLRFLDAIHDVARRSIPEDEMLWPLSMPPQLPTKDEEIKIAKLDQYDAVLYRRYLAKEYGKRKQMVSGIHFNFEYDQALIQQLYDEQSEVTDCKQFKTKVYMKVARNFLRYRWLITYLFGASPVSEDGYFRVYDDQPQEPIRSIRNSTYGYRNHDNVKVSYASLERYLEDIHRMVENGLLSEEKEFYAPVRLRGGKQMSDLPKTGIRYIELRNLDLNPFSRLGIVEDTVDFLHYFMLYLLWTDEKEEADEWVKTGDILNEQVALGHPHETIKLIAEGDRIFSEMIDMLDALGIRKGKEVVGKYYQQLRNPQDTVSGKMWTIIQENSNSELGNIFGNQYQSMAFERPYQLAGFREMELSTQIFLFDAIQKGLEIEILDEQEQFLKLQHGEHIEYVKNANMTSKDNYVVPLIMENKTVTKKILSAAGFHVPGGEEFSSFIEAQEAHLRYANKAFVVKPKSTNYGLGITIFKEGASLEDFTEALRIAFKEDTAVLIEEFLPGTEYRFFVLDNDVKAIMLRVPANVTGDGKHTVEELVAAKNSDPLRGTNHRAPLELIQLNDLEKLMLKEQGLTIYSVPEKEQIVYLRENSNVSTGGDSIDMTDVIDDSYKQIAIEAVAALGAKICGIDLIIPDKDVKGTRDSLTYGIIEANFNPAMHMHVYPYAGQGRRLTMDVLKLLYPEVVQ"}}}}, "ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "35985": {"category_aro_name": "daptomycin", "category_aro_cvterm_id": "35985", "category_aro_accession": "0000068", "category_aro_class_name": "Antibiotic", "category_aro_description": "Daptomycin is a novel lipopeptide antibiotic used in the treatment of certain infections caused by Gram-positive organisms. Daptomycin interferes with the bacterial cell membrane, reducing membrane potential and inhibiting cell wall synthesis."}, "40491": {"category_aro_name": "daptomycin resistant gshF", "category_aro_cvterm_id": "40491", "category_aro_accession": "3003806", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Mutations to the glutathione synthetase gshF confers daptomycin resistance."}}, "ARO_name": "Enterococcus faecalis gshF with mutation conferring daptomycin resistance", "model_type": "protein variant model", "model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: \"strict\" and \"loose\". A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "ARO_id": "40490", "model_name": "Enterococcus faecalis gshF with mutation conferring daptomycin resistance", "model_type_id": "40293"}, "2307": {"model_id": "2307", "ARO_accession": "3003808", "model_param": {"blastp_bit_score": {"param_value": "425", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "carO is a transmembrane beta-barrel involved in the influx of carbapenem antibiotics in Acinetobacter baumannii. Disruption of the carO gene by distinct insertion elements results in a loss of carO expression causing resistance to carbapenem antibiotics. Homologs of carO have been identified in genera Acinetobacter, Moraxella and Psychrobacter.", "model_sequences": {"sequence": {"3576": {"dna_sequence": {"fmax": "729", "fmin": "0", "accession": "KP658477.1", "strand": "+", "sequence": "ATGAAAGTATTACGTGTTTTAGTGACAACTACAGCTTTACTTGCTGCTGGTGCTGCAATGGCGGATGAAGCTGTTGTTCATGACAGCTATGCATTCGATAAAAACCAATTAATTCCAGTAGGCGCTCGTGCTGAAGTAGGTACTACAGGTTACGGTGGTGCTTTGTTATGGCAAGCAAACCCATATGTAGGTTTAGCATTGGGTTATAACGGCGGTGACATTTCTTGGCGAGATGACTTATCAATTAATGGTACTAAATATGACGTTGATATGGATAATAACAACGTATATTTAAATGCCGAAATTCGCCCATGGGGTGCAAGTACTAACCGTTGGGCTCAAGGCTTATATGTAGCTGCAGGTGCGGCGTATTTAGATAACGATTATGACCTAACTAAACGTTCACAAGATGGGACTATTAAAGTAAATGGTAATAATTATAACTTTAATGGGTCAGTGGATGGTAAATTAAGTTATAAAAATGATATCGCTCCTTATTTAGGTTTTGGTTTTGCACCTAAAATCAATAAAAACTGGGGCGTATTCGGTGAAGTAGGTGCTTACTATACTGGTAACCCAACAGTAAATCTTAAATCAAATGGTACTTTTGTTAATGTTAACGGTGCTGACTTTGATAAAGATTTACGTGCTGAAGAAAATAAAATCCGTAACGACGATAAATATCAATGGTTGCCAGTTGGTAAAGTTGGTGTGAACTTCTTCTGGTAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter baumannii", "NCBI_taxonomy_id": "470", "NCBI_taxonomy_cvterm_id": "35507"}, "protein_sequence": {"accession": "AKL79742.1", "sequence": "MKVLRVLVTTTALLAAGAAMADEAVVHDSYAFDKNQLIPVGARAEVGTTGYGGALLWQANPYVGLALGYNGGDISWRDDLSINGTKYDVDMDNNNVYLNAEIRPWGASTNRWAQGLYVAAGAAYLDNDYDLTKRSQDGTIKVNGNNYNFNGSVDGKLSYKNDIAPYLGFGFAPKINKNWGVFGEVGAYYTGNPTVNLKSNGTFVNVNGADFDKDLRAEENKIRNDDKYQWLPVGKVGVNFFW"}}}}, "ARO_category": {"35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36383": {"category_aro_name": "reduced permeability to antibiotic", "category_aro_cvterm_id": "36383", "category_aro_accession": "3000244", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Reduction in permeability to antibiotic, generally through reduced production of porins, can provide resistance."}, "40429": {"category_aro_name": "resistance by absence", "category_aro_cvterm_id": "40429", "category_aro_accession": "3003764", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mechanism of antibiotic resistance conferred by deletion of gene (usually a porin)"}, "41447": {"category_aro_name": "CarO porin", "category_aro_cvterm_id": "41447", "category_aro_accession": "3004283", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "The imipenum resistance-associated CarO porin family is composed of the CarO porin originally identified in Acinetobacter baumannii. The loss of these porins is associated with imipenem and meropenem multi-drug resistance. The channels formed by CarO porins show slight cation selectivity."}}, "ARO_name": "carO", "model_type": "protein knockout model", "model_description": "An AMR detection model for instances where the absence of a protein - due to large-scale insertion elements, large deletions, or other methods of protein knockout - confers clinical resistance to a known antibiotic. These models include reference sequences. Protein knockout models are currently in development.", "ARO_id": "40493", "model_name": "CarO", "model_type_id": "40354"}, "2381": {"model_id": "2381", "ARO_accession": "3003902", "model_param": {"41345": {"param_value": {"8150": "+nt904:T"}, "param_type_id": "41345", "param_type": "insertion mutation from nucleotide sequence", "param_description": "A subtype of the insertion mutation detection model parameter. This parameter is used when a set of insertion mutations is reported in a nucleotide sequence format. Such mutations may be of variable length - possibly causing a frameshift, but not causing premature termination or a functional knockout. Mutation parameters of this type are reported in CARD with the notation: [+]nt[position]:[nucleotides]."}, "snp": {"param_type": "single resistance variant", "param_value": {"4398": "W425R", "4396": "G358V", "4397": "G112E"}, "clinical": {"4398": "W425R", "4396": "G358V", "4397": "G112E"}, "param_type_id": "36301", "param_description": "A nucleotide or amino acid substitution that confers elevated resistance to antibiotic(s) relative to wild type. The most common type encoded in the CARD is an amino acid substitution gleaned from the literature with format [wild-type][position][mutation], e.g. R184Q. When present in the associated gene or protein, a single resistance variant confers resistance to an antibiotic drug or drug class. Single resistance variants are used by the protein variant and rRNA mutation models to detect antibiotic resistance from submitted sequences."}, "40394": {"param_value": {"4399": "Y314STOP", "4400": "W228STOP"}, "param_type_id": "40394", "param_type": "nonsense mutation", "param_description": "A nucleotide substitution resulting in a change from an amino acid codon to a STOP codon. Nonsense mutations truncate protein translation prematurely, resulting in a defective or completely inactive protein. In CARD, nonsense mutations may be attached to models using the notation: [wild type amino acid][position][STOP] (e.g. Q42STOP). This parameter is not currently used in detection algorithms."}, "41343": {"param_value": {"8149": "-nt27:T", "8148": "-nt431:ATTCAACGATTT"}, "param_type_id": "41343", "param_type": "deletion mutation from nucleotide sequence", "param_description": "A subtype of the deletion mutation detection model parameter. This parameter is used when a set of deletion mutations is reported in a nucleotide sequence format. Such mutations may be of variable length - possibly causing a frameshift, but not premature termination of functional knockout. Mutation parameters of this type are reported in the CARD with the notation: [-]nt[position]:[nucleotides]."}, "blastp_bit_score": {"param_value": "850", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "Mutations to the active importer UhpT, which is involved with the uptake of many phosphorylated sugars, confer resistance to fosfomycin by reducing import of the drug into the bacteria.", "model_sequences": {"sequence": {"3679": {"dna_sequence": {"fmax": "1380", "fmin": "0", "accession": "KT372207", "strand": "+", "sequence": "ATGAACTTTTTTGATATCCATAAGATTCCGAACAAAGGCATTCCATTATCGGTACAACGTAAATTATGGCTTAGAAACTTCATGCAAGCTTTCTTTGTAGTGTTCTTTGTTTATATGGCTATGTATTTAATTCGAAACAACTTTAAGGCGGCCCAACCGTTTTTAAAAGAGGAAATTGGATTATCTACATTAGAACTTGGTTATATCGGATTAGCATTTAGTATCACGTACGGTTTAGGGAAAACATTACTTGGATATTTTGTCGATGGACGTAACACAAAACGTATTATCTCGTTCTTACTTATCTTATCTGCGATTACAGTTTTAATTATGGGATTTGTTTTAAGTTACTTTGGTTCTGTAATGGGATTATTAATTGTACTTTGGGGACTTAACGGGGTGTTCCAATCAGTTGGTGGACCTGCAAGTTATTCAACGATTTCAAGATGGGCGCCAAGAACGAAACGTGGCCGATACTTAGGATTTTGGAATACATCACATAATATCGGTGGTGCCATTGCAGGTGGTGTTGCACTTTGGGGTGCTAATGTATTCTTCCATGGAAATGTTATAGGGATGTTCATTTTCCCATCGGTGATTGCATTACTTATTGGTATCGCAACATTATTTATCGGAAAAGATGATCCAGAAGAATTAGGATGGAATCGTGCTGAAGAAATTTAGGAAGAGCCGGTCGATAAAGAAAATATTGATTCTCAAGGTATGACGAAATGGGAGATCTTTAAAAAATATATCCTGGGAAATCCTGTTATATGGATTCTATGTGTTTCAAACGTCTTTGTATACATTGTACGAATCGGTATTGATAACTGGGCACCGTTATATGTGTCAGAGCATTTACACTTTAGTAAAGGCGATGCAGTTAATACGATATTCTACTTTGAAATTGGTGCATTAGTTGCAAGTTTATTATGGGGCTACGTATCAGACTTATTAAAAGGTCGTCGTGCAATTGTAGCTATTGGCTGTATGTTTATGATTACATTTGTTGTCTTATTCTACACAAATGCTACAAGTGTCATGATGGTTAACATTTCATTGTTTGCATTAGGTGCGTTAATCTTTGGTCCGCAATTATTAATTGGTGTATCATTAACTGGTTTTGTTCCTAAAAATGCCATCAGTGTAGCAAACGGAATGACAGGTTCATTCGCGTATCTATTCGGTGACTCAATGGCGAAAGTTGGTTTGGCGGCTATTGCTGATCCAACACGTAACGGTTTAAACATCTTTGGATATACATTAAGTGGATGGACAGATGTTTTCATCGTCTTCTATGTTGCATTATTCCTAGGCATGATTCTATTAGGAATCGTTGCTTTCTATGAAGAAAAGAAAATTAGAAGTTTAAAAATTTAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Staphylococcus aureus subsp. aureus MRSA252", "NCBI_taxonomy_id": "282458", "NCBI_taxonomy_cvterm_id": "35517"}, "protein_sequence": {"accession": "CAG39240", "sequence": "MNFFDIHKIPNKGIPLSVQRKLWLRNFMQAFFVVFFVYMAMYLIRNNFKAAQPFLKEEIGLSTLELGYIGLAFSITYGLGKTLLGYFVDGRNTKRIISFLLILSAITVLIMGFVLSYFGSVMGLLIVLWGLNGVFQSVGGPASYSTISRWAPRTKRGRYLGFWNTSHNIGGAIAGGVALWGANVFFHGNVIGMFIFPSVIALLIGIATLFIGKDDPEELGWNRAEEIWEEPVDKENIDSQGMTKWEIFKKYILGNPVIWILCVSNVFVYIVRIGIDNWAPLYVSEHLHFSKGDAVNTIFYFEIGALVASLLWGYVSDLLKGRRAIVAIGCMFMITFVVLFYTNATSVMMVNISLFALGALIFGPQLLIGVSLTGFVPKNAISVANGMTGSFAYLFGDSMAKVGLAAIADPTRNGLNIFGYTLSGWTDVFIVFYVALFLGMILLGIVAFYEEKKIRSLKI"}}}}, "ARO_category": {"35944": {"category_aro_name": "fosfomycin", "category_aro_cvterm_id": "35944", "category_aro_accession": "0000025", "category_aro_class_name": "Drug Class", "category_aro_description": "Fosfomycin (also known as phosphomycin and phosphonomycin) is a broad-spectrum antibiotic produced by certain Streptomyces species. It is effective on gram positive and negative bacteria as it targets the cell wall, an essential feature shared by both bacteria. Its specific target is MurA (MurZ in E.coli), which attaches phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine, a step of commitment to cell wall synthesis. In the active site of MurA, the active cysteine molecule is alkylated which stops the catalytic reaction."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "41412": {"category_aro_name": "UhpT", "category_aro_cvterm_id": "41412", "category_aro_accession": "3004248", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "UhpT encodes a transporter that can import fosfomycin-type drugs into bacterial cells. Mutations to UhpT confer resistance."}}, "ARO_name": "Staphylococcus aureus UhpT with mutation conferring resistance to fosfomycin", "model_type": "protein variant model", "model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: \"strict\" and \"loose\". A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "ARO_id": "40604", "model_name": "Staphylococcus aureus UhpT with mutation conferring resistance to fosfomycin", "model_type_id": "40293"}, "2380": {"model_id": "2380", "ARO_accession": "3003901", "model_param": {"41345": {"param_value": {"8147": "+nt392:T"}, "param_type_id": "41345", "param_type": "insertion mutation from nucleotide sequence", "param_description": "A subtype of the insertion mutation detection model parameter. This parameter is used when a set of insertion mutations is reported in a nucleotide sequence format. Such mutations may be of variable length - possibly causing a frameshift, but not causing premature termination or a functional knockout. Mutation parameters of this type are reported in CARD with the notation: [+]nt[position]:[nucleotides]."}, "snp": {"param_type": "single resistance variant", "param_value": {"4389": "V213I", "4388": "A100V", "4390": "G352D", "4387": "L27F", "4386": "F3I", "4385": "W137R"}, "clinical": {"4389": "V213I", "4388": "A100V", "4390": "G352D", "4387": "L27F", "4386": "F3I", "4385": "W137R"}, "param_type_id": "36301", "param_description": "A nucleotide or amino acid substitution that confers elevated resistance to antibiotic(s) relative to wild type. The most common type encoded in the CARD is an amino acid substitution gleaned from the literature with format [wild-type][position][mutation], e.g. R184Q. When present in the associated gene or protein, a single resistance variant confers resistance to an antibiotic drug or drug class. Single resistance variants are used by the protein variant and rRNA mutation models to detect antibiotic resistance from submitted sequences."}, "40394": {"param_value": {"4391": "W355STOP"}, "param_type_id": "40394", "param_type": "nonsense mutation", "param_description": "A nucleotide substitution resulting in a change from an amino acid codon to a STOP codon. Nonsense mutations truncate protein translation prematurely, resulting in a defective or completely inactive protein. In CARD, nonsense mutations may be attached to models using the notation: [wild type amino acid][position][STOP] (e.g. Q42STOP). This parameter is not currently used in detection algorithms."}, "41343": {"param_value": {"8145": "-nt248:G", "8146": "-nt225:TGGATTTA"}, "param_type_id": "41343", "param_type": "deletion mutation from nucleotide sequence", "param_description": "A subtype of the deletion mutation detection model parameter. This parameter is used when a set of deletion mutations is reported in a nucleotide sequence format. Such mutations may be of variable length - possibly causing a frameshift, but not premature termination of functional knockout. Mutation parameters of this type are reported in the CARD with the notation: [-]nt[position]:[nucleotides]."}, "blastp_bit_score": {"param_value": "800", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "Mutations to the active importer GlpT, which is involved with the uptake of many phosphorylated sugars, confer resistance to fosfomycin by reducing import of the drug into the bacteria.", "model_sequences": {"sequence": {"3678": {"dna_sequence": {"fmax": "1359", "fmin": "0", "accession": "KT372193", "strand": "+", "sequence": "ATGAATTTTCTTAAACCTGCAAAGCATATTAAGCCTTTGCCAGAAAATCAGATAGATGATACCTATAAACGATTACGTCTCCAAGTATTTCTTGGTATTTTCATCGGTTACGCTGGGTACTATTTATTACGTAAAAACTTTTCATTAGCGATGCCAGCATTGCAAGAGCAAGGTTTTACAAAAGCGGAACTAGGTTTTGCACTTTCTGCTGTTTCCATCGCATATGGATTTAGTAAGTTCTTTATGGGTACTGTAAGTGATCGGAGCAATGCTCGGATATTCTTAGTTCTTGGATTAGCACTCACTGCTATCGTCAATTTGTTAATGGGATTTGTACCGTTCTTTACATCAGGTATCGGTATTATGTTTGTCCTATTATTCTTAAATGGATGGTTTCAAGGTATGGGCTGGCCACCTTCAGGCCGTGTTCTCGTTCACTGGTTTAGTGTAAGTGAACGCGGAAGTAAGACTGCCCTTTGGAACGTTGCGCATAATGTTGGTGGAGGTATTATGGCACCTATTGCTGCTTGGGGTATTACAACAACAGCATTTATCAACTTTGGTTATTTAAAAGGTTTCGAAGGTGTATTCATTTACCCTGCACTCTTAGCACTTATCATTGCCGCAATTTCATACGTATTGATTAGAGACACACCTCAATCTCAAGGTTTACCTCCAATCGAAATTTATAAAAACGACTTTGCTACAAGCGATAAGAAAACATTAGAAACAGAATTAACTACAAAAGAAATTTTATTTAAATATGTACTGAACAATAAATGGGTATGGGCAATTGCCTTTGCAAATATATTTGTTTATTTCGTGCGTTATGGTGTACTTGATTGGGCGCCAGTCTACTTAAGTGAAGAAAAACATTTCGACTTAAAAGCATCAGGTTGGGCATACTTCTTATACGAATGGGCTGGAATTCCTGGTACATTATTATGTGGTTACATTTCTGATAAATTATTCAAAGGTCGTCGTGGACCTGCAGGTTTCTTCTTTATGTTAGGTGTCACAGTATTTGTATTAATTTATTGGTTAAATCCTCCAGGCAATGCTTAGTTAGACAATGTCTCATTAATTGCCATTGGTTTCTTAATATATGGACCAGTTATGTTAATTGGTTTACAAGCATTAGATTATGTACCTAAAAAAGCAGCTGGCACAGCAGCTGGATTAACAGGATTATTTGGTTATCTGTTTGGTGCTGTAATGGCCAACATCGTCTTAGGTGCTGTAGTTGATAAATTCGGATGGGATGTCGGTTTTATTTTATTAACAGCAATCAGTGTGTTTGCAATGTTGAGCTTTATCCTCACTTGGAATAAAGTAGGACAAGAAACCGTTCATCATTAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Staphylococcus aureus subsp. aureus MRSA252", "NCBI_taxonomy_id": "282458", "NCBI_taxonomy_cvterm_id": "35517"}, "protein_sequence": {"accession": "CAG39357", "sequence": "MNFLKPAKHIKPLPENQIDDTYKRLRLQVFLGIFIGYAGYYLLRKNFSLAMPALQEQGFTKAELGFALSAVSIAYGFSKFFMGTVSDRSNARIFLVLGLVLTAIVNLLMGFVPFFTSGIGIMFVLLFLNGWFQGMGWPPSGRVLVHWFSVSERGSKTALWNVAHNVGGGIMAPIAAWGITTTAFINFGYLKGFEGVFIYPALLALIIAAISYILIRDTPQSQGLPPIEIYKNDFATSDKKTLETELTTKEILFKYVLNNKWVWAIAFANIFVYFVRYGVLDWAPVYLSEEKHFDLKASGWAYFLYEWAGIPGTLLCGYISDKLFKGRRGPAGFFFMLGVTVFVLIYWLNPPGNAWLDNVSLIAIGFLIYGPVMLIGLQALDYVPKKAAGTAAGLTGLFGYLFGAVMANIVLGAVVDKFGWDVGFILLTAISVFAMLSFILTWNKVGQETVHH"}}}}, "ARO_category": {"35944": {"category_aro_name": "fosfomycin", "category_aro_cvterm_id": "35944", "category_aro_accession": "0000025", "category_aro_class_name": "Drug Class", "category_aro_description": "Fosfomycin (also known as phosphomycin and phosphonomycin) is a broad-spectrum antibiotic produced by certain Streptomyces species. It is effective on gram positive and negative bacteria as it targets the cell wall, an essential feature shared by both bacteria. Its specific target is MurA (MurZ in E.coli), which attaches phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine, a step of commitment to cell wall synthesis. In the active site of MurA, the active cysteine molecule is alkylated which stops the catalytic reaction."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "41411": {"category_aro_name": "GlpT", "category_aro_cvterm_id": "41411", "category_aro_accession": "3004247", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Fosfomycin is transported bacterial cells through transporters, one of them being glycerol-3-phosphate, which is encoded by the GlpT gene. Mutations in the GlpT gene can confer resistance to fosfomycin."}}, "ARO_name": "Staphylococcus aureus GlpT with mutation conferring resistance to fosfomycin", "model_type": "protein variant model", "model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: \"strict\" and \"loose\". A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "ARO_id": "40603", "model_name": "Staphylococcus aureus GlpT with mutation conferring resistance to fosfomycin", "model_type_id": "40293"}, "2268": {"model_id": "2268", "ARO_accession": "3003761", "model_param": {"blastp_bit_score": {"param_value": "1000", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}, "snp": {"param_type": "single resistance variant", "param_value": {"3466": "T450I"}, "clinical": {"3466": "T450I"}, "param_type_id": "36301", "param_description": "A nucleotide or amino acid substitution that confers elevated resistance to antibiotic(s) relative to wild type. The most common type encoded in the CARD is an amino acid substitution gleaned from the literature with format [wild-type][position][mutation], e.g. R184Q. When present in the associated gene or protein, a single resistance variant confers resistance to an antibiotic drug or drug class. Single resistance variants are used by the protein variant and rRNA mutation models to detect antibiotic resistance from submitted sequences."}}, "ARO_description": "eatAv is a mutated form of the wildtype eatA ABC transporter gene isolated from Enterococcus faecium conferring resistance to lincosamides, streptogramin A's and pleuromutilins (LSaP phenotype).", "model_sequences": {"sequence": {"3626": {"dna_sequence": {"fmax": "1503", "fmin": "0", "accession": "KF010779.1", "strand": "+", "sequence": "ATGTCTAAAATCGAAATAAAAAATCTGACATTCGGCTACGACAGCCAAGGCACATTATTATTTGAACAAGCAAATCTAAATTTTGACACACAATGGAAACTAGGACTTATCGGACGAAACGGTCGAGGAAAGACAACTTTACTGAATATTCTACAAAACAAACTACCTTATCAAGGGCAAGTAATCCATCAGCAAGAATTTGCCTATTTCCCGCAACAGACAAAAGATAAAGAACGTTTAACCTATTACGTGTTAAATGATATTACGGATTTTGAGATATGGGAAATCGAAAGAGAGCTCCAATTGATGCAAACAGATCCTGAAATCTTATGGAGAGAATTCAGCACACTATCGGGGGGAGAGAAGACAAAAGTCCTACTGGCACTTTTATTTGTGGATGACACTCATTTCCCGTTAATCGATGAACCAACGAATCATTTGGATATCTCTGGTAGAAAACAAGTAGCGGCTTATTTGAAAAAGAAAAAACAAGGCTTCATCGTGGTCAGCCATGACCGGGGATTTATCGATGAAGTAGTGGACCATGTTTTAGCAATCGAAAAAAGTCAACTGGAACTTTATCAAGGGAATTTCTCTATCTATGAAGAACAGAAAAAACTTCGTGATGAATTTGAAATGGCTCAAAATGAAAAATTGAAAAAAGAAGTCAGTAGGCTAAAGAAAACAGCAGCTGAAAAAGCCGAATGGTCTCGTTCCCGAGAAGGAGATAAAACAAAGAAACAAGTCGGATTCATCGATACTGAATCTAGACGAGTGAATAAAGGAGCAGTGGGTGCTGATGCTGCACGGACGATGAAACGATCCAAAGCAATCGTGAATCGGATGGAGACCCAGATCAGCGAGAAAGAAAAACTATTAAAAGATATCGAATATATCGATTCTTTGACGATGAATAGCCAAGCGTCTCACCATAAGCGACTTTTAAGCGTAGAAGATCTTCAATTAGGGTATGAAAATCTGTTATTCGAGCCAATTCATTTTACAATCGAGCCTCATCAGCGGGTGGCGATTTCAGGTCCTAACGGTGCAGGAAAGTCATCCATTATCCATTATCTTCTGGGGGCATTCAACGGCAAGGTTATAGGAGAAAAATACCAGCCAAAACATCTGAGCATTAGTTATGCAAGCCAAAATTATGAAGACAATCGAGGAACGTTGGCGGAATTTGCAGAGAAAAACCAAGTAGACTACCAAGCATTTTTGAACAACCTCCGAAAGCTTGGGATGGAAAGAGATGTTTTTCATAACAAGATCGAGCAGATGAGTATGGGCCAACGGAAAAAAGTGGAATTGGCTAAATCTTTATCACAGCCAGCTGAACTATATATATGGGATGAACCATTGAATTATTTGGATGTCTTCAATCAAGAACAATTAGAACAACTGATCTTGAACGTGAAACCTGCCATGTTACTAGTGGAACATGATCAAACCTTCCTGGATAAAGTATCTACTGAGATTATTTCTCTTGAGAGAATCTAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Enterococcus faecium", "NCBI_taxonomy_id": "1352", "NCBI_taxonomy_cvterm_id": "36779"}, "protein_sequence": {"accession": "AGQ48857.1", "sequence": "MSKIEIKNLTFGYDSQGTLLFEQANLNFDTQWKLGLIGRNGRGKTTLLNILQNKLPYQGQVIHQQEFAYFPQQTKDKERLTYYVLNDITDFEIWEIERELQLMQTDPEILWREFSTLSGGEKTKVLLALLFVDDTHFPLIDEPTNHLDISGRKQVAAYLKKKKQGFIVVSHDRGFIDEVVDHVLAIEKSQLELYQGNFSIYEEQKKLRDEFEMAQNEKLKKEVSRLKKTAAEKAEWSRSREGDKTKKQVGFIDTESRRVNKGAVGADAARTMKRSKAIVNRMETQISEKEKLLKDIEYIDSLTMNSQASHHKRLLSVEDLQLGYENLLFEPIHFTIEPHQRVAISGPNGAGKSSIIHYLLGAFNGKVIGEKYQPKHLSISYASQNYEDNRGTLAEFAEKNQVDYQAFLNNLRKLGMERDVFHNKIEQMSMGQRKKVELAKSLSQPAELYIWDEPLNYLDVFNQEQLEQLILNVKPAMLLVEHDQTFLDKVSTEIISLERI"}}}}, "ARO_category": {"37716": {"category_aro_name": "pleuromutilin", "category_aro_cvterm_id": "37716", "category_aro_accession": "3001317", "category_aro_class_name": "Antibiotic", "category_aro_description": "Pleuromutilin is a natural product antibiotic produced by Clitopilus passeckerianus. Related antibiotics of clinical significance, such as tiamulin and retapamulin, are semi-synthetic derivatives of this compound."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}, "37014": {"category_aro_name": "pleuromutilin antibiotic", "category_aro_cvterm_id": "37014", "category_aro_accession": "3000670", "category_aro_class_name": "Drug Class", "category_aro_description": "Pleuromutilins are natural fungal products that target bacterial protein translation by binding the the 23S rRNA, blocking the ribosome P site at the 50S subunit. They are mostly used for agriculture and veterinary purposes."}, "36298": {"category_aro_name": "efflux pump complex or subunit conferring antibiotic resistance", "category_aro_cvterm_id": "36298", "category_aro_accession": "3000159", "category_aro_class_name": "Efflux Component", "category_aro_description": "Efflux proteins that pump antibiotic out of a cell to confer resistance."}, "35945": {"category_aro_name": "streptogramin antibiotic", "category_aro_cvterm_id": "35945", "category_aro_accession": "0000026", "category_aro_class_name": "Drug Class", "category_aro_description": "Streptogramin antibiotics are natural products produced by various members of the Streptomyces genus. These antibiotics bind to the P site of the 50S subunit of bacterial ribosomes to inhibit protein synthesis. The family consists of two subgroups, type A and type B, which are simultaneously produced by the same bacterial species in a ratio of roughly 70:30."}, "35936": {"category_aro_name": "lincosamide antibiotic", "category_aro_cvterm_id": "35936", "category_aro_accession": "0000017", "category_aro_class_name": "Drug Class", "category_aro_description": "Lincosamides (e.g. lincomycin, clindamycin) are a class of drugs which bind to the 23s portion of the 50S subunit of bacterial ribosomes. This interaction inhibits early elongation of peptide chains by inhibiting the transpeptidase reaction, acting similarly to macrolides."}}, "ARO_name": "eatAv", "model_type": "protein variant model", "model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: \"strict\" and \"loose\". A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "ARO_id": "40408", "model_name": "eatAv", "model_type_id": "40293"}, "2263": {"model_id": "2263", "ARO_accession": "3003746", "model_param": {"blastp_bit_score": {"param_value": "1300", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "optrA encodes an ABC-transporter gene conferring resistance to oxazolidinones that was isolated from a plasmid in Enterococcus faecalis and Enterococcus faecium.", "model_sequences": {"sequence": {"3517": {"dna_sequence": {"fmax": "33444", "fmin": "31476", "accession": "KP399637", "strand": "+", "sequence": "TTGTCCAAAGCCACCTTTGCAATTGCTAGTACTAACGCAAAGGAGGATATGAAAATGCAATACAAAATAATTAATGGTGCCGTTTACTATGATGGTAATATGGTGTTGGAAAACATCGGTATTGAAATCAATGATAATGAAAAGATTGCTATTGTTGGTAGAAATGGATGTGGAAAAACAACCTTGCTAAAAGCTATTATAGGCGAAATTGAATTAGAAGAAGGAACTGGTGAAAGTGAGTTTCAAGTAATAAAGACCGGTAACCCTTATATTAGCTATTTAAGACAGATGCCTTTTGAAGATGAAAGTATATCAATGGTGGATGAAGTCCGTACGGTATTTAAGACGCTTATTGATATGGAAAACAAGATGAAACAGCTGATAGATAAAATGGAGAATCAATATGATGATAAAATCATCAATGAATACTCTGATATCAGTGAAAGGTATATGGCTCTTGGAGGTCTAACCTACCAAAAAGAATATGAAACGATGATTCGTAGTATGGGTTTTACTGAAGCAGATTATAAAAAACCCATTTCTGAATTTTCAGGTGGTCAGCGAACTAAGATAGCTTTTATAAAAATACTTTTAACAAAGCCAGACATTCTATTACTTGATGAACCTACTAACCACCTTGATATAGAAACAATACAATGGTTGGAGAGTTATTTGAGAAGTTATAAATCTACATTGGTTATTATTTCCCATGATAGAATGTTTCTTAATCGAATTGTGGATAAGGTTTATGAAATCGAATGGGGAGAGACCAAATGTTATAAAGGTAATTATTCAGCCTTTGAGGAGCAAAAACGAGAAAATCATATCAAACAGCAAAAAGATTACGACTTGCAACAGATAGAAATTGAAAGGATTACACGCTTGATTGAACGTTTTCGTTATAAACCTACGAAAGCTAAAATGGTGCAATCTAAAATTAAATTATTACAGCGTATGCAAATATTAAATGCACCAGACCAATACGATACAAAAACTTATATGTCTAAATTTCAACCGAGAATCAGTAGTTCAAGGCAAGTATTAAGTGCTTCAGAACTTGTGATAGGCTATGATACTCCTCTTGCAAAGGTTAATTTCAACCTTGAAAGGGGACAGAAGCTTGGAATTGTTGGGAGTAATGGTATTGGTAAATCCACGTTGCTTAAAACACTTATGGGTGGTGTGGCAGCATTGTCTGGAGATTTTAAATTCGGATACAATGTTGAAATTAGCTATTTTGACCAACAGCTTGCTCAAATCAGTGGAGATGATACACTATTCGAAATTTTTCAAAGCGAATACCCTGAGCTAAATGACACAGAGGTCAGAACTGCTCTTGGCTCATTTCAGTTTAGTGGAGATGATGTTTTTAGACCGGTGTCCTCTTTGTCAGGTGGAGAAAAGGTTAGATTGACATTATGTAAATTATTATATAAACGTACTAATGTTTTAATCTTAGATGAACCGACAAACCACATGGATATTATTGGAAAAGAGAATTTAGAGAATATCTTATGCAGTTATCAAGGTACAATTATTTTTGTGTCACATGATAGATATTTTACTAATAAGATTGCTGACAGATTACTTGTTTTTGATAAGGATGGTGTAGAGTTTGTACAATCTACTTATGGTGAGTACGAGAAAAAAAGGATGAATTCTGAAAAGCCATTTAATAACATTAAAGTTGAGCAGAAAGTAGAGAAAAATAACACAGTAAAAGGCGATCGTAACTCCATTGAGAAGGAGAAGGTTAAGAAGGAGAAACGAATTGAAAAGCTTGAAGTGTTAATAAATCAATATGATGAAGAATTAGAAAGATTGAATAAAATCATTTCTGAACCAAACAATTCTTCTGATTATATAGTACTGACGGAAATACAAAAATCAATTGATGATGTTAAAAGGTGTCAGGGTAATTATTTTAATGAATGGGAACAGTTGATGAGAGAATTGGAAGTTATGTAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Enterococcus faecalis", "NCBI_taxonomy_id": "1351", "NCBI_taxonomy_cvterm_id": "35918"}, "protein_sequence": {"accession": "AKA86814", "sequence": "MSKATFAIASTNAKEDMKMQYKIINGAVYYDGNMVLENIGIEINDNEKIAIVGRNGCGKTTLLKAIIGEIELEEGTGESEFQVIKTGNPYISYLRQMPFEDESISMVDEVRTVFKTLIDMENKMKQLIDKMENQYDDKIINEYSDISERYMALGGLTYQKEYETMIRSMGFTEADYKKPISEFSGGQRTKIAFIKILLTKPDILLLDEPTNHLDIETIQWLESYLRSYKSTLVIISHDRMFLNRIVDKVYEIEWGETKCYKGNYSAFEEQKRENHIKQQKDYDLQQIEIERITRLIERFRYKPTKAKMVQSKIKLLQRMQILNAPDQYDTKTYMSKFQPRISSSRQVLSASELVIGYDTPLAKVNFNLERGQKLGIVGSNGIGKSTLLKTLMGGVAALSGDFKFGYNVEISYFDQQLAQISGDDTLFEIFQSEYPELNDTEVRTALGSFQFSGDDVFRPVSSLSGGEKVRLTLCKLLYKRTNVLILDEPTNHMDIIGKENLENILCSYQGTIIFVSHDRYFTNKIADRLLVFDKDGVEFVQSTYGEYEKKRMNSEKPFNNIKVEQKVEKNNTVKGDRNSIEKEKVKKEKRIEKLEVLINQYDEELERLNKIISEPNNSSDYIVLTEIQKSIDDVKRCQGNYFNEWEQLMRELEVM"}}}}, "ARO_category": {"36218": {"category_aro_name": "oxazolidinone antibiotic", "category_aro_cvterm_id": "36218", "category_aro_accession": "3000079", "category_aro_class_name": "Drug Class", "category_aro_description": "Oxazolidinones are a class of synthetic antibiotics discovered the the 1980's. They inhibit protein synthesis by binding to domain V of the 23S rRNA of the 50S subunit of bacterial ribosomes. Linezolid is the only member of this class currently in clinical use."}, "36002": {"category_aro_name": "ATP-binding cassette (ABC) antibiotic efflux pump", "category_aro_cvterm_id": "36002", "category_aro_accession": "0010001", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes."}, "36298": {"category_aro_name": "efflux pump complex or subunit conferring antibiotic resistance", "category_aro_cvterm_id": "36298", "category_aro_accession": "3000159", "category_aro_class_name": "Efflux Component", "category_aro_description": "Efflux proteins that pump antibiotic out of a cell to confer resistance."}, "36001": {"category_aro_name": "antibiotic efflux", "category_aro_cvterm_id": "36001", "category_aro_accession": "0010000", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Antibiotic resistance via the transport of antibiotics out of the cell."}}, "ARO_name": "optrA", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40402", "model_name": "optrA", "model_type_id": "40292"}, "2288": {"model_id": "2288", "ARO_accession": "3003779", "model_param": {"41345": {"param_value": {"8073": "+nt439:T", "8072": "+nt272:A"}, "param_type_id": "41345", "param_type": "insertion mutation from nucleotide sequence", "param_description": "A subtype of the insertion mutation detection model parameter. This parameter is used when a set of insertion mutations is reported in a nucleotide sequence format. Such mutations may be of variable length - possibly causing a frameshift, but not causing premature termination or a functional knockout. Mutation parameters of this type are reported in CARD with the notation: [+]nt[position]:[nucleotides]."}, "blastp_bit_score": {"param_value": "800", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}, "snp": {"param_value": {"3665": "L239P", "3664": "R202W", "3667": "D366G", "3666": "V329A"}, "param_type_id": "36301", "param_type": "single resistance variant", "param_description": "A nucleotide or amino acid substitution that confers elevated resistance to antibiotic(s) relative to wild type. The most common type encoded in the CARD is an amino acid substitution gleaned from the literature with format [wild-type][position][mutation], e.g. R184Q. When present in the associated gene or protein, a single resistance variant confers resistance to an antibiotic drug or drug class. Single resistance variants are used by the protein variant and rRNA mutation models to detect antibiotic resistance from submitted sequences.", "experimental": {"3665": "L239P", "3664": "R202W", "3667": "D366G", "3666": "V329A"}}}, "ARO_description": "Mutations in the Mycobacterium bovis ndh gene that results in increased resistance to isoniazid.", "model_sequences": {"sequence": {"3552": {"dna_sequence": {"fmax": "2104001", "fmin": "2102609", "accession": "AM408590", "strand": "-", "sequence": "CTAGCTGGCCACCTTAGCGCTTGCCGCTGAGCCCTGCGCCTCGGCGGCCAGCTCGGCCAGCTGTTCGAGCCGCGTTCGCGCAAATGCCTGCTGGTCGGTGATGGTCAGCTGGCCGCGGCGAGTACTGAGGAAAGTCACCGTCCACGACAGCAGAGTGGTGATCTTGGTCTTGAACCCGATCAGGTACGCCAGGTGCAGCACCAGCCAAATCAGCCAGGCGATAAAGCCGCTGAACTCAACGGGACCGATCTTGGCCACCGCCGAAAACCTCGAAACCGTGGCCATCGATCCCTTGTCGAAGTACTGGAATGGCTCACGCTCCGCCGGGTTGGCGCCGGCCAGTTCGGCCTTGATCGTGCTGGCGACGTATTTCGCCCCCTGGATGGCGCCCTGCGCCACACCCGGCACACCCTCCACAGCGGCCATATCGCCCACCACGAACACGTTCGGGTACCGGGGAATGGACAGGTCGGGCAGCACTTGGACCCGGCCGGCCCGGTCGAGCTCAACCCGTGATTGCTCGGCAAGGTCCCTGCCCAACCGACTGGCCGAAACCCCGGCCGACCAGACCTTGCAGGCCGACTCGATGCGCCGGACGGTGCCGTCGGAGTCCTTGACGGTGATGCCGTTGCGGTCGACGTCGGTGACCATCGCACCCAGCTGGATTTCCACGCCCAGCTTCTGCAACCGGGCAGCCGCCCGCTGACCGAGCTTTGCGCCCATCGGTGGCAGCACCGCCGGGGCGGCGTCAAGCAGAATCACCCGCGCCTTGGTCGAGTCGATGTGCCGGAATGCGCCCTTCAACGTGTGCTCGGCCAGCTCGGCGATCTGTCCGGCCATTTCAACACCGGTGGGGCCAGCCCCGACAACGGTGAATGTCAGTAGCTTGGCCCGCCGTTCCGGATCGCTGGACCGTTCGGCTTGCTCGAAAGCGCTCAATATGCGGCCACGCAACTCCAACGCGTCGTCGATGGACTTCATGCCGGGTGCGAATTCGGCGAAATGGTCGTTGCCGAAATAAGACTGGCCAGCACCCGCGGCGACGATCAGGCTGTCGTAGGGGGTTTGGTAGGTGTGACCGAGCAATTCCGAGACGACGCACTGCCCGGCCAGGTCGATGTGGGTGACGTTGCCCAACAGTACCTGGACATTGCGCTGCTTACGCAGCACGACCCGGGTCGGCGGAGCGATTTCTCCCTCGGAGATAATCCCGGTGGCCACTTGGTACAGCAGCGGCTGGAACAGGTGATGGGTGGTGCGCGCGATCAGCTTGATGTCAACGTCGGCCCGCTTGAGCTTCTTTGCCGCGTTTAGCCCGCCGAACCCAGATCCGATGATCACAACTCGATGCCTACGAGGTGGTTGCGCTGTGGGTTCTTGCTGGGGACTCAT"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Mycobacterium bovis BCG str. Pasteur 1173P2", "NCBI_taxonomy_id": "410289", "NCBI_taxonomy_cvterm_id": "40462"}, "protein_sequence": {"accession": "CAL71877", "sequence": "MSPQQEPTAQPPRRHRVVIIGSGFGGLNAAKKLKRADVDIKLIARTTHHLFQPLLYQVATGIISEGEIAPPTRVVLRKQRNVQVLLGNVTHIDLAGQCVVSELLGHTYQTPYDSLIVAAGAGQSYFGNDHFAEFAPGMKSIDDALELRGRILSAFEQAERSSDPERRAKLLTFTVVGAGPTGVEMAGQIAELAEHTLKGAFRHIDSTKARVILLDAAPAVLPPMGAKLGQRAAARLQKLGVEIQLGAMVTDVDRNGITVKDSDGTVRRIESACKVWSAGVSASRLGRDLAEQSRVELDRAGRVQVLPDLSIPRYPNVFVVGDMAAVEGVPGVAQGAIQGAKYVASTIKAELAGANPAEREPFQYFDKGSMATVSRFSAVAKIGPVEFSGFIAWLIWLVLHLAYLIGFKTKITTLLSWTVTFLSTRRGQLTITDQQAFARTRLEQLAELAAEAQGSAASAKVAS"}}}}, "ARO_category": {"36659": {"category_aro_name": "isoniazid", "category_aro_cvterm_id": "36659", "category_aro_accession": "3000520", "category_aro_class_name": "Drug Class", "category_aro_description": "Isoniazid is an organic compound that is the first-line anti tuberculosis medication in prevention and treatment. As a prodrug, it is activated by mycobacterial catalase-peroxidases such as M. tuberculosis KatG. Isoniazid inhibits mycolic acid synthesis, which prevents cell wall synthesis in mycobacteria."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "40053": {"category_aro_name": "antibiotic resistant ndh", "category_aro_cvterm_id": "40053", "category_aro_accession": "3003460", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ndh is a NADH oxidase. It participates in antibiotic resistance by diminishing NADH oxidation and consequently causes an increase in NADH concentration and depletion of NAD+. This alteration of the NADH/NAD+ ratio prevents the peroxidation reactions required for the activation of INH, as well as the displacement of the NADH-isonicotinic acyl complex from InhA enzyme binding site."}}, "ARO_name": "Mycobacterium bovis ndh with mutation conferring resistance to isoniazid", "model_type": "protein variant model", "model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: \"strict\" and \"loose\". A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "ARO_id": "40461", "model_name": "Mycobacterium bovis mutant ndh conferring resistance to isoniazid", "model_type_id": "40293"}, "2285": {"model_id": "2285", "ARO_accession": "3003776", "model_param": {"40394": {"param_value": {"3638": "L42STOP"}, "param_type_id": "40394", "param_type": "nonsense mutation", "param_description": "A nucleotide substitution resulting in a change from an amino acid codon to a STOP codon. Nonsense mutations truncate protein translation prematurely, resulting in a defective or completely inactive protein. In CARD, nonsense mutations may be attached to models using the notation: [wild type amino acid][position][STOP] (e.g. Q42STOP). This parameter is not currently used in detection algorithms."}, "snp": {"param_type": "single resistance variant", "param_value": {"3634": "Q362R", "3635": "T396N", "3632": "D278E", "3633": "E291D", "3630": "V65L", "3631": "G257D"}, "clinical": {"3634": "Q362R", "3635": "T396N", "3632": "D278E", "3633": "E291D", "3630": "V65L", "3631": "G257D"}, "param_type_id": "36301", "param_description": "A nucleotide or amino acid substitution that confers elevated resistance to antibiotic(s) relative to wild type. The most common type encoded in the CARD is an amino acid substitution gleaned from the literature with format [wild-type][position][mutation], e.g. R184Q. When present in the associated gene or protein, a single resistance variant confers resistance to an antibiotic drug or drug class. Single resistance variants are used by the protein variant and rRNA mutation models to detect antibiotic resistance from submitted sequences."}, "blastp_bit_score": {"param_value": "800", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "murA or UDP-N-acetylglucosamine enolpyruvyl transferase catalyses the initial step in peptidoglycan biosynthesis and is inhibited by fosfomycin. Overexpression of murA through mutations confers fosfomycin resistance.", "model_sequences": {"sequence": {"3549": {"dna_sequence": {"fmax": "2258311", "fmin": "2257045", "accession": "BX571856", "strand": "-", "sequence": "TTAATCGTTAATACGTTCAATGTCTGCACCTAATTGCTTCAATTTACCGTGTAAGTCAACATAGCCTCTATCTAGGTGCGTTAATTCAGTAACGCTTGTTTTACCATCAGCAACTAATCCAGCTAAAATTAAGGCTGCTGCTGCTCTTAAATCAGTCGCTTTAACTTGTGCACCTTGCAATTGACTTTTACCTTCAAGTTTAGCACTACGACCTTCTACATTGATATTAGCATTCATACGTTTGAACTCTGCGACATGCATAAAACGATTTTCAAATACAGTTTCAGTTACTACTTTATGTCCGTTTGCTGTTAATAATAATGCCATCATTTGTGACTGCATATCGGTTGGAAAACCAGGATGCGGTAATGTTTTGATGTCAACAGGCTGTAAATCTCCTTCAGCACGTACACGAATACCATCTTCTTGATATTCCAATTCAACGCCCATTTCTTCTAATTTATACACTAAACTAGCCATATGTTCTTTGATTGCACCACGTACAAAAATATCGCCACGAGTAATGGCACCAGCGATCAGTAATGTGCCTGCTTCAATTCTATCTGGAATGATAGCATGTTCTACACCATGTAATGATTCTACACCATTGATTGTAATTGTGTCTGTACCAGCACCAGTAATTCTACCGCCCATTTCATTAATGTAGTTTGCTAAATCAACAATTTCAGGTTCTTTAGCTGCATTTTCAATTAAAGTCTTACCCTTAGCTAATGATGCTGCCATAATAATATTTTGTGTTGCTCCTACACTTGGAAAATCTAAATGAATTGATGTACCTTTTAATCCATCTTTAGCATTAGCATAAATATTACCATTTTCAAGATGAATTTCTGCGCCTAAAGCTTCAAAACCTTTAATGTGTTGCTCAATCGGTCTACTTCCAATTGCACAACCACCAGGCAATGCAACAATAGCATGTCCTAGTCTTGCTAAAAGAGGTCCCATAACTAAAATACTTGCACGCATTTTACTAACATATTCATATGGTGCCTCTTCATTTAGAGTCTTTGTTGCATCAACGACAACAGCATTTTCGTCCTTTTTGTATGTAACGTCAGCATTTAAGGTTGTTAATACATTATTTATTGTTTCTACATCACTTAAAGCTGGAACATTAACTAATTTGCTCGGTTTATCAGAAGCTAATAAAGATGCTGTTAATATAGGTAATACTGCATTTTTAGCACCTTCTACTTTAACTTCACCCGTTAATTTATTTCCACCTTTGATTACTATTTTATCCAT"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Staphylococcus aureus subsp. aureus MRSA252", "NCBI_taxonomy_id": "282458", "NCBI_taxonomy_cvterm_id": "35517"}, "protein_sequence": {"accession": "CAG41169", "sequence": "MDKIVIKGGNKLTGEVKVEGAKNAVLPILTASLLASDKPSKLVNVPALSDVETINNVLTTLNADVTYKKDENAVVVDATKTLNEEAPYEYVSKMRASILVMGPLLARLGHAIVALPGGCAIGSRPIEQHIKGFEALGAEIHLENGNIYANAKDGLKGTSIHLDFPSVGATQNIIMAASLAKGKTLIENAAKEPEIVDLANYINEMGGRITGAGTDTITINGVESLHGVEHAIIPDRIEAGTLLIAGAITRGDIFVRGAIKEHMASLVYKLEEMGVELEYQEDGIRVRAEGDLQPVDIKTLPHPGFPTDMQSQMMALLLTANGHKVVTETVFENRFMHVAEFKRMNANINVEGRSAKLEGKSQLQGAQVKATDLRAAAALILAGLVADGKTSVTELTHLDRGYVDLHGKLKQLGADIERIND"}}}}, "ARO_category": {"35944": {"category_aro_name": "fosfomycin", "category_aro_cvterm_id": "35944", "category_aro_accession": "0000025", "category_aro_class_name": "Drug Class", "category_aro_description": "Fosfomycin (also known as phosphomycin and phosphonomycin) is a broad-spectrum antibiotic produced by certain Streptomyces species. It is effective on gram positive and negative bacteria as it targets the cell wall, an essential feature shared by both bacteria. Its specific target is MurA (MurZ in E.coli), which attaches phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine, a step of commitment to cell wall synthesis. In the active site of MurA, the active cysteine molecule is alkylated which stops the catalytic reaction."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "39245": {"category_aro_name": "murA transferase", "category_aro_cvterm_id": "39245", "category_aro_accession": "3002811", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "murA or UDP-N-acetylglucosamine enolpyruvyl transferase catalyses the initial step in peptidoglycan biosynthesis and is inhibited by fosfomycin. Overexpression of murA through mutations confers fosfomycin resistance."}}, "ARO_name": "Staphylococcus aureus murA with mutation conferring resistance to fosfomycin", "model_type": "protein variant model", "model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: \"strict\" and \"loose\". A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "ARO_id": "40453", "model_name": "Staphylococcus aureus murA with mutation conferring resistance to fosfomycin", "model_type_id": "40293"}, "2286": {"model_id": "2286", "ARO_accession": "3003777", "model_param": {"blastp_bit_score": {"param_value": "800", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}, "snp": {"param_value": {"3640": "D116C"}, "param_type_id": "36301", "param_type": "single resistance variant", "param_description": "A nucleotide or amino acid substitution that confers elevated resistance to antibiotic(s) relative to wild type. The most common type encoded in the CARD is an amino acid substitution gleaned from the literature with format [wild-type][position][mutation], e.g. R184Q. When present in the associated gene or protein, a single resistance variant confers resistance to an antibiotic drug or drug class. Single resistance variants are used by the protein variant and rRNA mutation models to detect antibiotic resistance from submitted sequences.", "experimental": {"3640": "D116C"}}}, "ARO_description": "murA or UDP-N-acetylglucosamine enolpyruvyl transferase catalyses the initial step in peptidoglycan biosynthesis and is inhibited by fosfomycin. Mutations to the murA enzyme confers resistance to the antibiotic.", "model_sequences": {"sequence": {"3550": {"dna_sequence": {"fmax": "1284", "fmin": "0", "accession": "NC_001318", "strand": "+", "sequence": "TAAATATAATTTAATAGTATAAAAAAAATTAAATCAAATTAATAATAGTTTAAAAAACTGTTTGTATAATATAATATTATTATATATAATATTAAGCAACTACTATGATACTAATGAAGTATAGTGCTATTTTATTAATATGTAGCGTTAATTTATTTTGTTTTCAAAATAAATTAACTACTTCTCGATGGGAATTCCCTAAAGAAGATTTAATTAAAAAAAAAATAAAAATAGGCATAATTTACCATAATTACATAAATTCTATCTTTTACAATGAAAATTATAAATACATTGCCTTTATCGGAATATTGACATCTTATAATGAATGGATTGAAATACAATTTAGCCCCATAAATTTTTTTACTATCCCAACAAATAAAGATTTTATTTCAAATACTTATTTCAATTTAGCTTTCACTATTTACATTACCAAGTATTCAATTTTAACTGATACACTTGCTATAAAATTTTTTATTGGAACCCAAATCGATTTAACTCTGAGAACTACTATATTTACAGGAAAAACAACTCATGCATTTCTCTATCCAATTCTTCCCATAATTACCTTCAAATTTGAAATTGATTTCATACCTAATAACTATAGTATTTACTATAAATTATCGACTTCTTTTAAAGAATTTATCCTTTTAGATCTAGGAATTTCTATATTTATATAATCCTTTTTTTATTATAGAACTTTTTTTATGGTATAAATTATTTAACACAAATTGTAAAAAGACCAAAAACAAATTTTCAAAACAATTTCACTAAGGAATGAGTACTATATTGACACCCGAACTCAAAGACTTTTTAATAGCATTTTCAATATTAGAAAAACTTCTTGTAATTGCTCCCATATCATAAGAATCTGTCATCATAATACTAGTAATATTTAAATTTTCCCTTATAATATTAACAATACTTTTAGACATGCTAGTTATATCTTTAGAAATTTTAGGAACATTTACATGACCAATCATAATAAATTTAGCAGCTCTACCAAAAACAAATGGAACAAAATTATTTAACATTAAAAAGCTTTTACTATAAGGCAAAAATGCTAAATATTTATGTGTATCTGTAGTTGTTCCCCCTAATCCAGGAAAATGTTTGATTGCCGAAAATACTCCATTATTCTGCATACCATCAATAAAAGCTTCTACCATAAGTCCAATATTATAAGCGGAATATCCTCCAAATGTCCTATTTAATAAAGGAGTATGTGGTGCAAATTTTATATCGGCAACTGGAGCCATATTTAAATTAATACCCAATCTACGCAAT"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Borrelia burgdorferi B31", "NCBI_taxonomy_id": "224326", "NCBI_taxonomy_cvterm_id": "40455"}, "protein_sequence": {"accession": "NP_212606", "sequence": "MHSYIVEGGYKIGGQITASGNKNAALPCILAALLTDEEVILENIPNINDVKVVLDILNDIGADIAREGNTLKIKVLNIVKTEIDSSFTDLIRASILLLGPFVSRFGKIDMALPGGDVIGKRRLDTHFYGLCKLGAKLSTKDRRIVLKANKLVGAEMFLDEASVTATENIIMAAVLAEGNTVIMNAACEPHVQDLCNMLNSMGANILGIGSNVLEIKGVKKLSGTVFRIGADFMQVGSLISLAALTGGELEIKKADPQHFRLIRHVYSRLGINFEYDRENVYVRNKQELKVKLDFGGHIPKIDDGPWPAFPTDLMSIIVVTATQVEGTVLVFEKMFESRMFFVDKLIKMGARIVLCDPHRVVVTGKSSLKGNVLSSPDVRAGMSLLIAAFVAEGRSEIQNVYQIERGYEDVVNKLINLGAKIKKVKSQ"}}}}, "ARO_category": {"35944": {"category_aro_name": "fosfomycin", "category_aro_cvterm_id": "35944", "category_aro_accession": "0000025", "category_aro_class_name": "Drug Class", "category_aro_description": "Fosfomycin (also known as phosphomycin and phosphonomycin) is a broad-spectrum antibiotic produced by certain Streptomyces species. It is effective on gram positive and negative bacteria as it targets the cell wall, an essential feature shared by both bacteria. Its specific target is MurA (MurZ in E.coli), which attaches phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine, a step of commitment to cell wall synthesis. In the active site of MurA, the active cysteine molecule is alkylated which stops the catalytic reaction."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "39245": {"category_aro_name": "murA transferase", "category_aro_cvterm_id": "39245", "category_aro_accession": "3002811", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "murA or UDP-N-acetylglucosamine enolpyruvyl transferase catalyses the initial step in peptidoglycan biosynthesis and is inhibited by fosfomycin. Overexpression of murA through mutations confers fosfomycin resistance."}}, "ARO_name": "Borrelia burgdorferi murA with mutation conferring resistance to fosfomycin", "model_type": "protein variant model", "model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: \"strict\" and \"loose\". A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "ARO_id": "40454", "model_name": "Borrelia burgdorferi murA with mutation conferring resistance to fosfomycin", "model_type_id": "40293"}, "2287": {"model_id": "2287", "ARO_accession": "3003778", "model_param": {"blastp_bit_score": {"param_value": "800", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}, "snp": {"param_value": {"3661": "V300G", "3660": "V272E", "3663": "Y361H", "3662": "Q335H", "3658": "A187P", "3659": "V246A", "3649": "I17T", "3654": "A115T", "3655": "Y122N", "3656": "R145C", "3657": "F170S", "3650": "T29P", "3651": "H46P", "3652": "G84D", "3653": "L100P"}, "param_type_id": "36301", "param_type": "single resistance variant", "param_description": "A nucleotide or amino acid substitution that confers elevated resistance to antibiotic(s) relative to wild type. The most common type encoded in the CARD is an amino acid substitution gleaned from the literature with format [wild-type][position][mutation], e.g. R184Q. When present in the associated gene or protein, a single resistance variant confers resistance to an antibiotic drug or drug class. Single resistance variants are used by the protein variant and rRNA mutation models to detect antibiotic resistance from submitted sequences.", "experimental": {"3661": "V300G", "3660": "V272E", "3663": "Y361H", "3662": "Q335H", "3658": "A187P", "3659": "V246A", "3649": "I17T", "3654": "A115T", "3655": "Y122N", "3656": "R145C", "3657": "F170S", "3650": "T29P", "3651": "H46P", "3652": "G84D", "3653": "L100P"}}}, "ARO_description": "Mutations in the Mycobacterium smegmatis ndh gene that results in increased resistance to isoniazid.", "model_sequences": {"sequence": {"3551": {"dna_sequence": {"fmax": "3685431", "fmin": "3684057", "accession": "NZ_CP009496", "strand": "+", "sequence": "ATGAGCCATCCCGGAGCTACGGCGTCGGATCGGCATAAAGTCGTCATCATCGGTTCGGGTTTCGGTGGTCTCACCGCTGCCAAGACCCTCAAGCGCGCTGACGTCGACGTCAAGCTAATCGCCCGTACCACGCACCACCTCTTCCAGCCGCTGCTCTACCAGGTGGCGACCGGCATCATCTCCGAGGGCGAGATCGCCCCGGCCACTCGAGTGATCCTCCGCAAGCAGAAGAACGCCCAGGTCCTTCTCTGCGATGTGACGCACATCGATCTGGAGAACAAGACCGTGGATTCGGTGCTGCTCGGTCACACCTACTCGACGCCCTACGACAGCCTCATCATCGCCGCGGGCGCGGGTCAGTCCTACTTCGGCAACGACCACTTCGCCGAGTTCGCACCCGGCATGAAGTCGATCGACGATGCGCTGGAGCTGCGCGGTCGCATCCTCGGCGCGTTCGAACAGGCCGAGCGCTCCAGCGACCCGGTGCGCCGCGCGAAGTTGCTGACGTTCACCGTCGTCGGCGCGGGCCCGACCGGCGTCGAGATGGCCGGACAGATCGCCGAATTGGCCGACCAGACTTTGCGGGGCAGCTTCCGCCACATCGATCCCACCGAGGCCCGGGTGATCCTGCTCGACGCCGCACCGGCCGTGCTACCGCCCATGGGCGAGAAGCTCGGCAAGAAGGCGCGGGCCCGTCTGGAGAAGATGGGCGTCGAGGTCCAGCTGGGTGCGATGGTCACCGACGTCGACCGCAACGGCATCACCGTCAAGGATTCCGACGGGACCATCCGTCGCATCGAGTCGGCGTGCAAGGTGTGGTCGGCCGGTGTGTCGGCCAGCCCTCTCGGCAAGGATCTCGCCGAGCAGTCGGGTGTCGAACTCGACCGCGCGGGCCGGGTCAAGGTACAGCCCGACCTGACGCTGCCCGGTCACCCGAACGTGTTCGTCGTGGGCGACATGGCGGCCGTCGAGGGCGTGCCCGGTGTGGCGCAGGGCGCCATCCAGGGTGGCCGCTACGCCGCGAAGATCATCAAGCGTGAGGTCAGTGGCACCAGCCCGAAGATCCGCACGCCGTTCGAGTACTTCGACAAGGGCTCGATGGCGACGGTGTCGCGGTTCTCCGCGGTGGCCAAGGTGGGTCCCGTCGAGTTCGCGGGCTTCTTCGCCTGGTTGTGCTGGCTCGTGCTGCACCTGGTGTACCTGGTCGGGTTCAAGACGAAGATCGTCACACTGCTGTCGTGGGGCGTGACGTTCCTGAGCACCAAGCGTGGTCAGCTCACCATCACCGAGCAGCAGGCCTATGCGCGAACCCGCATCGAGGAGCTCGAGGAGATCGCGGCGGCGGTGCAGGACACCGAGAAAGCCGCGTCCTAG"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Mycobacterium smegmatis", "NCBI_taxonomy_id": "1772", "NCBI_taxonomy_cvterm_id": "36871"}, "protein_sequence": {"accession": "WP_038583059", "sequence": "MSHPGATASDRHKVVIIGSGFGGLTAAKTLKRADVDVKLIARTTHHLFQPLLYQVATGIISEGEIAPATRVILRKQKNAQVLLCDVTHIDLENKTVDSVLLGHTYSTPYDSLIIAAGAGQSYFGNDHFAEFAPGMKSIDDALELRGRILGAFEQAERSSDPVRRAKLLTFTVVGAGPTGVEMAGQIAELADQTLRGSFRHIDPTEARVILLDAAPAVLPPMGEKLGKKARARLEKMGVEVQLGAMVTDVDRNGITVKDSDGTIRRIESACKVWSAGVSASPLGKDLAEQSGVELDRAGRVKVQPDLTLPGHPNVFVVGDMAAVEGVPGVAQGAIQGGRYAAKIIKREVSGTSPKIRTPFEYFDKGSMATVSRFSAVAKVGPVEFAGFFAWLCWLVLHLVYLVGFKTKIVTLLSWGVTFLSTKRGQLTITEQQAYARTRIEELEEIAAAVQDTEKAAS"}}}}, "ARO_category": {"36659": {"category_aro_name": "isoniazid", "category_aro_cvterm_id": "36659", "category_aro_accession": "3000520", "category_aro_class_name": "Drug Class", "category_aro_description": "Isoniazid is an organic compound that is the first-line anti tuberculosis medication in prevention and treatment. As a prodrug, it is activated by mycobacterial catalase-peroxidases such as M. tuberculosis KatG. Isoniazid inhibits mycolic acid synthesis, which prevents cell wall synthesis in mycobacteria."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "40053": {"category_aro_name": "antibiotic resistant ndh", "category_aro_cvterm_id": "40053", "category_aro_accession": "3003460", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ndh is a NADH oxidase. It participates in antibiotic resistance by diminishing NADH oxidation and consequently causes an increase in NADH concentration and depletion of NAD+. This alteration of the NADH/NAD+ ratio prevents the peroxidation reactions required for the activation of INH, as well as the displacement of the NADH-isonicotinic acyl complex from InhA enzyme binding site."}}, "ARO_name": "Mycobacterium smegmatis ndh with mutation conferring resistance to isoniazid", "model_type": "protein variant model", "model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: \"strict\" and \"loose\". A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "ARO_id": "40460", "model_name": "Mycobacterium smegmatis mutant ndh conferring resistance to isoniazid", "model_type_id": "40293"}, "2276": {"model_id": "2276", "ARO_accession": "3003729", "model_param": {"blastp_bit_score": {"param_value": "1800", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}, "snp": {"param_type": "single resistance variant", "param_value": {"3606": "V631F", "3605": "V588F"}, "clinical": {"3606": "V631F", "3605": "V588F"}, "param_type_id": "36301", "param_description": "A nucleotide or amino acid substitution that confers elevated resistance to antibiotic(s) relative to wild type. The most common type encoded in the CARD is an amino acid substitution gleaned from the literature with format [wild-type][position][mutation], e.g. R184Q. When present in the associated gene or protein, a single resistance variant confers resistance to an antibiotic drug or drug class. Single resistance variants are used by the protein variant and rRNA mutation models to detect antibiotic resistance from submitted sequences."}}, "ARO_description": "Point mutations to the isoleucyl-tRNA synthetase (ileS) in Staphylococcus aureus that confer resistance to mupirocin.", "model_sequences": {"sequence": {"3538": {"dna_sequence": {"fmax": "2844", "fmin": "90", "accession": "X74219", "strand": "+", "sequence": "ATGGATTACAAAGAAACGTTATTAATGCCTAAAACAGATTTCCCAATGCGAGGTGGTTTACCAAACAAGGAACCGCAAATTCAAGAAAAATGGGATGCAGAAGATCAATACCATAAAGCGTTAGAAAAAAATAAAGGTAACGAAACATTCATTTTACATGATGGCCCACCATACGCGAATGGTAACTTACATATGGGACATGCCTTGAACAAAATTTTAAAAGACTTTATTGTACGTTATAAAACTATGCAAGGGTTCTATGCACCATACGTACCAGGTTGGGATACACATGGTTTGCCAATTGAACAAGCATTAACGAAAAAAGGTGTTGACCGTAAGAAAATGTCAACAGCTGAATTCCGTGAGAAATGTAAAGAATTTGCTTTAGAACAAATTGAATTACAGAAAAAAGATTTTAGACGTTTAGGTGTTCGTGGTGACTTTAATGATCCATATATTACATTAAAACCTGAATACGAAGCTGCACAAATTCGTATTTTTGGAGAAATGGCAGATAAAGGTTTAATTTATAAAGGTAAAAAGCCAGTTTATTGGTCTCCTTCAAGTGAGTCTTCATTAGCAGAAGCAGAAATTGAATATCACGATAAACGTTCAGCATCAATTTACGTTGCATTTAACGTTAAAGATGACAAAGGTGTCGTTGATGCAGATGCTAAATTTATTATCTGGACAACAACGCCATGGACAATTCCATCAAATGTTGCGATTACCGTTCATCCAGAATTAAAATACGGTCAATACAATGTAAATGGCGAAAAATATATTATTGCAGAAGCCTTATCTGACGCCGTAGCAGAAGCACTGGATTGGGATAAAGCATCAATCAAATTAGAAAAAGAATACACAGGTAAGGAATTGGAGTATGTTGTAGCACAACATCCATTCTTAGATAGAGAATCGTTAGTGATTAATGGTGATCATGTTACTACAGATGCTGGTACAGGTTGTGTACATACAGCACCAGGTCACGGGGAAGATGACTATATTGTTGGTCAAAAATATGAATTGCCAGTAATTAGTCCAATCGATGATAAAGGTGTATTTACTGAAGAAGGCGGCCAATTTGAAGGAATGTTCTATGATAAAGCTAATAAAGCCGTTACTGATTTATTAACAGAAAAAGGTGCACTATTAAAATTAGACTTTATTACACATAGCTATCCACACGACTGGAGAACAAAAAAACCTGTAATTTTCCGTGCTACACCACAATGGTTTGCTTCAATCAGTAAAGTAAGACAAGATATTTTAGATGCAATCGAAAATACAAACTTCAAAGTAAATTGGGGTAAAACACGTATTTACAATATGGTTCGTGACCGTGGCGAATGGGTTATTTCTCGTCAACGTGTTTGGGGTGTACCGTTACCAGTATTTTATGCTGAAAATGGCGAAATTATCATGACGAAAGAAACAGTGAATCATGTTGCTGATTTATTTGCAGAACACGGTTCAAATATTTGGTTTGAAAGAGAAGCGAAAGACTTACTACCAGAAGGATTTACACATCCAGGCAGCCCTAACGGTACATTTACTAAAGAAACAGACATTATGGACGTTTGGTTTGATTCTGGTTCATCACACCGTGGCGTGTTGGAAACAAGACCGGAATTAAGTTTCCCAGCAGATATGTATTTAGAAGGTAGTGACCAATATCGTGGTTGGTTCAACTCTTCTATTACAACTTCAGTTGCTACAAGAGGAGTATCACCTTATAAATTCTTACTTTCTCATGGTTTTGTTATGGACGGTGAAGGTAAGAAAATGAGTAAATCTTTAGGTAATGTGATTGTACCTGACCAAGTGGTTAAACAAAAAGGTGCTGATATTGCGAGACTTTGGGTAAGTAGTACGGACTATTTAGCTGATGTTAGAATTTCTGATGAAATTTTAAAACAAACATCTGATGTTTATCGTAAAATCAGAAATACATTAAGATTTATGTTAGGTAATATTAATGATTTCAATCCTGATACAGATAGCATTCCTGAATCAGAGTTATTAGAAGTTGATCGTTACTTGCTAAATCGTTTACGTGAATTTACTGCAAGTACGATTAACAACTATGAAAACTTTGACTACTTAAATATTTATCAAGAAGTTCAAAACTTTATCAATGTTGAGTTAAGTAATTTCTATTTGGATTACGGTAAAGATATTTTATATATTGAACAACGTGATTCTCATATCCGTCGTAGTATGCAAACAGTGTTATATCAAATTTTAGTTGATATGACGAAGTTGTTAGCACCAATCTTAGTGCATACAGCTGAAGAAGTTTGGTCTCATACACCACATGTTAAAGAAGAAAGTGTTCACTTAGCAGACATGCCTAAAGTTGTAGAAGTAGATCAAGCTTTATTGGATAAATGGCGTACATTTATGAATTTACGTGATGATGTGAACCGTGCATTAGAAACTGCTCGTAATGAAAAAGTTATTGGTAAATCATTAGAAGCTAAAGTTACGATTGCTAGTAACGATAAATTTAATGCATCTGAATTCTTAACTTCATTTGATGCATTACATCAATTATTTATCGTGTCACAAGTTAAAGTTGTAGATAAGTTAGATGATCAGGCAACAGCTTATGAACATGGTGATATTGTCATCGAACATGCAGATGGTGAAAAATGTGAAAGATGTTGGAACTATTCAGAGGATCTTGGTGCTGTTGATGAATTGACGCATCTATGCCCACGATGCCAACAAGTTGTAAAATCACTTGTATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Staphylococcus aureus", "NCBI_taxonomy_id": "1280", "NCBI_taxonomy_cvterm_id": "35508"}, "protein_sequence": {"accession": "CAA52296.1", "sequence": "MDYKETLLMPKTDFPMRGGLPNKEPQIQEKWDAEDQYHKALEKNKGNETFILHDGPPYANGNLHMGHALNKILKDFIVRYKTMQGFYAPYVPGWDTHGLPIEQALTKKGVDRKKMSTAEFREKCKEFALEQIELQKKDFRRLGVRGDFNDPYITLKPEYEAAQIRIFGEMADKGLIYKGKKPVYWSPSSESSLAEAEIEYHDKRSASIYVAFNVKDDKGVVDADAKFIIWTTTPWTIPSNVAITVHPELKYGQYNVNGEKYIIAEALSDAVAEALDWDKASIKLEKEYTGKELEYVVAQHPFLDRESLVINGDHVTTDAGTGCVHTAPGHGEDDYIVGQKYELPVISPIDDKGVFTEEGGQFEGMFYDKANKAVTDLLTEKGALLKLDFITHSYPHDWRTKKPVIFRATPQWFASISKVRQDILDAIENTNFKVNWGKTRIYNMVRDRGEWVISRQRVWGVPLPVFYAENGEIIMTKETVNHVADLFAEHGSNIWFEREAKDLLPEGFTHPGSPNGTFTKETDIMDVWFDSGSSHRGVLETRPELSFPADMYLEGSDQYRGWFNSSITTSVATRGVSPYKFLLSHGFVMDGEGKKMSKSLGNVIVPDQVVKQKGADIARLWVSSTDYLADVRISDEILKQTSDVYRKIRNTLRFMLGNINDFNPDTDSIPESELLEVDRYLLNRLREFTASTINNYENFDYLNIYQEVQNFINVELSNFYLDYGKDILYIEQRDSHIRRSMQTVLYQILVDMTKLLAPILVHTAEEVWSHTPHVKEESVHLADMPKVVEVDQALLDKWRTFMNLRDDVNRALETARNEKVIGKSLEAKVTIASNDKFNASEFLTSFDALHQLFIVSQVKVVDKLDDQATAYEHGDIVIEHADGEKCERCWNYSEDLGAVDELTHLCPRCQQVVKSLV"}}}}, "ARO_category": {"36585": {"category_aro_name": "antibiotic resistant isoleucyl-tRNA synthetase (ileS)", "category_aro_cvterm_id": "36585", "category_aro_accession": "3000446", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Mupirocin inhibits protein synthesis by interfering with isoleucyl-tRNA synthetase (ileS). Mutations in ileS can confer low-level mupirocin resistance."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36693": {"category_aro_name": "mupirocin", "category_aro_cvterm_id": "36693", "category_aro_accession": "3000554", "category_aro_class_name": "Drug Class", "category_aro_description": "Mupirocin, also known as pseudomonic acid, is a bacteriostatic polyketide antibiotic from Pseudomonas fluorescens used to treat S. aureus and MRSA. It inhibits Ile tRNA synthetase."}}, "ARO_name": "Staphylococcus aureus ileS with mutation conferring resistance to mupirocin", "model_type": "protein variant model", "model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: \"strict\" and \"loose\". A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "ARO_id": "40418", "model_name": "Staphylococcus aureus ileS with mutation conferring resistance to mupirocin", "model_type_id": "40293"}, "2271": {"model_id": "2271", "ARO_accession": "3000510", "model_param": {"blastp_bit_score": {"param_value": "2000", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "An alternative isoleucyl-tRNA synthetase conferring resistance to mupirocin.", "model_sequences": {"sequence": {"3524": {"dna_sequence": {"fmax": "3192", "fmin": "90", "accession": "JQ231224", "strand": "+", "sequence": "TTGGAAAACGAGAATATAATAGAAGAACAAAAAATCTTAAATTTTTGGAAAGAAGAAAACATTTTCAAAAAGAGTATTGATAATAGAAAAAATGATAATCCATTTGTTTTTTACGATGGTCCTCCAACTGCCAATGGCTTACCACATACAGGTCACGTGTTAGGAAGAGTAATAAAAGATTTATTTGCTCGATATAAGACAATGCAAGGATTTTATGTTGAAAGAAAAGCTGGGTGGGATACCCATGGACTACCTGTAGAACTTGGTGTTGAAAAAAAACTTGGAATTAAGGATAAAAATGAAATAGAAAAATATGGAATAGAAAAATTTATAAATGAATGTAAAAATAGTGTGTTTATGTATGAAAAACAGTGGAGAGAATTTAGTGAACTAATCGGATATTGGGTAGATATGGAAAAACCGTACAAAACAATGGATAATACGTATATAGAATCAATCTGGTATATATTGTCTGACTTTCATAAAAAAGGTCTTTTATACAAAGGGCATAAAGTTACCCCGTATTGTCCAAGCTGTGAAACTTCTTTAAGTTCTCATGAAGTAGCTCAGGGATATAAGGAAGTAAAAGATATCTCTGTAATCTTAAAATTTCCGATTTTAGACAGTGATGAGAATTTCTTAGTTTGGACGACAACTCCATGGAGCTTACCAGGTAATATAGCTTTAGCCATAAATGCTGAAGAAATATATGTTAAAGTTAATTATGATAATGAAATTTTTATTATCATGGAAAGTTTGTTGCAAAGTGTTTTTAAAGATGAAGACAATATAGATATAGTAAGTAAACATAAAGGAAAAGAATTTGTAGGAAAAGAATACCTCGCTCCTTTCCCTAACAAGTCTCTTATGAACAATGAAAACTCATATAAAGTTTTACCTGCTGATTTTGTTACAAATAAAGATGGTACGGGTATCGTCCATATTGCTCCGGCTTATGGGGAAGATGATTACAAATTAGTTCAAGAAAATAATATACCCTTTATTAATGTTATTGATTCTAGAGGAAAATATAATCAAGATTCTCCTATTTTTAAAGGAGAGCTAGCTAAAGAATCAGATATTAACATTATTAAAGAACTTACACATTTAAATCTACTTTTCAAAAAAGAAAAATATGAACATAGCTATCCTTTTTGTTGGAGATGTGATAATCCATTAATCTATTATGCAATGGAAGGTTGGTTTATAAAAACAACGGCTTATAAAAATGAAATAAAGGAAAACAATCAAAAAATAGAATGGTATCCAGACCATATTAAAAATGGAAGGTTTGGAAATTTCTTAGATAATATGATTGATTGGAATATTGGTAGAAAAAGATATTGGGGCACTCCACTAAATATATGGAAATGCTCCACGTGTTCCCATGAGTTTTCACCTAAAAGCATAAATGATCTAATACAACATTCCATTGAAGATATTCCTTCTGATATAGAATTACATCGACCTTATATAGATAATGTGAAATGTAAATGTCAAAATTGTGGTGGTGACATGTGTAGAGAAGAAGAAGTCATTGATGTATGGTTTGATAGTGGATCGATGCCTTTTGCACAAAATCACTATCCATTTAGTGGTCCCATTCAAAACTCATACCCAGCTGACTTTATAGCTGAAGGAGTTGATCAAACTAGAGGGTGGTTTTATAGCTTATTGGTGATTTCAACAATTTTCAAAGGGGAAGCACCTTATAAAAACGCATTGTCATTAGGACATATATTAGATTCCAATGGACAAAAAATGTCGAAAAGTAAAGGGAATGTTATAGATCCTATATCAATGATAAAAACTTATGGCGCTGATTCTTTAAGATGGACATTAGTTTCTGACAGCGTTCCTTGGACTAACAAAAGGTTTTCAGAAAATATGGTGGCACAATCAAAATCGAGAGTAATTGATACTTTAAAAAATATATTTAACTTCTATAATATGTATCAAAAAATTGATAATTATGACTATACTAGGGATACTCCTAAACAGCTGAATTTACTTGATAATTGGGCTATATCTCGAATGAATTCAGTTATAAAAGAGGTAGAGCTGCATTTAGAAAAATATAACCCTACAAATGCATCAAGAGCTATTGGGGAGTTTATCAATGAAATAAGTAATTGGTATATTAGAAGATCTAGAAGTCGATTTTGGAGTAGTGAAATGAATGAGGATAAAAAGAGTGCGTATTTTACTCTTAGACTTATTTTGATTAATACTTGTAAAATAATAGCTCCTTTCACCCCATTTACTAGCGAGGAAATACATCTAAATCTCACCAAAAAAAGTGTACACTTAGAAGATTTCCCTCAAGCCAAGGAAGAATATATAAATTTAAAACTAGAAGAAGATATGAATAAAGTTTTAGATATTGTCGAAAAATCTAGAAGCATAAGAAATAACATAAACATCAAAACAAAACAACCACTTTCAAACATGTATATATATGACAATAATAATCTTGATAATGAATTTCTAAGAAAATACAAAGACATCATTAAAGATGAAATAAATGTTAAAAAGATAAATATTGTTTCTGATTTAGACAATTTTTTAGAATATGATGTAAAACCGAACTTTTCAACTTTAGGCCCTAAATTAGGAAAAGATATGAAACAATTCCAAATTTTATTTAAAAATATTAAAAAAGAAGAAATGAATAAACTAATCAATGATTTCGATAAACTTCAAAAAGTTTTTGACTCTTTAGGTGTAACAATTGAGGAAAAGGATTTTATTATTAGTAAAATACCTAAAAAGGGATTCTCTCTTTCAAGCAATGACTCTGATCGTCTTATCATTTTAGACACTAATTTGACTCAAGAATTAATTCGCGAAGGGTTTGTCAGAGAATTAATTCGTGTTATTCAACAACTAAGAAAACAACAGAACTTTAATATTGAAGAACGTATAAATGTAGTAATAGACATAGATTCCGATGGTTTACTATCAATTAAAAATAATATCAATATATTGAAAGAAAATGTACTAATTAATAATCTAAAATTTGAGAAAAGAGAAACTATGAAATATTTTAAAATTAATCAGAAAGAAATTGGTATTCAGTTAATGTCTAGCTTTACAAATTAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Staphylococcus aureus", "NCBI_taxonomy_id": "1280", "NCBI_taxonomy_cvterm_id": "35508"}, "protein_sequence": {"accession": "AEY83581", "sequence": "MENENIIEEQKILNFWKEENIFKKSIDNRKNDNPFVFYDGPPTANGLPHTGHVLGRVIKDLFARYKTMQGFYVERKAGWDTHGLPVELGVEKKLGIKDKNEIEKYGIEKFINECKNSVFMYEKQWREFSELIGYWVDMEKPYKTMDNTYIESIWYILSDFHKKGLLYKGHKVTPYCPSCETSLSSHEVAQGYKEVKDISVILKFPILDSDENFLVWTTTPWSLPGNIALAINAEEIYVKVNYDNEIFIIMESLLQSVFKDEDNIDIVSKHKGKEFVGKEYLAPFPNKSLMNNENSYKVLPADFVTNKDGTGIVHIAPAYGEDDYKLVQENNIPFINVIDSRGKYNQDSPIFKGELAKESDINIIKELTHLNLLFKKEKYEHSYPFCWRCDNPLIYYAMEGWFIKTTAYKNEIKENNQKIEWYPDHIKNGRFGNFLDNMIDWNIGRKRYWGTPLNIWKCSTCSHEFSPKSINDLIQHSIEDIPSDIELHRPYIDNVKCKCQNCGGDMCREEEVIDVWFDSGSMPFAQNHYPFSGPIQNSYPADFIAEGVDQTRGWFYSLLVISTIFKGEAPYKNALSLGHILDSNGQKMSKSKGNVIDPISMIKTYGADSLRWTLVSDSVPWTNKRFSENMVAQSKSRVIDTLKNIFNFYNMYQKIDNYDYTRDTPKQLNLLDNWAISRMNSVIKEVELHLEKYNPTNASRAIGEFINEISNWYIRRSRSRFWSSEMNEDKKSAYFTLRLILINTCKIIAPFTPFTSEEIHLNLTKKSVHLEDFPQAKEEYINLKLEEDMNKVLDIVEKSRSIRNNINIKTKQPLSNMYIYDNNNLDNEFLRKYKDIIKDEINVKKINIVSDLDNFLEYDVKPNFSTLGPKLGKDMKQFQILFKNIKKEEMNKLINDFDKLQKVFDSLGVTIEEKDFIISKIPKKGFSLSSNDSDRLIILDTNLTQELIREGFVRELIRVIQQLRKQQNFNIEERINVVIDIDSDGLLSIKNNINILKENVLINNLKFEKRETMKYFKINQKEIGIQLMSSFTN"}}}}, "ARO_category": {"36585": {"category_aro_name": "antibiotic resistant isoleucyl-tRNA synthetase (ileS)", "category_aro_cvterm_id": "36585", "category_aro_accession": "3000446", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Mupirocin inhibits protein synthesis by interfering with isoleucyl-tRNA synthetase (ileS). Mutations in ileS can confer low-level mupirocin resistance."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36693": {"category_aro_name": "mupirocin", "category_aro_cvterm_id": "36693", "category_aro_accession": "3000554", "category_aro_class_name": "Drug Class", "category_aro_description": "Mupirocin, also known as pseudomonic acid, is a bacteriostatic polyketide antibiotic from Pseudomonas fluorescens used to treat S. aureus and MRSA. It inhibits Ile tRNA synthetase."}}, "ARO_name": "Staphylococcus mupB conferring resistance to mupirocin", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "36649", "model_name": "mupB", "model_type_id": "40292"}, "2270": {"model_id": "2270", "ARO_accession": "3000521", "model_param": {"blastp_bit_score": {"param_value": "2000", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "An alternative isoleucyl-tRNA synthetase conferring resistance to mupirocin.", "model_sequences": {"sequence": {"3523": {"dna_sequence": {"fmax": "3551", "fmin": "476", "accession": "X75439", "strand": "+", "sequence": "TTGACAAAGAAATATTTAAACACCCAGAATGAAATATCAGCATTTTGGAATACTCAAAAGATATTTAAAAAATCAATTGACAATAGAAAAGGACAGGAAAGTTTTGTTTTTTATGACGGCCCCCCAACTGCAAATGGCCTTCCTCATGCTGGCCATGTTCTTGGAAGAGTAATCAAGGATTTAGTTGCAAGATTAAAAACTATGCAAGGTTTTTATGTAGAAAGAAAAGCAGGATGGGATACCCATGGCTTACCAGTTGAATTAGAGGTTGAAAAAAAAATTGGAATTAAAGGAAAACAAGACATTGAAAAGTATGGAATAGAAAATTTTATAAATGAATGTAAAAAAAGTGTATTTAATTATGAAAAAGAATGGCGGGATTTTTCTAAAGATTTAGGATACTGGGTTGACATGGACTCCCCCTATATAACTCTTGAGAATAATTATATTGAAAGTGTATGGAATATATTATCTACATTCCATAAAAAAGGACTATTATATAAGGGACATAAGGTGACTCCTTATTGTACACATGATCAAACCGCTTTAAGTTCTCATGAAGTAGCGCAAGGCTATAAAAACGTTAAAGATTTATCAGCTGTTGTTAAATTTCAACTTACAAATAGTAAAGATACTTATTTCTTAAGTTGGACTACCACTCCCTGGACTTTGCCTGCAAATGTAGCATTAGCTATAAATAAAGATCTTAATTATTCAAAAATTCGGGTAGAAAATGAGTATTATATCTTAGCTACAGATCTAATTAATTCTATAATAACTGAAAAATACGAAATTATTGATACCTTTTCAGGAAGTAATTTAATTAATTTAAAATACATTCCTCCTTTTGAAAGCGACGGTTTAGTTAATGCATATTACGTTGTTGATGGAGAATTTGTTACTAACTCAGAAGGAACTGGTATTGTTCATATAGCACCAGCTCATGGGGAAGATGACTACCAATTGGTTTTAGAGCGTGATTTGGATTTCTTAAATGTTATAACAAGAGAAGGAGTATATAATGATAGGTTCCCTGAATTAGTTGGTAATAAAGCTAAAAATAGTGATATAGAAATCATAAAATTATTATCCAAAAAACAACTTTTATATAAAAAACAAAAATATGAGCATAATTATCCTCATTGTTGGAGATGTGGTAATCCTTTGATATATTATGCGATGGAAGGTTGGTTTATTAAAACAACTAATTTTAAGAATGAAATTATTAACAATAATAATAATATAGAGTGGTTTCCTTCTCATATTAAGGAAGGGAGAATGGGAAATTTCTTAGAAAATATGGTTGATTGGAACATTGGTAGAAATAGATATTGGGGAACACCATTAAATGTATGGATTTGCAATGATTGTAATCACGAATACGCACCAAGTAGTATTAAGGATTTACAAAATAATTCCATCAATAAAATTGATGAAGATATTGAGTTGCATAGACCTTATGTTGATAATATCACTCTTAGTTGCCCTAAGTGTAATGGGAAAATGTCTCGAGTAGAAGAAGTAATCGATGTTTGGTTTGATAGCGGCTCTATGCCGTTTGCTCAGCATCATTATCCTTTTGATAACCAGAAAATTTTTAATCAACACTTTCCAGCTGATTTTATTGCAGAAGGAGTTGATCAAACGAGAGGCTGGTTTTACAGTTTACTAGTAATTTCTACTATTCTAAAAGGAAAATCTTCTTATAAACGTGCTTTATCTTTAGGACATATTCTAGACAGTAATGGTAAAAAAATGTCTAAAAGTAAAGGAAACGTTATTAATCCAACTGAATTAATTAATAAGTACGGAGCCGATTCTTTAAGATGGGCCTTAATTTCGGATAGTGCTCCATGGAATAACAAAAGATTCTCAGAAAATATAGTAGCTCAGACCAAATCGAAATTTATAGATACGCTTGATAATATTTATAAATTTTATAATATGTATAATAAAATAGATCACTATAATCCTAATAATGAAATTACAAAAAGTAGAAATACATTAGATAATTGGGCTCTTTCTCGCTTAAACACCTTAATAAAAGAAAGTAATATTTATGTAAATAATTACGATTTCACTTCCGCAGCCAGATTAATTAACGAATATACCAATACAATAAGTAATTGGTATATCGGAGATTCGAGAGGACGATTTTGGGAACAAGGAATTTCTAACGATAAAAAAGATGCGTACAATACGCTTTATGAAATTTTAACAACTTTATCAAGACTAGTGGCTCCATTTGTTCCATTTATATCTGAAAAAATCCATTATAATTTGACTGGAAAAAGTGTGCATTTACAAGATTATCCACAATATAAAGAAAGTTTTATTAATCAAGCATTGGAAGATGAAATGCATACCGTTATAAAAATTGTAGAATTATCTAGACAGGCTCGCAAAAATGCAGATTTAAAAATTAAGCAACCTTTATCGAAAATGGTGATTAAACCTAATAGTCAATTAAACTTAAGTTTTTTACCTAATTACTATTCAATAATAAAAGACGAATTAAATATAAAAAACATTGAATTAACTGATAATATTAATGACTATATTACCTATGAGCTTAAATTGAATTTTTCTTCTGTGGGACCAAAACTAGGGAACAAAACGAAAAATATTCAAACATTGATAGACTCCCTATCAGAGTATGATAAAAAAAGTTTAATTGAGTCTAATAACTTCAAAAGTTTATCTTCTGATGCTGAGTTAACTAAGGATGATTTTATAATTAAAACCTTACCTAAGGATAGTTATCAACTCAGTGAAGATAATGACTGCGTTATATTATTAGATAAAAATTTATCTCCTGAATTAATTCGCGAAGGACATGCTAGAGAGCTCATTAGATTAATTCAACAATTAAGAAAAAAGAAAAATTTACCAATAAATCAACGTATTGATATTTATATCGGTGTAACTGGGGAATTATTAGAATCAATAAAAACCAATAAAAATATGTTTAAAGAAAATTTCGTGATTAAAAATATACACTTAAATGTTATAGATGAATATGAAAATACTATTCATTTTAATAATAAAGAAATAAAAATTTCCTTATTATATTAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Staphylococcus aureus", "NCBI_taxonomy_id": "1280", "NCBI_taxonomy_cvterm_id": "35508"}, "protein_sequence": {"accession": "CAA53189", "sequence": "MTKKYLNTQNEISAFWNTQKIFKKSIDNRKGQESFVFYDGPPTANGLPHAGHVLGRVIKDLVARLKTMQGFYVERKAGWDTHGLPVELEVEKKIGIKGKQDIEKYGIENFINECKKSVFNYEKEWRDFSKDLGYWVDMDSPYITLENNYIESVWNILSTFHKKGLLYKGHKVTPYCTHDQTALSSHEVAQGYKNVKDLSAVVKFQLTNSKDTYFLSWTTTPWTLPANVALAINKDLNYSKIRVENEYYILATDLINSIITEKYEIIDTFSGSNLINLKYIPPFESDGLVNAYYVVDGEFVTNSEGTGIVHIAPAHGEDDYQLVLERDLDFLNVITREGVYNDRFPELVGNKAKNSDIEIIKLLSKKQLLYKKQKYEHNYPHCWRCGNPLIYYAMEGWFIKTTNFKNEIINNNNNIEWFPSHIKEGRMGNFLENMVDWNIGRNRYWGTPLNVWICNDCNHEYAPSSIKDLQNNSINKIDEDIELHRPYVDNITLSCPKCNGKMSRVEEVIDVWFDSGSMPFAQHHYPFDNQKIFNQHFPADFIAEGVDQTRGWFYSLLVISTILKGKSSYKRALSLGHILDSNGKKMSKSKGNVINPTELINKYGADSLRWALISDSAPWNNKRFSENIVAQTKSKFIDTLDNIYKFYNMYNKIDHYNPNNEITKSRNTLDNWALSRLNTLIKESNIYVNNYDFTSAARLINEYTNTISNWYIGDSRGRFWEQGISNDKKDAYNTLYEILTTLSRLVAPFVPFISEKIHYNLTGKSVHLQDYPQYKESFINQALEDEMHTVIKIVELSRQARKNADLKIKQPLSKMVIKPNSQLNLSFLPNYYSIIKDELNIKNIELTDNINDYITYELKLNFSSVGPKLGNKTKNIQTLIDSLSEYDKKSLIESNNFKSLSSDAELTKDDFIIKTLPKDSYQLSEDNDCVILLDKNLSPELIREGHARELIRLIQQLRKKKNLPINQRIDIYIGVTGELLESIKTNKNMFKENFVIKNIHLNVIDEYENTIHFNNKEIKISLLY"}}}}, "ARO_category": {"36585": {"category_aro_name": "antibiotic resistant isoleucyl-tRNA synthetase (ileS)", "category_aro_cvterm_id": "36585", "category_aro_accession": "3000446", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Mupirocin inhibits protein synthesis by interfering with isoleucyl-tRNA synthetase (ileS). Mutations in ileS can confer low-level mupirocin resistance."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "36693": {"category_aro_name": "mupirocin", "category_aro_cvterm_id": "36693", "category_aro_accession": "3000554", "category_aro_class_name": "Drug Class", "category_aro_description": "Mupirocin, also known as pseudomonic acid, is a bacteriostatic polyketide antibiotic from Pseudomonas fluorescens used to treat S. aureus and MRSA. It inhibits Ile tRNA synthetase."}}, "ARO_name": "Staphylococcus mupA conferring resistance to mupirocin", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "36660", "model_name": "mupA", "model_type_id": "40292"}, "2272": {"model_id": "2272", "ARO_accession": "3003760", "model_param": {"41344": {"param_value": {"3853": "+AII14-16"}, "param_type_id": "41344", "param_type": "insertion mutation from peptide sequence", "param_description": "A subtype of the insertion mutation detection model parameter. This parameter is used when a set of insertion mutations is reported in a peptide sequence format. These are specific to codon insertions, where a multiple of three nucleotides are inserted. This does not cause a frameshift mutation. Mutation parameters of this type are reported in CARD with the notation: [+][AAs][position range]."}, "blastp_bit_score": {"param_value": "900", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}, "snp": {"param_value": {"3603": "H215R", "3581": "R218Q", "3582": "R267H"}, "param_type_id": "36301", "param_type": "single resistance variant", "param_description": "A nucleotide or amino acid substitution that confers elevated resistance to antibiotic(s) relative to wild type. The most common type encoded in the CARD is an amino acid substitution gleaned from the literature with format [wild-type][position][mutation], e.g. R184Q. When present in the associated gene or protein, a single resistance variant confers resistance to an antibiotic drug or drug class. Single resistance variants are used by the protein variant and rRNA mutation models to detect antibiotic resistance from submitted sequences.", "experimental": {"3603": "H215R", "3581": "R218Q", "3582": "R267H"}}, "41342": {"param_value": {"3852": "-NFQ74-76", "3850": "-K61"}, "param_type_id": "41342", "param_type": "deletion mutation from peptide sequence", "param_description": "A subtype of the deletion mutation detection model parameter. This parameter is used when a set of deletion mutations is reported in a peptide sequence format. These are specific to codon deletions, where a multiple of 3 nucleotides are deleted. Mutations of this type are reported in the CARD with the notation: [-][AAs][position range]."}}, "ARO_description": "cls or cardiolipin synthase is an inner membrane protein involved in membrane synthesis and phosopholipid metabolism, with mutations to the gene being capable of conferring daptomycin resistance.", "model_sequences": {"sequence": {"3537": {"dna_sequence": {"fmax": "377931", "fmin": "376485", "accession": "CP002621.1", "strand": "+", "sequence": "TTGATTCTTAGCGTCTTAACAGTTATTTATTTTATTAATGCAATTATTGCGGGAATTACCATTTTGTTAAAACCTCGAGATGTAGCAGCAATTTGGGCATGGCTACTCGTACTGATTGCTCTACCCGTTTTTGGTTTTTTCTTATATTTATTCTTTGGTCGCGGTTTAACCGACAAAAAGAAATTTTATTTGCAACAAAGTGATTTGCGGGAATTAGAGAATTTTCAGAATTTCCAAGAAGAAAGTTTTGAACTTTATAGTCAAAAGATGCCGACGGAGGAGCAACAACAGTTTACAGACTTTTTTTCCTCGTTAAATAGGATGCCTCTGACTAAGAAAAATGATGTTGAAATTTTTACGGATGGTACGGAAAAATTCAATGCGTTGATGGCGGATATAAAAAAAGCTCAGCACTCCATTCATATTGAATATTATGCCTTTGTAACGGATCATATCGGTACCAAAATTTTGAACTTATTAGAAGAAAAGGCGGCTGAAGGGGTTGAAGTGCGGTTGCTTTACGATGCCTTTGGCTCAAAGGGCACCAAGGTTCATCATTTGAATGAATTGAAAAAAAACGGTGGTTTTGTCCAAACGTTTATTACTTCTCAAAAAGCACTTTTGAAGTTTCGTTTGAATTATCATGATCACCGGAAAATTGTTGTTATTGACGGAAAAGTAGGCTACATTGGCGGCTTTAATGTTGCCGATCAATATGCCGGAACGACTAAAAAGTTTGGCTATTGGCGGGATACACATTTACGGATTCAAGGGCCAGCAACCTCATTACTGCAAATGCGTTTTTTAATGGATTGGAACGTCTCTTCCCCCGAGAAAAATCGTGTGGCGTATCAATTGGATTATTTCTTTAAACTTGAAGCATTGGTGCCAGAGGCAAATACATCCATTCAGATGATTGCCAGTGGTCCTAACAGTGACCGTGAACAAATTAAATTGGCCTTTATTAAATTGATTACTTCTGCCAAGAAAAGAGTCTGGATTCAAACGCCGTATTTAGTTCCTGATGATAGTGTCTTGGCTGCTTTAAAGGTTGCTGCGGCTTCAGGAGTAGATGTTAAAATTATGATTCCAGATAAGCCCGACCATCCGTTTATTTATCGAGCAACACAGTATTACGGCCGCTTATTGATGAAAGAAAATATTGAAATTTTAATTTATAACGGTGGTTTCTTACATGCGAAAACAATGATTATGGATGATGAAGTCTGCACAGTTGGTTCAGCCAATCAAGATATCCGAAGTTACAAATTAAACTTTGAAGCAAATGCTGTGTTATATGATAAAAAAATCATTGATCAATTAGAAGCAATTTTCTTAGAAGATCGAAAAAAATGTACAACAATGACTCCAGAAGTTGTTCGTGACATGTCAAAATGGTTGATTTTTAAACAACAAATTTCACGATTATTTTCACCAATTCTTTAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Enterococcus faecalis OG1RF", "NCBI_taxonomy_id": "474186", "NCBI_taxonomy_cvterm_id": "40433"}, "protein_sequence": {"accession": "AEA93051.1", "sequence": "MILSVLTVIYFINAIIAGITILLKPRDVAAIWAWLLVLIALPVFGFFLYLFFGRGLTDKKKFYLQQSDLRELENFQNFQEESFELYSQKMPTEEQQQFTDFFSSLNRMPLTKKNDVEIFTDGTEKFNALMADIKKAQHSIHIEYYAFVTDHIGTKILNLLEEKAAEGVEVRLLYDAFGSKGTKVHHLNELKKNGGFVQTFITSQKALLKFRLNYHDHRKIVVIDGKVGYIGGFNVADQYAGTTKKFGYWRDTHLRIQGPATSLLQMRFLMDWNVSSPEKNRVAYQLDYFFKLEALVPEANTSIQMIASGPNSDREQIKLAFIKLITSAKKRVWIQTPYLVPDDSVLAALKVAAASGVDVKIMIPDKPDHPFIYRATQYYGRLLMKENIEILIYNGGFLHAKTMIMDDEVCTVGSANQDIRSYKLNFEANAVLYDKKIIDQLEAIFLEDRKKCTTMTPEVVRDMSKWLIFKQQISRLFSPIL"}}}}, "ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "39856": {"category_aro_name": "daptomycin resistant cls", "category_aro_cvterm_id": "39856", "category_aro_accession": "3003272", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Cardiolipin synthetase catalyzes the formation of cardiolipin from two phosphatidylglycerol molecules. Cardiolipin is important in membrane translocation and permeabilization. Current known mutations on the enzyme confer resistance to daptomycin."}, "35985": {"category_aro_name": "daptomycin", "category_aro_cvterm_id": "35985", "category_aro_accession": "0000068", "category_aro_class_name": "Antibiotic", "category_aro_description": "Daptomycin is a novel lipopeptide antibiotic used in the treatment of certain infections caused by Gram-positive organisms. Daptomycin interferes with the bacterial cell membrane, reducing membrane potential and inhibiting cell wall synthesis."}}, "ARO_name": "Enterococcus faecalis cls with mutation conferring resistance to daptomycin", "model_type": "protein variant model", "model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: \"strict\" and \"loose\". A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "ARO_id": "40417", "model_name": "Enterococcus faecalis cls conferring resistance to daptomycin", "model_type_id": "40293"}, "2378": {"model_id": "2378", "ARO_accession": "3003900", "ARO_description": "CyaA (adenylate cyclase) is involved with the synthesis of cyclic AMP which regulates the fosfomycin transporter glpT. As a result, mutations to cyaA confer resistance to fosfomycin.", "model_sequences": {"sequence": {"3676": {"dna_sequence": {"fmax": "2788945", "fmin": "2786398", "accession": "HG738867", "strand": "-", "sequence": "TCACGAAAAATATTGCTGTAATAGCGGCGTATCGTGATCCTGATTGGCAGGCGGCATGTTACCGATAGATTTTGTGCGGAACGGAATCACCTGTTCACGACCATCAACCTTCACAATCTGATAGAACTGCGGCAGGTTGAAGTTGATGAAGCTTGAGCCGTAGGTAAAGCGGTCATGCGATGACGAGTAGAAGCGACTGACGTCACGTACCAGCTCCTCTTTGCTGCCTTCGCAGTGGTGATATACCTCAACCCGGTTGCTTTCGTCGAGAATGTAGATATTAAAGCCATTCTCGTCTTGCGTTTCTTCGAAAAAGAACTGGATGATCCCTTCGCTGGCAAAGCCGTCCACCACCGCCGGTAATTTGACGTGATTGGTTTCAACCTGCACTGACAGGCCGTGCAGTTTGTTATGCGAAATCGCGCCATAAAACTCGATGGCGTTTTCCAGTTTCTGTACCGATACATTCAGGCGTTCGAAGAACAACCCCCAGGTTTGACCAGAAACGCGCAGCGCCTTGAAACGCCCGGTTTCCTGGCGGGTGCTGGAAAGACGCAATTCAATACACTCAGAAACCAGTTGCTGCACGCGAGTACGAATTAAGCCGCGCAGATGCTGGCTATAACAGAAGACTTCCACGCTATCTGGCGGTGCGGCGTCCTGATGCATTTTGCCGAGAATAGTTTTCAGGGCTTCGATCATCGATTGCTCGCCGTTGAAGTGCAGCGTACGCACTTCGTTCCACGAGTTGCGGTACAGCAGGTCAACGCTACCTACCAGGCAATTTTGATTCTCGCCAAAGCTGAAGACATCCAGCTTACGGAAATCGAAATGCACCACCTGATTGCGGAACGCCGCTGTCGGGTCATATTCCAGGTTAACGATAATCGCCAGATGGCGGATCTCACACGGGCTGTAGAGCGCCTTCGGTGTCGGTGCAGGTAAGCGCAGCGGGAAATGGTGCGACACGTCGGCGACCATCTCCTGCAACTTAGGCAAATCGACAATGCCGTTACCTTTAATATACAAACGGGTGCGCGAGGTCAGCAGGCCGTTAAACCATGCCCACGCCACCAGTTTATTCAGGTAACGGTTATATTCCAGCGGCTGATGGCTGATGATCGACTCAATATTTGGCGCGCGGTTATACAGATACCAACCTGAACGGTTAGCCCGGCCCGGCGGCACATAAATAAAGGTCAGATTCGGTTCCGAGAGATCGGGTGAAATCTGCGGGTTTACCAGCGTCACTTTACCTGGTAATGCTTCAAACGCGGCATACAGCTTACGCGTCAGCACGCCGATATCCTGCGGACTGGCGGAGACGCTAAGGTTATTGCGACGCGCAAAGCGGATCAGATTACGGTAGCTCTGCATCATCGCGTCGAGCAACTCGTTGTGCGCCTCACGCACCTGATCAATCTTCCAGTTAGCGCGGTTATCGAGCATTGCCAGACGAGCTTCGTCCCAACCCCACTCGCTCACTAACTGGCTCAACACTGCGCGACGCCAGCCTACGCAGGCGCGTTCACGGCTGAGCTTTTCGCACACTTTTAAATAGAAGCAGCGACGTACTAAATCCAGACGGGTAAAATCTTCAATCGCCGTCAGGTATTCAGTAACACGCTCCAGCATCATGCAGTATGGATCGAGACCAAACGATACAATCTCGCCGTCGTGCAAACGCTGTTTGATATCTTTCGCCAGCAGACGTGGGTTCGGGTATTCCCAGGAATAGGCTTCCAGCAGCAGTGTTTTCAGTACCGCTTTGTATGGGGAATCGATACTCTTGTAGAGCTGCCAAAGGCTGGCACCAAAGTACTCTTCAGCAGAAAGCGAGCTTAAGCCACCGAGATCCAGCCATTCATTTGGCGTCAGCACGCCCTGCGCGTAAAGCGTCATCACATAGTCGTCGTAATGCTCTTCTTCGTCGCACGGCACCATATTCCACAGAATACGCTTACCGGCGAGACGCACGGCGGTACGATAAAATTCGTCAAGCAGCAGTATATGCTGGGTGGAGCCACAATCTTCGCCCCCCAGGCTGCCGCTTTCATTATGACGGAAGCGGTTTTCATCAATCAGGAAGAAGCTGACTTCCACACCCAGCGAGGCGGCCCAGTTTTCCAGCAGGCTACATTTACGTTGTAGCAATTGGCGCTCTTCGCTATCGAGCCAGGATTGATGACAGACCCAGATATCCAGGTCAGAGGAACAACTTTGCCCTACGGACGAGGTGCTGCCCATGGTGTATACACCAGTAATTGGAAGCTCACCTTTCGGCGGATCCTGTACTGACATTCCACGATACAGTTCAAGCTCGTTCAGGTAGTGGCGTTGAGTTTCATCAGGCGTGTAAAGGCAAATGCCTTTGGGAACGTTACCATCAAGGTAACCCGGCATTAGCGGATGGTGATAGTGCAACAATGTCGGCAGTAGACTGTAGACCTGTTGGAATGCAGGCCCCATAGCAGCAAGCGCGCGATCCACACGCAATTGATTTATGGCATCCAGTCTCTGTTTCAGAGTCTCAATATAGAGGTACAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Escherichia coli str. K-12 substr. MC4100", "NCBI_taxonomy_id": "1403831", "NCBI_taxonomy_cvterm_id": "40589"}, "protein_sequence": {"accession": "CDJ73082", "sequence": "MYLYIETLKQRLDAINQLRVDRALAAMGPAFQQVYSLLPTLLHYHHPLMPGYLDGNVPKGICLYTPDETQRHYLNELELYRGMSVQDPPKGELPITGVYTMGSTSSVGQSCSSDLDIWVCHQSWLDSEERQLLQRKCSLLENWAASLGVEVSFFLIDENRFRHNESGSLGGEDCGSTQHILLLDEFYRTAVRLAGKRILWNMVPCDEEEHYDDYVMTLYAQGVLTPNEWLDLGGLSSLSAEEYFGASLWQLYKSIDSPYKAVLKTLLLEAYSWEYPNPRLLAKDIKQRLHDGEIVSFGLDPYCMMLERVTEYLTAIEDFTRLDLVRRCFYLKVCEKLSRERACVGWRRAVLSQLVSEWGWDEARLAMLDNRANWKIDQVREAHNELLDAMMQSYRNLIRFARRNNLSVSASPQDIGVLTRKLYAAFEALPGKVTLVNPQISPDLSEPNLTFIYVPPGRANRSGWYLYNRAPNIESIISHQPLEYNRYLNKLVAWAWFNGLLTSRTRLYIKGNGIVDLPKLQEMVADVSHHFPLRLPAPTPKALYSPCEIRHLAIIVNLEYDPTAAFRNQVVHFDFRKLDVFSFGENQNCLVGSVDLLYRNSWNEVRTLHFNGEQSMIEALKTILGKMHQDAAPPDSVEVFCYSQHLRGLIRTRVQQLVSECIELRLSSTRQETGRFKALRVSGQTWGLFFERLNVSVQKLENAIEFYGAISHNKLHGLSVQVETNHVKLPAVVDGFASEGIIQFFFEETQDENGFNIYILDESNRVEVYHHCEGSKEELVRDVSRFYSSSHDRFTYGSSFINFNLPQFYQIVKVDGREQVIPFRTKSIGNMPPANQDHDTPLLQQYFS"}}}}, "ARO_category": {"41415": {"category_aro_name": "cya adenylate cyclase", "category_aro_cvterm_id": "41415", "category_aro_accession": "3004251", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Adenylate cyclases encoded by cya genes, which are involved in the synthesis cyclic AMP which regulates the fosfomycin transporter glpT. Mutations in cya genes can confer resistance to fosfomycin."}, "35944": {"category_aro_name": "fosfomycin", "category_aro_cvterm_id": "35944", "category_aro_accession": "0000025", "category_aro_class_name": "Drug Class", "category_aro_description": "Fosfomycin (also known as phosphomycin and phosphonomycin) is a broad-spectrum antibiotic produced by certain Streptomyces species. It is effective on gram positive and negative bacteria as it targets the cell wall, an essential feature shared by both bacteria. Its specific target is MurA (MurZ in E.coli), which attaches phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine, a step of commitment to cell wall synthesis. In the active site of MurA, the active cysteine molecule is alkylated which stops the catalytic reaction."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}, "ARO_name": "Escherichia coli CyaA with mutation conferring resistance to fosfomycin", "model_type": "protein knockout model", "model_description": "An AMR detection model for instances where the absence of a protein - due to large-scale insertion elements, large deletions, or other methods of protein knockout - confers clinical resistance to a known antibiotic. These models include reference sequences. Protein knockout models are currently in development.", "ARO_id": "40602", "model_name": "Escherichia coli CyaA with mutation conferring resistance to fosfomycin", "model_type_id": "40354"}, "2379": {"model_id": "2379", "ARO_accession": "3003900", "model_param": {"blastp_bit_score": {"param_value": "1650", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}, "snp": {"param_type": "single resistance variant", "param_value": {"4382": "S352T"}, "clinical": {"4382": "S352T"}, "param_type_id": "36301", "param_description": "A nucleotide or amino acid substitution that confers elevated resistance to antibiotic(s) relative to wild type. The most common type encoded in the CARD is an amino acid substitution gleaned from the literature with format [wild-type][position][mutation], e.g. R184Q. When present in the associated gene or protein, a single resistance variant confers resistance to an antibiotic drug or drug class. Single resistance variants are used by the protein variant and rRNA mutation models to detect antibiotic resistance from submitted sequences."}}, "ARO_description": "CyaA (adenylate cyclase) is involved with the synthesis of cyclic AMP which regulates the fosfomycin transporter glpT. As a result, mutations to cyaA confer resistance to fosfomycin.", "model_sequences": {"sequence": {"3677": {"dna_sequence": {"fmax": "2788945", "fmin": "2786398", "accession": "HG738867", "strand": "-", "sequence": "TCACGAAAAATATTGCTGTAATAGCGGCGTATCGTGATCCTGATTGGCAGGCGGCATGTTACCGATAGATTTTGTGCGGAACGGAATCACCTGTTCACGACCATCAACCTTCACAATCTGATAGAACTGCGGCAGGTTGAAGTTGATGAAGCTTGAGCCGTAGGTAAAGCGGTCATGCGATGACGAGTAGAAGCGACTGACGTCACGTACCAGCTCCTCTTTGCTGCCTTCGCAGTGGTGATATACCTCAACCCGGTTGCTTTCGTCGAGAATGTAGATATTAAAGCCATTCTCGTCTTGCGTTTCTTCGAAAAAGAACTGGATGATCCCTTCGCTGGCAAAGCCGTCCACCACCGCCGGTAATTTGACGTGATTGGTTTCAACCTGCACTGACAGGCCGTGCAGTTTGTTATGCGAAATCGCGCCATAAAACTCGATGGCGTTTTCCAGTTTCTGTACCGATACATTCAGGCGTTCGAAGAACAACCCCCAGGTTTGACCAGAAACGCGCAGCGCCTTGAAACGCCCGGTTTCCTGGCGGGTGCTGGAAAGACGCAATTCAATACACTCAGAAACCAGTTGCTGCACGCGAGTACGAATTAAGCCGCGCAGATGCTGGCTATAACAGAAGACTTCCACGCTATCTGGCGGTGCGGCGTCCTGATGCATTTTGCCGAGAATAGTTTTCAGGGCTTCGATCATCGATTGCTCGCCGTTGAAGTGCAGCGTACGCACTTCGTTCCACGAGTTGCGGTACAGCAGGTCAACGCTACCTACCAGGCAATTTTGATTCTCGCCAAAGCTGAAGACATCCAGCTTACGGAAATCGAAATGCACCACCTGATTGCGGAACGCCGCTGTCGGGTCATATTCCAGGTTAACGATAATCGCCAGATGGCGGATCTCACACGGGCTGTAGAGCGCCTTCGGTGTCGGTGCAGGTAAGCGCAGCGGGAAATGGTGCGACACGTCGGCGACCATCTCCTGCAACTTAGGCAAATCGACAATGCCGTTACCTTTAATATACAAACGGGTGCGCGAGGTCAGCAGGCCGTTAAACCATGCCCACGCCACCAGTTTATTCAGGTAACGGTTATATTCCAGCGGCTGATGGCTGATGATCGACTCAATATTTGGCGCGCGGTTATACAGATACCAACCTGAACGGTTAGCCCGGCCCGGCGGCACATAAATAAAGGTCAGATTCGGTTCCGAGAGATCGGGTGAAATCTGCGGGTTTACCAGCGTCACTTTACCTGGTAATGCTTCAAACGCGGCATACAGCTTACGCGTCAGCACGCCGATATCCTGCGGACTGGCGGAGACGCTAAGGTTATTGCGACGCGCAAAGCGGATCAGATTACGGTAGCTCTGCATCATCGCGTCGAGCAACTCGTTGTGCGCCTCACGCACCTGATCAATCTTCCAGTTAGCGCGGTTATCGAGCATTGCCAGACGAGCTTCGTCCCAACCCCACTCGCTCACTAACTGGCTCAACACTGCGCGACGCCAGCCTACGCAGGCGCGTTCACGGCTGAGCTTTTCGCACACTTTTAAATAGAAGCAGCGACGTACTAAATCCAGACGGGTAAAATCTTCAATCGCCGTCAGGTATTCAGTAACACGCTCCAGCATCATGCAGTATGGATCGAGACCAAACGATACAATCTCGCCGTCGTGCAAACGCTGTTTGATATCTTTCGCCAGCAGACGTGGGTTCGGGTATTCCCAGGAATAGGCTTCCAGCAGCAGTGTTTTCAGTACCGCTTTGTATGGGGAATCGATACTCTTGTAGAGCTGCCAAAGGCTGGCACCAAAGTACTCTTCAGCAGAAAGCGAGCTTAAGCCACCGAGATCCAGCCATTCATTTGGCGTCAGCACGCCCTGCGCGTAAAGCGTCATCACATAGTCGTCGTAATGCTCTTCTTCGTCGCACGGCACCATATTCCACAGAATACGCTTACCGGCGAGACGCACGGCGGTACGATAAAATTCGTCAAGCAGCAGTATATGCTGGGTGGAGCCACAATCTTCGCCCCCCAGGCTGCCGCTTTCATTATGACGGAAGCGGTTTTCATCAATCAGGAAGAAGCTGACTTCCACACCCAGCGAGGCGGCCCAGTTTTCCAGCAGGCTACATTTACGTTGTAGCAATTGGCGCTCTTCGCTATCGAGCCAGGATTGATGACAGACCCAGATATCCAGGTCAGAGGAACAACTTTGCCCTACGGACGAGGTGCTGCCCATGGTGTATACACCAGTAATTGGAAGCTCACCTTTCGGCGGATCCTGTACTGACATTCCACGATACAGTTCAAGCTCGTTCAGGTAGTGGCGTTGAGTTTCATCAGGCGTGTAAAGGCAAATGCCTTTGGGAACGTTACCATCAAGGTAACCCGGCATTAGCGGATGGTGATAGTGCAACAATGTCGGCAGTAGACTGTAGACCTGTTGGAATGCAGGCCCCATAGCAGCAAGCGCGCGATCCACACGCAATTGATTTATGGCATCCAGTCTCTGTTTCAGAGTCTCAATATAGAGGTACAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Escherichia coli str. K-12 substr. MC4100", "NCBI_taxonomy_id": "1403831", "NCBI_taxonomy_cvterm_id": "40589"}, "protein_sequence": {"accession": "CDJ73082", "sequence": "MYLYIETLKQRLDAINQLRVDRALAAMGPAFQQVYSLLPTLLHYHHPLMPGYLDGNVPKGICLYTPDETQRHYLNELELYRGMSVQDPPKGELPITGVYTMGSTSSVGQSCSSDLDIWVCHQSWLDSEERQLLQRKCSLLENWAASLGVEVSFFLIDENRFRHNESGSLGGEDCGSTQHILLLDEFYRTAVRLAGKRILWNMVPCDEEEHYDDYVMTLYAQGVLTPNEWLDLGGLSSLSAEEYFGASLWQLYKSIDSPYKAVLKTLLLEAYSWEYPNPRLLAKDIKQRLHDGEIVSFGLDPYCMMLERVTEYLTAIEDFTRLDLVRRCFYLKVCEKLSRERACVGWRRAVLSQLVSEWGWDEARLAMLDNRANWKIDQVREAHNELLDAMMQSYRNLIRFARRNNLSVSASPQDIGVLTRKLYAAFEALPGKVTLVNPQISPDLSEPNLTFIYVPPGRANRSGWYLYNRAPNIESIISHQPLEYNRYLNKLVAWAWFNGLLTSRTRLYIKGNGIVDLPKLQEMVADVSHHFPLRLPAPTPKALYSPCEIRHLAIIVNLEYDPTAAFRNQVVHFDFRKLDVFSFGENQNCLVGSVDLLYRNSWNEVRTLHFNGEQSMIEALKTILGKMHQDAAPPDSVEVFCYSQHLRGLIRTRVQQLVSECIELRLSSTRQETGRFKALRVSGQTWGLFFERLNVSVQKLENAIEFYGAISHNKLHGLSVQVETNHVKLPAVVDGFASEGIIQFFFEETQDENGFNIYILDESNRVEVYHHCEGSKEELVRDVSRFYSSSHDRFTYGSSFINFNLPQFYQIVKVDGREQVIPFRTKSIGNMPPANQDHDTPLLQQYFS"}}}}, "ARO_category": {"41415": {"category_aro_name": "cya adenylate cyclase", "category_aro_cvterm_id": "41415", "category_aro_accession": "3004251", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Adenylate cyclases encoded by cya genes, which are involved in the synthesis cyclic AMP which regulates the fosfomycin transporter glpT. Mutations in cya genes can confer resistance to fosfomycin."}, "35944": {"category_aro_name": "fosfomycin", "category_aro_cvterm_id": "35944", "category_aro_accession": "0000025", "category_aro_class_name": "Drug Class", "category_aro_description": "Fosfomycin (also known as phosphomycin and phosphonomycin) is a broad-spectrum antibiotic produced by certain Streptomyces species. It is effective on gram positive and negative bacteria as it targets the cell wall, an essential feature shared by both bacteria. Its specific target is MurA (MurZ in E.coli), which attaches phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine, a step of commitment to cell wall synthesis. In the active site of MurA, the active cysteine molecule is alkylated which stops the catalytic reaction."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}, "ARO_name": "Escherichia coli CyaA with mutation conferring resistance to fosfomycin", "model_type": "protein variant model", "model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: \"strict\" and \"loose\". A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "ARO_id": "40602", "model_name": "Escherichia coli CyaA with mutation conferring resistance to fosfomycin", "model_type_id": "40293"}, "2374": {"model_id": "2374", "ARO_accession": "3003893", "model_param": {"blastp_bit_score": {"param_value": "300", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}, "snp": {"param_type": "single resistance variant", "param_value": {"4362": "G97D"}, "clinical": {"4362": "G97D"}, "param_type_id": "36301", "param_description": "A nucleotide or amino acid substitution that confers elevated resistance to antibiotic(s) relative to wild type. The most common type encoded in the CARD is an amino acid substitution gleaned from the literature with format [wild-type][position][mutation], e.g. R184Q. When present in the associated gene or protein, a single resistance variant confers resistance to an antibiotic drug or drug class. Single resistance variants are used by the protein variant and rRNA mutation models to detect antibiotic resistance from submitted sequences."}}, "ARO_description": "uhpA is a positive activator of the fosfomycin importer uhpT, thus mutations to uhpA confer fosfomycin resistance by reducing uhpT expression. Both knockout and amino acid substitution mutations have been found that confer resistance, with the Protein Knockout model describing the large, knockout mutations causing loss of function of the gene, and the Protein Variant model describing the amino acid substitutions.", "model_sequences": {"sequence": {"3668": {"dna_sequence": {"fmax": "2931298", "fmin": "2930707", "accession": "HG738867", "strand": "+", "sequence": "ATGATCACCGTTGCCCTTATAGACGATCACCTCATCGTCCGCTCCGGCTTTGCGCAGCTGCTGGGGCTGGAACCTGATTTGCAGGTAGTTGCCGAGTTTGGTTCGGGGCGCGAGGCGCTGGCGGGGCTGCCGGGGCGCGGTGTGCAGGTGTGTATTTGCGATATCTCCATGCCCGATATCTCCGGTCTGGAGCTGCTAAGCCAGCTGCCGAAAGGTATGGCGACGATTATGCTCTCCGTTCACGACAGTCCTGCGCTGGTTGAGCAGGCGCTTAACGCGGGGGCACGCGGCTTTCTTTCCAAACGCTGTAGCCCGGATGAACTCATTGCTGCGGTGCATACGGTTGCCACGGGCGGCTGTTATCTGACGCCGGATATTGCCATTAAACTGGCATCCGGTCGTCAGGACCCGCTAACCAAACGTGAACGCCAGGTGGCGGAAAAACTGGCGCAAGGAATGGCGGTGAAAGAGATTGCCGCCGAACTGGGCTTGTCACCGAAAACGGTACACGTCCATCGCGCCAATCTGATGGAAAAACTGGGCGTCAGTAACGACGTAGAGCTGGCGCGCCGCATGTTTGATGGCTGGTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Escherichia coli str. K-12 substr. MC4100", "NCBI_taxonomy_id": "1403831", "NCBI_taxonomy_cvterm_id": "40589"}, "protein_sequence": {"accession": "CDJ73205", "sequence": "MITVALIDDHLIVRSGFAQLLGLEPDLQVVAEFGSGREALAGLPGRGVQVCICDISMPDISGLELLSQLPKGMATIMLSVHDSPALVEQALNAGARGFLSKRCSPDELIAAVHTVATGGCYLTPDIAIKLASGRQDPLTKRERQVAEKLAQGMAVKEIAAELGLSPKTVHVHRANLMEKLGVSNDVELARRMFDGW"}}}}, "ARO_category": {"35944": {"category_aro_name": "fosfomycin", "category_aro_cvterm_id": "35944", "category_aro_accession": "0000025", "category_aro_class_name": "Drug Class", "category_aro_description": "Fosfomycin (also known as phosphomycin and phosphonomycin) is a broad-spectrum antibiotic produced by certain Streptomyces species. It is effective on gram positive and negative bacteria as it targets the cell wall, an essential feature shared by both bacteria. Its specific target is MurA (MurZ in E.coli), which attaches phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine, a step of commitment to cell wall synthesis. In the active site of MurA, the active cysteine molecule is alkylated which stops the catalytic reaction."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "41413": {"category_aro_name": "UhpA", "category_aro_cvterm_id": "41413", "category_aro_accession": "3004249", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "UhpA acts as a positive regulator of UhpT, which is a transporter to bring fosfomycin drugs into bacterial cells. Mutations in UhpA that negatively impact the expression of UhpT can confer resistance."}, "41412": {"category_aro_name": "UhpT", "category_aro_cvterm_id": "41412", "category_aro_accession": "3004248", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "UhpT encodes a transporter that can import fosfomycin-type drugs into bacterial cells. Mutations to UhpT confer resistance."}}, "ARO_name": "Escherichia coli UhpA with mutation conferring resistance to fosfomycin", "model_type": "protein variant model", "model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: \"strict\" and \"loose\". A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "ARO_id": "40595", "model_name": "Escherichia coli UhpA with mutation conferring resistance to fosfomycin", "model_type_id": "40293"}, "2376": {"model_id": "2376", "ARO_accession": "3003893", "ARO_description": "uhpA is a positive activator of the fosfomycin importer uhpT, thus mutations to uhpA confer fosfomycin resistance by reducing uhpT expression. Both knockout and amino acid substitution mutations have been found that confer resistance, with the Protein Knockout model describing the large, knockout mutations causing loss of function of the gene, and the Protein Variant model describing the amino acid substitutions.", "model_sequences": {"sequence": {"3671": {"dna_sequence": {"fmax": "2931298", "fmin": "2930707", "accession": "HG738867", "strand": "+", "sequence": "ATGATCACCGTTGCCCTTATAGACGATCACCTCATCGTCCGCTCCGGCTTTGCGCAGCTGCTGGGGCTGGAACCTGATTTGCAGGTAGTTGCCGAGTTTGGTTCGGGGCGCGAGGCGCTGGCGGGGCTGCCGGGGCGCGGTGTGCAGGTGTGTATTTGCGATATCTCCATGCCCGATATCTCCGGTCTGGAGCTGCTAAGCCAGCTGCCGAAAGGTATGGCGACGATTATGCTCTCCGTTCACGACAGTCCTGCGCTGGTTGAGCAGGCGCTTAACGCGGGGGCACGCGGCTTTCTTTCCAAACGCTGTAGCCCGGATGAACTCATTGCTGCGGTGCATACGGTTGCCACGGGCGGCTGTTATCTGACGCCGGATATTGCCATTAAACTGGCATCCGGTCGTCAGGACCCGCTAACCAAACGTGAACGCCAGGTGGCGGAAAAACTGGCGCAAGGAATGGCGGTGAAAGAGATTGCCGCCGAACTGGGCTTGTCACCGAAAACGGTACACGTCCATCGCGCCAATCTGATGGAAAAACTGGGCGTCAGTAACGACGTAGAGCTGGCGCGCCGCATGTTTGATGGCTGGTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Escherichia coli str. K-12 substr. MC4100", "NCBI_taxonomy_id": "1403831", "NCBI_taxonomy_cvterm_id": "40589"}, "protein_sequence": {"accession": "CDJ73205", "sequence": "MITVALIDDHLIVRSGFAQLLGLEPDLQVVAEFGSGREALAGLPGRGVQVCICDISMPDISGLELLSQLPKGMATIMLSVHDSPALVEQALNAGARGFLSKRCSPDELIAAVHTVATGGCYLTPDIAIKLASGRQDPLTKRERQVAEKLAQGMAVKEIAAELGLSPKTVHVHRANLMEKLGVSNDVELARRMFDGW"}}}}, "ARO_category": {"35944": {"category_aro_name": "fosfomycin", "category_aro_cvterm_id": "35944", "category_aro_accession": "0000025", "category_aro_class_name": "Drug Class", "category_aro_description": "Fosfomycin (also known as phosphomycin and phosphonomycin) is a broad-spectrum antibiotic produced by certain Streptomyces species. It is effective on gram positive and negative bacteria as it targets the cell wall, an essential feature shared by both bacteria. Its specific target is MurA (MurZ in E.coli), which attaches phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine, a step of commitment to cell wall synthesis. In the active site of MurA, the active cysteine molecule is alkylated which stops the catalytic reaction."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "41413": {"category_aro_name": "UhpA", "category_aro_cvterm_id": "41413", "category_aro_accession": "3004249", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "UhpA acts as a positive regulator of UhpT, which is a transporter to bring fosfomycin drugs into bacterial cells. Mutations in UhpA that negatively impact the expression of UhpT can confer resistance."}, "41412": {"category_aro_name": "UhpT", "category_aro_cvterm_id": "41412", "category_aro_accession": "3004248", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "UhpT encodes a transporter that can import fosfomycin-type drugs into bacterial cells. Mutations to UhpT confer resistance."}}, "ARO_name": "Escherichia coli UhpA with mutation conferring resistance to fosfomycin", "model_type": "protein knockout model", "model_description": "An AMR detection model for instances where the absence of a protein - due to large-scale insertion elements, large deletions, or other methods of protein knockout - confers clinical resistance to a known antibiotic. These models include reference sequences. Protein knockout models are currently in development.", "ARO_id": "40595", "model_name": "Escherichia coli UhpA with mutation conferring resistance to fosfomycin", "model_type_id": "40354"}, "2377": {"model_id": "2377", "ARO_accession": "3003899", "model_param": {"blastp_bit_score": {"param_value": "1100", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}, "snp": {"param_type": "single resistance variant", "param_value": {"4379": "V25I"}, "clinical": {"4379": "V25I"}, "param_type_id": "36301", "param_description": "A nucleotide or amino acid substitution that confers elevated resistance to antibiotic(s) relative to wild type. The most common type encoded in the CARD is an amino acid substitution gleaned from the literature with format [wild-type][position][mutation], e.g. R184Q. When present in the associated gene or protein, a single resistance variant confers resistance to an antibiotic drug or drug class. Single resistance variants are used by the protein variant and rRNA mutation models to detect antibiotic resistance from submitted sequences."}}, "ARO_description": "PtsI (phosphoenolpyruvate-protein phosphotransferase) is involved in cyclic AMP synthesis, which regulates glpT expression. As a result, mutations to ptsI confer resistance to fosfomycin by affecting the regulation of fosfomycin import.", "model_sequences": {"sequence": {"3675": {"dna_sequence": {"fmax": "2418066", "fmin": "2416338", "accession": "HG738867", "strand": "+", "sequence": "ATGATTTCAGGCATTTTAGCATCCCCGGGTATCGCTTTCGGTAAAGCTCTGCTTCTGAAAGAAGACGAAATTGTCATTGACCGGAAAAAAATTTCTGCCGACCAGGTTGATCAGGAAGTTGAACGTTTTCTGAGCGGTCGTGCCAAGGCATCAGCCCAGCTGGAAACGATCAAAACGAAAGCTGGTGAAACGTTCGGTGAAGAAAAAGAAGCCATCTTTGAAGGGCATATTATGCTGCTCGAAGATGAGGAGCTGGAGCAGGAAATCATAGCCCTGATTAAAGATAAGCACATGACAGCTGACGCAGCTGCTCATGAAGTTATCGAAGGTCAGGCTTCTGCCCTGGAAGAGCTGGATGATGAATACCTGAAAGAACGTGCGGCTGACGTACGTGATATCGGTAAGCGCCTGCTGCGCAACATCCTGGGCCTGAAGATTATCGACCTGAGCGCCATTCAGGATGAAGTCATTCTGGTTGCCGCTGACCTGACGCCGTCCGAAACCGCACAGCTGAACCTGAAGAAGGTGCTGGGTTTCATCACCGACGCGGGTGGCCGTACTTCCCACACCTCTATCATGGCGCGTTCTCTGGAACTACCTGCTATCGTGGGTACCGGTAGCGTCACCTCTCAGGTGAAAAATGACGACTATCTGATTCTGGATGCCGTAAATAATCAGGTTTACGTCAATCCAACCAACGAAGTTATTGATAAAATGCGCGCTGTTCAGGAGCAAGTGGCTTCTGAAAAAGCAGAGCTTGCTAAACTGAAAGATCTGCCAGCTATTACGCTGGACGGTCACCAGGTAGAAGTATGCGCTAACATTGGTACGGTTCGTGACGTTGAAGGTGCAGAGCGTAACGGCGCTGAAGGCGTTGGTCTGTATCGTACTGAGTTCCTGTTCATGGACCGCGACGCACTGCCCACTGAAGAAGAACAGTTTGCTGCTTACAAAGCAGTGGCTGAAGCGTGTGGCTCGCAAGCGGTTATCGTTCGTACCATGGACATCGGCGGCGACAAAGAGCTGCCATACATGAACTTCCCGAAAGAAGAGAACCCGTTCCTCGGCTGGCGCGCTATCCGTATCGCGATGGATCGTAGAGAGATCCTGCGCGATCAGCTCCGCGCTATCCTGCGTGCCTCGGCTTTCGGTAAATTGCGCATTATGTTCCCGATGATCATCTCTGTTGAAGAAGTGCGTGCACTGCGCAAAGAGATCGAAATCTACAAACAGGAACTGCGCGACGAAGGTAAAGCGTTTGACGAGTCAATTGAAATCGGCGTAATGGTGGAAACACCGGCTGCCGCAACAATTGCACGTCATTTAGCCAAAGAAGTTGATTTCTTTAGTATCGGCACCAATGATTTAACGCAGTACACTCTGGCAGTTGACCGTGGTAATGATATGATTTCACACCTTTACCAGCCAATGTCACCGTCCGTGCTGAACTTGATCAAGCAAGTTATTGATGCTTCTCATGCTGAAGGCAAATGGACTGGCATGTGTGGTGAGCTTGCTGGCGATGAACGTGCTACACTTCTGTTGCTGGGGATGGGTCTGGACGAATTCTCTATGAGCGCCATTTCTATCCCGCGCATTAAGAAGATTATCCGTAACACGAACTTCGAAGATGCGAAGGTGTTAGCAGAGCAGGCTCTTGCTCAACCGACAACGGACGAGTTAATGACGCTGGTTAACAAGTTCATTGAAGAAAAAACAATCTGCTAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Escherichia coli str. K-12 substr. MC4100", "NCBI_taxonomy_id": "1403831", "NCBI_taxonomy_cvterm_id": "40589"}, "protein_sequence": {"accession": "CDJ72759", "sequence": "MISGILASPGIAFGKALLLKEDEIVIDRKKISADQVDQEVERFLSGRAKASAQLETIKTKAGETFGEEKEAIFEGHIMLLEDEELEQEIIALIKDKHMTADAAAHEVIEGQASALEELDDEYLKERAADVRDIGKRLLRNILGLKIIDLSAIQDEVILVAADLTPSETAQLNLKKVLGFITDAGGRTSHTSIMARSLELPAIVGTGSVTSQVKNDDYLILDAVNNQVYVNPTNEVIDKMRAVQEQVASEKAELAKLKDLPAITLDGHQVEVCANIGTVRDVEGAERNGAEGVGLYRTEFLFMDRDALPTEEEQFAAYKAVAEACGSQAVIVRTMDIGGDKELPYMNFPKEENPFLGWRAIRIAMDRREILRDQLRAILRASAFGKLRIMFPMIISVEEVRALRKEIEIYKQELRDEGKAFDESIEIGVMVETPAAATIARHLAKEVDFFSIGTNDLTQYTLAVDRGNDMISHLYQPMSPSVLNLIKQVIDASHAEGKWTGMCGELAGDERATLLLLGMGLDEFSMSAISIPRIKKIIRNTNFEDAKVLAEQALAQPTTDELMTLVNKFIEEKTIC"}}}}, "ARO_category": {"35944": {"category_aro_name": "fosfomycin", "category_aro_cvterm_id": "35944", "category_aro_accession": "0000025", "category_aro_class_name": "Drug Class", "category_aro_description": "Fosfomycin (also known as phosphomycin and phosphonomycin) is a broad-spectrum antibiotic produced by certain Streptomyces species. It is effective on gram positive and negative bacteria as it targets the cell wall, an essential feature shared by both bacteria. Its specific target is MurA (MurZ in E.coli), which attaches phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine, a step of commitment to cell wall synthesis. In the active site of MurA, the active cysteine molecule is alkylated which stops the catalytic reaction."}, "41414": {"category_aro_name": "PtsI phosphotransferase", "category_aro_cvterm_id": "41414", "category_aro_accession": "3004250", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PtsI family phosphotransferases are involved in cyclic AMP synthesis, which regulates glpT expression. Mutations in PtsI family genes can negatively affect expression of UhpT, which is needed for fosfomycin import."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}}, "ARO_name": "Escherichia coli PtsI with mutation conferring resistance to fosfomycin", "model_type": "protein variant model", "model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: \"strict\" and \"loose\". A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "ARO_id": "40601", "model_name": "Escherichia coli PtsI with mutation conferring resistance to fosfomycin", "model_type_id": "40293"}, "2370": {"model_id": "2370", "ARO_accession": "3003887", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-81 is a beta-lactamase found in Acinetobacter baumannii.", "model_sequences": {"sequence": {"3664": {"dna_sequence": {"fmax": "1167", "fmin": "0", "accession": "NG_048687.1", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGTCTACTTTTATCCCCGCTTTTTATTTTTAGTACCTCAATTTATGCGGGCAATACACCAAAAGACCAAGAAATTAAAAAACTGGTAGATCAAAACTTTAAACCGTTATTAGAAAAATATGATGTGCCAGGTATGGCTGTGGGTGTTATTCAAAATAATAAAAAGTATGAAATGTATTATGGTCTTCAATCTGTTCAAGATAAAAAAGCCGTAAATCGCAGTACCATTTTTGAGCTAGGTTCTGTCAGTAAATTATTTACCGCGACAGCAGGTGGATATGCAAAAAATAAAGGAAAAATCTCTTTTGACGATACGCCTGGTAAATATTGGAAAGAACTAAAAAACACACCGATTGACCAAGTTAACTTACTTCAACTCGCGACGTATACAAGTGGTAACCTTGCCTTGCAGTTTCCAGATGAAGTACAAACAGACCAACAAGTTTTAACTTTTTTCAAAGACTGGCAACCTAAAAACCCAATCGGTGAATACAGACAATATTCAAATCCAAGTATTGGCCTATTTGGAAAGGTTGTGGCTTTGTCTATGAATAAACCTTTCGACCAAGTCTTAGAAAAAACAATTTTTCCGGCCCTTGGCTTAAAACATAGCTATGTAAATGTACCTAAGACCCAGATGCAAAACTATGCATTTGGTTATAACCAAGAAAATCAGCCGATTCGAGTTAACCCCGGCCCACTCGATGCCCCTGCATATGGCGCCCCTGCATATGGCGTCAAATCGACACTACCCGACATGTTGAGTTTTATTCATGCCAACCTTAACCCACAGAAATATCCGGCTGATATTCAACGGGCAATTAATGAAACACATCAAGGGTTCTATCAAGTAAATACCATGTATCAGGCACTCGGTTGGGAAGAGTTTTCTTATCCGGCAACGTTACAAACTTTATTAGACAGTAATTCAGAACAGATTGTGATGAAACCTAATAAAGTGACTGCTATTTCAAAGGAACCTTCAGTTAAGATGTACCATAAAACTGGCTCAACCAACGGTTTCGGAACATATGTAGTGTTTATTCCTAAAGAAAATATTGGCTTAGTCATGTTAACCAATAAACGTATTCCAAATGAAGAGCGCATTAAGGCAGCTTATGCTGTGCTGGATGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter baumannii", "NCBI_taxonomy_id": "470", "NCBI_taxonomy_cvterm_id": "35507"}, "protein_sequence": {"accession": "WP_059262723.1", "sequence": "MRFKKISCLLLSPLFIFSTSIYAGNTPKDQEIKKLVDQNFKPLLEKYDVPGMAVGVIQNNKKYEMYYGLQSVQDKKAVNRSTIFELGSVSKLFTATAGGYAKNKGKISFDDTPGKYWKELKNTPIDQVNLLQLATYTSGNLALQFPDEVQTDQQVLTFFKDWQPKNPIGEYRQYSNPSIGLFGKVVALSMNKPFDQVLEKTIFPALGLKHSYVNVPKTQMQNYAFGYNQENQPIRVNPGPLDAPAYGAPAYGVKSTLPDMLSFIHANLNPQKYPADIQRAINETHQGFYQVNTMYQALGWEEFSYPATLQTLLDSNSEQIVMKPNKVTAISKEPSVKMYHKTGSTNGFGTYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLDAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-81", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40586", "model_name": "ADC-81", "model_type_id": "40292"}, "2371": {"model_id": "2371", "ARO_accession": "3003888", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-82 is a beta-lactamase found in Acinetobacter baumannii.", "model_sequences": {"sequence": {"3665": {"dna_sequence": {"fmax": "1252", "fmin": "100", "accession": "NG_050718.1", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGTCTACTTTTATCCCCGCTTTTTATTTTTAGTACCTCAATTTATGCGGGCAATACACCAAAAGACCAAGAAATTAAAAAACTGGTAGATCAAAACTTTAAACCGTTATTAGAAAAATATGATGTGCCAGGTATGGCTGTGGGTGTTATTCAAAATAATAAAAAGTATGAAATGTATTATGGTCTTCAATCTGTTCAAGATAAAAAAGCCGTAAATAGCAGTACTATTTTTGAGCTAGGTTCTGTCAGTAAATTATTTACCGCGACAGCAGGTGGATATGCAAAAAATAAAGGAAAAATCTCTTTTGACGATACGCCTGGTAAGTATTGGAAAGAACTAAAAAATACACCGATTGACCAAGTTAACTTACTTCAACTCGCGACGTATACAAGTGGTAACCTTGCCTTGCAATTTCCAGATGAAGTAAAAACAGATCAGCAAGTTTTAACATTTTTTAAAGACTGGAAACCTAAAAACTCAATCGGTGAATATCGACAATATTCAAACCCAAGCATTGGTTTATTTGGAAAAGTTGTAGCTTTGTCTATGAATAAACCTTTCGACCAAGTCTTAGAAAAAACAATTTTTCCGGCCCTTGGCTTAAAACATAGCTATGTAAATGTACCTAAGACCCAGATGCAAAACTATGCTTTTGGCTATAACCAAGAAAATCAGCCGATTCGAGTTAACCCCGGCCCACTCGATGCCCTAGCATATGGCGTCAAATCGACACTACCCGACATGTTGAGTTTTATTCATGCCAACCTAAATCCACAAAAATATCCAGCAGATATTCAACGGGCAATTAATGAAACACATCAGGGTCGCTATCAAGTAAATACCATGTATCAGGCACTCGGTTGGGAAGAGTTTTCTTATCCGGCAACGTTACAAACTTTATTAGACAGTAATTCAGAACAGATTGTGATGAAACCTAATAAAGTGACTGCTATTTCAAAGGAACCTTCAGTTAAGATGTACCATAAAACTGGCTCAACTACCGGTTTCGGAACATATGTGGTGTTTATTCCTAAAGAAAATATTGGTTTAGTCATGTTAACCAATAAACGTATTCCAAATGAAGAGCGCATTAAGGCAGCTTATGCTGTGCTGAATGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter baumannii", "NCBI_taxonomy_id": "470", "NCBI_taxonomy_cvterm_id": "35507"}, "protein_sequence": {"accession": "WP_001211216.1", "sequence": "MRFKKISCLLLSPLFIFSTSIYAGNTPKDQEIKKLVDQNFKPLLEKYDVPGMAVGVIQNNKKYEMYYGLQSVQDKKAVNSSTIFELGSVSKLFTATAGGYAKNKGKISFDDTPGKYWKELKNTPIDQVNLLQLATYTSGNLALQFPDEVKTDQQVLTFFKDWKPKNSIGEYRQYSNPSIGLFGKVVALSMNKPFDQVLEKTIFPALGLKHSYVNVPKTQMQNYAFGYNQENQPIRVNPGPLDALAYGVKSTLPDMLSFIHANLNPQKYPADIQRAINETHQGRYQVNTMYQALGWEEFSYPATLQTLLDSNSEQIVMKPNKVTAISKEPSVKMYHKTGSTTGFGTYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLNAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-82", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40587", "model_name": "ADC-82", "model_type_id": "40292"}, "2299": {"model_id": "2299", "ARO_accession": "3003794", "model_param": {"blastp_bit_score": {"param_value": "1150", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}, "snp": {"param_value": {"3887": "S221P", "3875": "L10F", "3888": "R263C"}, "param_type_id": "36301", "param_type": "single resistance variant", "param_description": "A nucleotide or amino acid substitution that confers elevated resistance to antibiotic(s) relative to wild type. The most common type encoded in the CARD is an amino acid substitution gleaned from the literature with format [wild-type][position][mutation], e.g. R184Q. When present in the associated gene or protein, a single resistance variant confers resistance to an antibiotic drug or drug class. Single resistance variants are used by the protein variant and rRNA mutation models to detect antibiotic resistance from submitted sequences.", "experimental": {"3887": "S221P", "3875": "L10F", "3888": "R263C"}}}, "ARO_description": "walK is the histidine kinase sensor of a two-component regulatory system controlling peptidoglycan metabolism through regulation of the expression of most of the peptidoglycan hydrolase genes. Mutations in the gene have been found that confer daptomycin resistance.", "model_sequences": {"sequence": {"3565": {"dna_sequence": {"fmax": "27443", "fmin": "25616", "accession": "BX571856", "strand": "+", "sequence": "ATGAAGTGGCTAAAACAACTACAATCCCTTCATACTAAACTTGTAATTGTTTATGTATTACTGATTATCATTGGTATGCAAATTATCGGGCTGTATTTTACAAATAACCTTGAAAAAGAGCTGCTTGATAATTTTAAGAAGAATATTACGCAGTACGCTAAGCAATTAGAAATTAGTATTGAAAAAGTATATGACGAAAAGGGCTCCGTAAATGCACAAAAAGATATTCAAAATTTATTAAGTGAGTATGCCAACCGTCAAGAAATTGGAGAAATTCGTTTTATAGATAAAGACCAAATTATTATTGCGACGACGAAGCAGTCTAACCGTAGTCTAATCAATCAAAAAGCGAATGATAGTTCTGTCCAAAAAGCACTATCACTAGGACAATCAAACGATCATTTAATTTTAAAAGATTATGGCGGTGGTAAGGACCGTGTCTGGGTATATAATATCCCCGTTAAAGTCGATAAAAAGGTAATTGGTAATATTTATATCGAATCAAAAATTAATGACGTTTATAACCAATTAAATAATATAAATCAAATATTCATTGTTGGTACAGCTATTTCATTATTAATCACAGTCATCCTAGGATTCTTTATAGCGCGAACGATTACCAAACCAATCACCGATATGCGTAACCAGACGGTTGAAATGTCCAGAGGTAACTATACGCAACGTGTGAAGATTTATGGTAATGATGAAATTGGCGAATTAGCTTTAGCATTTAATAACTTGTCTAAACGTGTACAAGAAGCGCAGGCTAATACTGAAAGTGAGAAACGTAGACTGGACTCAGTTATCACCCATATGAGTGATGGTATTATTGCAACAGACCGTCGTGGACGTATTCGTATTGTCAATGATATGGCACTTAAGATGCTTGGTATGGCGAAAGAAGACATCATCGGATATTACATGTTAAGTGTATTAAGTCTTGAAGATGAATTTAAACTTGAAGAAATTCAAGAGAATAATGATAGTTTCTTATTAGATTTAAATGAAGAAGAAGGTCTAATCGCACGTGTTAACTTTAGTACGATTGTGCAGGAAACAGGATTTGTAACGGGTTATATCGCTGTGTTACATGACGTGACTGAACAACAACAAGTTGAACGTGAGCGTCGTGAATTTGTTGCCAATGTATCACATGAGTTACGTACACCTTTAACTTCTATGAATAGTTACATTGAAGCACTTGAAGAAGGTGCATGGAAAGATGAGGAACTTGCGCCACAATTTTTATCTGTTACCCGTGAAGAAACAGAACGAATGATTCGACTGGTCAATGACTTGCTACAGTTATCTAAAATGGATAATGAGTCTGATCAAATCAATAAAGAAATTATCGACTTTAACATGTTCATTAATAAAATTATTAATCGACATGAAATGTCTACGAAAGATACAACATTTATTCGAGATATTCCGAAAAAGACGATTTTCACAGAATTTGATCCTGATAAAATGACGCAAGTATTTGATAATGTCATTACAAATGCGATGAAATATTCTAGAGGCGATAAACGTGTCGAGTTCCACGTGAAACAAAATCCACTTTATAATCGAATGACGATTCGTATTAAAGATAATGGCATCGGTATTCCTATCAATAAAGTCGATAAGATATTCGACCGATTCTATCGTGTAGATAAGGCACGTACGCGTAAAATGGGTGGTACTGGATTAGGACTAGCCATTTCGAAAGAGATCGTGGAAGCTCACAATGGTCGTATTTGGGCAAACAGTGTAGAAGGTCAAGGCACATCTATCTTTATCACACTTCCATGTGAAGTCATTGAAGACGGTGATTGGGATGAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Staphylococcus aureus subsp. aureus MRSA252", "NCBI_taxonomy_id": "282458", "NCBI_taxonomy_cvterm_id": "35517"}, "protein_sequence": {"accession": "CAG39047", "sequence": "MKWLKQLQSLHTKLVIVYVLLIIIGMQIIGLYFTNNLEKELLDNFKKNITQYAKQLEISIEKVYDEKGSVNAQKDIQNLLSEYANRQEIGEIRFIDKDQIIIATTKQSNRSLINQKANDSSVQKALSLGQSNDHLILKDYGGGKDRVWVYNIPVKVDKKVIGNIYIESKINDVYNQLNNINQIFIVGTAISLLITVILGFFIARTITKPITDMRNQTVEMSRGNYTQRVKIYGNDEIGELALAFNNLSKRVQEAQANTESEKRRLDSVITHMSDGIIATDRRGRIRIVNDMALKMLGMAKEDIIGYYMLSVLSLEDEFKLEEIQENNDSFLLDLNEEEGLIARVNFSTIVQETGFVTGYIAVLHDVTEQQQVERERREFVANVSHELRTPLTSMNSYIEALEEGAWKDEELAPQFLSVTREETERMIRLVNDLLQLSKMDNESDQINKEIIDFNMFINKIINRHEMSTKDTTFIRDIPKKTIFTEFDPDKMTQVFDNVITNAMKYSRGDKRVEFHVKQNPLYNRMTIRIKDNGIGIPINKVDKIFDRFYRVDKARTRKMGGTGLGLAISKEIVEAHNGRIWANSVEGQGTSIFITLPCEVIEDGDWDE"}}}}, "ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "40480": {"category_aro_name": "daptomycin resistant walK", "category_aro_cvterm_id": "40480", "category_aro_accession": "3003795", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Mutations to the walK gene, part of a cell wall metabolism 2-component regulatory system, confers resistance to antibiotics, specifically daptomycin."}, "35985": {"category_aro_name": "daptomycin", "category_aro_cvterm_id": "35985", "category_aro_accession": "0000068", "category_aro_class_name": "Antibiotic", "category_aro_description": "Daptomycin is a novel lipopeptide antibiotic used in the treatment of certain infections caused by Gram-positive organisms. Daptomycin interferes with the bacterial cell membrane, reducing membrane potential and inhibiting cell wall synthesis."}}, "ARO_name": "Staphylococcus aureus walK with mutation conferring resistance to daptomycin", "model_type": "protein variant model", "model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: \"strict\" and \"loose\". A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "ARO_id": "40479", "model_name": "Staphylococcus aureus walK with mutation conferring daptomycin resistance", "model_type_id": "40293"}, "2293": {"model_id": "2293", "ARO_accession": "3003788", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}, "snp": {"param_value": {"3815": "A64V"}, "param_type_id": "36301", "param_type": "single resistance variant", "param_description": "A nucleotide or amino acid substitution that confers elevated resistance to antibiotic(s) relative to wild type. The most common type encoded in the CARD is an amino acid substitution gleaned from the literature with format [wild-type][position][mutation], e.g. R184Q. When present in the associated gene or protein, a single resistance variant confers resistance to an antibiotic drug or drug class. Single resistance variants are used by the protein variant and rRNA mutation models to detect antibiotic resistance from submitted sequences.", "experimental": {"3815": "A64V"}}}, "ARO_description": "Point mutations that occur within the Bacillus subtilis pgsA gene resulting in resistance to daptomycin.", "model_sequences": {"sequence": {"3558": {"dna_sequence": {"fmax": "2807", "fmin": "1664", "accession": "AB016245", "strand": "+", "sequence": "ATGAAAAAAGAACTGAGCTTTCATGAAAAGCTGCTAAAGCTGACAAAACAGCAAAAAAAGAAAACCAATAAGCACGTATTTATTGCCATTCCGATCGTTTTTGTCCTTATGTTCGCTTTCATGTGGGCGGGAAAAGCGGAAACGCCGAAGGTCAAAACGTATTCTGACGACGTACTCTCAGCCTCATTTGTAGGCGATATTATGATGGGACGCTATGTTGAAAAAGTAACGGAGCAAAAAGGGGCAGACAGTATTTTTCAATATGTTGAACCGATCTTTAGAGCCTCGGATTATGTAGCAGGAAACTTTGAAAACCCGGTAACCTATCAAAAGAATTATAAACAAGCAGATAAAGAGATTCATCTGCAGACGAATAAGGAATCAGTGAAAGTCTTGAAGGATATGAATTTCACGGTTCTCAACAGCGCCAACAACCACGCAATGGATTACGGCGTTCAGGGCATGAAAGATACGCTTGGAGAATTTGCGAAGCAAAATCTTGATATCGTTGGAGCGGGATACAGCTTAAGTGATGCGAAAAAGAAAATTTCGTACCAGAAAGTCAACGGGGTAACGATTGCGACGCTTGGCTTTACCGATGTGTCCGGGAAAGGTTTCGCGGCTAAAAAGAATACGCCGGGCGTGCTGCCCGCAGATCCTGAAATCTTCATCCCTATGATTTCAGAAGCGAAAAAACATGCTGACATTGTTGTTGTGCAGTCACACTGGGGCCAAGAGTATGACAATGATCCAAACGACCGCCAGCGCCAGCTTGCAAGAGCCATGTCTGATGCGGGAGCTGACATCATCGTCGGCCATCATCCGCACGTCTTAGAACCGATTGAAGTATATAACGGAACCGTCATTTTCTACAGCCTCGGCAACTTTGTCTTTGACCAAGGCTGGACGAGAACAAGAGACAGTGCACTGGTTCAGTATCACCTGAAGAAAAATGGAACAGGCCGCTTTGAAGTGACACCGATCGATATCCATGAAGCGACACCTGCACCTGTGAAAAAAGACAGCCTTAAACAGAAAACCATTATTCGCGAACTGACGAAAGACTCTAATTTCGCTTGGAAAGTAGAAGACGGAAAACTGACGTTTGATATTGATCATAGTGACAAACTAAAATCTAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Bacillus subtilis", "NCBI_taxonomy_id": "1423", "NCBI_taxonomy_cvterm_id": "36833"}, "protein_sequence": {"accession": "BAA85265", "sequence": "MKKELSFHEKLLKLTKQQKKKTNKHVFIAIPIVFVLMFAFMWAGKAETPKVKTYSDDVLSASFVGDIMMGRYVEKVTEQKGADSIFQYVEPIFRASDYVAGNFENPVTYQKNYKQADKEIHLQTNKESVKVLKDMNFTVLNSANNHAMDYGVQGMKDTLGEFAKQNLDIVGAGYSLSDAKKKISYQKVNGVTIATLGFTDVSGKGFAAKKNTPGVLPADPEIFIPMISEAKKHADIVVVQSHWGQEYDNDPNDRQRQLARAMSDAGADIIVGHHPHVLEPIEVYNGTVIFYSLGNFVFDQGWTRTRDSALVQYHLKKNGTGRFEVTPIDIHEATPAPVKKDSLKQKTIIRELTKDSNFAWKVEDGKLTFDIDHSDKLKSK"}}}}, "ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "39627": {"category_aro_name": "daptomycin resistant pgsA", "category_aro_cvterm_id": "39627", "category_aro_accession": "3003080", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "pgsA or phosphatidylglycerophosphate synthetase is an integral membrane protein involved in phospholipid biosynthesis. It is a CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase. Laboratory experiments have detected mutations conferring daptomycin resistance in Entercoccus."}, "35985": {"category_aro_name": "daptomycin", "category_aro_cvterm_id": "35985", "category_aro_accession": "0000068", "category_aro_class_name": "Antibiotic", "category_aro_description": "Daptomycin is a novel lipopeptide antibiotic used in the treatment of certain infections caused by Gram-positive organisms. Daptomycin interferes with the bacterial cell membrane, reducing membrane potential and inhibiting cell wall synthesis."}}, "ARO_name": "Bacillus subtilis pgsA with mutation conferring resistance to daptomycin", "model_type": "protein variant model", "model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: \"strict\" and \"loose\". A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "ARO_id": "40473", "model_name": "Bacillus subtilis pgsA mutations conferring resistance to daptomycin", "model_type_id": "40293"}, "2297": {"model_id": "2297", "ARO_accession": "3003792", "model_param": {"blastp_bit_score": {"param_value": "350", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}, "snp": {"param_value": {"3870": "D191N"}, "param_type_id": "36301", "param_type": "single resistance variant", "param_description": "A nucleotide or amino acid substitution that confers elevated resistance to antibiotic(s) relative to wild type. The most common type encoded in the CARD is an amino acid substitution gleaned from the literature with format [wild-type][position][mutation], e.g. R184Q. When present in the associated gene or protein, a single resistance variant confers resistance to an antibiotic drug or drug class. Single resistance variants are used by the protein variant and rRNA mutation models to detect antibiotic resistance from submitted sequences.", "experimental": {"3870": "D191N"}}}, "ARO_description": "liaR is a response regulator found in the liaFSR signal transduction pathway. Mutations confer daptomycin resistance.", "model_sequences": {"sequence": {"3563": {"dna_sequence": {"fmax": "2789746", "fmin": "2789113", "accession": "NC_004668", "strand": "-", "sequence": "TTATTTGGCTAAACCATGTTGAAAAGCATAAATCGCCGCTTGGGTCCGATCATCCACATCTAGTTTTGCTAAAATGTTTGAAACATGTGTTTTAACTGTTTTCAAAGTGATAAAGAGTTCATCAGCTATTTCCTGATTACTTTTACCTTGTGCAATCAACATTAAAATTTCGTGTTCCCGGTTTGTCAAATCTTCGTGCAACACCGGCTCTTGTTTTTTTGTTAACCGTTCCATCATCTTATGCGTCACTTCAGGTTCCAACACACGCTCTCCGCGATAAGTCGCCCGAATTGCATCAGCAATCTCATGTGCTGTTGATGTCTTTAATAGGTAGCCCGCTGCACCAGCTTCAATCGCCGGATACACTTTTTCATCATCAATAAAACTCGTCACAATAATAATCTTGGCTTCTGGCCAATCTTTCAAGATCGCTTTTGTTGAATCAATGCCGTCCATTTCTTCCATTACCAAATCCATCAAAATAACATCTGGACGTAGTTCCAATGCTTTTTCATAGCCAATCTTACCGTTTTCTGCTTCGCCTACGACTTCTATATCCTCTTGAATAGATAAATATGATGAAACGCCTAAACGGACCATTTCATGGTCATCCACTAACATTACTTTGATCAC"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Enterococcus faecalis V583", "NCBI_taxonomy_id": "226185", "NCBI_taxonomy_cvterm_id": "37592"}, "protein_sequence": {"accession": "NP_816529", "sequence": "MIKVMLVDDHEMVRLGVSSYLSIQEDIEVVGEAENGKIGYEKALELRPDVILMDLVMEEMDGIDSTKAILKDWPEAKIIIVTSFIDDEKVYPAIEAGAAGYLLKTSTAHEIADAIRATYRGERVLEPEVTHKMMERLTKKQEPVLHEDLTNREHEILMLIAQGKSNQEIADELFITLKTVKTHVSNILAKLDVDDRTQAAIYAFQHGLAK"}}}}, "ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "41427": {"category_aro_name": "daptomycin resistant liaR", "category_aro_cvterm_id": "41427", "category_aro_accession": "3004263", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Mutations to the liaR response regulator that confer resistance to daptomycin."}, "35985": {"category_aro_name": "daptomycin", "category_aro_cvterm_id": "35985", "category_aro_accession": "0000068", "category_aro_class_name": "Antibiotic", "category_aro_description": "Daptomycin is a novel lipopeptide antibiotic used in the treatment of certain infections caused by Gram-positive organisms. Daptomycin interferes with the bacterial cell membrane, reducing membrane potential and inhibiting cell wall synthesis."}}, "ARO_name": "Enterococcus faecalis liaR mutant conferring daptomycin resistance", "model_type": "protein variant model", "model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: \"strict\" and \"loose\". A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "ARO_id": "40477", "model_name": "Enterococcus faecalis liaR mutant conferring daptomycin resistance", "model_type_id": "40293"}, "2296": {"model_id": "2296", "ARO_accession": "3003791", "model_param": {"blastp_bit_score": {"param_value": "650", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}, "snp": {"param_type": "single resistance variant", "param_value": {"3865": "A180T"}, "clinical": {"3865": "A180T"}, "param_type_id": "36301", "param_description": "A nucleotide or amino acid substitution that confers elevated resistance to antibiotic(s) relative to wild type. The most common type encoded in the CARD is an amino acid substitution gleaned from the literature with format [wild-type][position][mutation], e.g. R184Q. When present in the associated gene or protein, a single resistance variant confers resistance to an antibiotic drug or drug class. Single resistance variants are used by the protein variant and rRNA mutation models to detect antibiotic resistance from submitted sequences."}}, "ARO_description": "liaS is a histidine kinase found in the liaFSR signal transduction pathway. Mutations confer daptomycin resistance.", "model_sequences": {"sequence": {"3562": {"dna_sequence": {"fmax": "732", "fmin": "0", "accession": "AE016830", "strand": "-", "sequence": "TTTTAAGTTATCCACATTTTTTAGATAACCAAAATTTAAACATATAGGAGGTCACTGTATGCCCGACGTGGAAAGTTTTTGGCATAGCCTTGAAGAAGCCTATCAAGCGATTTTGTCGGCGCCAAGTTTTGATGCTTGGATTAAAACCACACGCCCTTTGAAATTAGACAACAATCAATTGTGGCTAGAAGTCCCTTCTGCAGTTCATCGTGATTACTGGGAAAAAAATCTTTCGGCAAAAATTGTCGAAACTGGATTTAAATTGACCGGTGCAGAAGTGATGCCCCATTTTGTTGTTGCCGATGAAAAAGACGCAGCACTGGCACAAGAACTCGAAGAACCTGCCGAAGAAGAAGTTGTTTTTAGTGAACAAAGTAAAAAAGCGATGCTTAATCCTAAGTACACTTTCGACACCTTCGTTATTGGTAAAGGAAACCAAATGGCTCATGCTGCAGCGCTTGTTGTTGCCGAGGATCCAGGTTCGATTTACAATCCCCTTTTCTTCTATGGTGGTGTAGGGTTAGGGAAAACCCATTTGATGCATGCTATTGGTCATCAAATGTTAGTGAATCAACCAGATGCCAAAGTCAAATATGTTAGTAGCGAAACGTTTACGAATGAATTTATCAACTCAATTCAAACAAAGACATCCGAACAATTTCGGAAAGAATATCGCAATGTTGACTTATTATTAGTCGATGATATTCAATTTTTGGCGGAAAAAGAAGCAAC"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Enterococcus faecalis V583", "NCBI_taxonomy_id": "226185", "NCBI_taxonomy_cvterm_id": "37592"}, "protein_sequence": {"accession": "AAO82600.1", "sequence": "MTDRISRRMISLYASLSTFIVILITLFSYFHSIKQNRWLLELLQRKVFYLPLIVHIVLISLLIGLLTFLLISLVQKGQYGRIEEKLRLLANGNYESPVLNKPTTSENQDHYLTEVEQDIWSIKNKLLEMSKELQLLNSRPQLMDGQTKEEILENERHRLARELHDSVSQQLFAAMMMLSALNEQAQRTETPEPYRKQLAMVAEIINASQSEMRALLLHLRPISLEGKSLRKGIEQLLKELQTKIKIELIWDVEDVHLNSSIEDHLFRIVQELLSNTLRHAKAKELEVYLHQVDKNVLLRIVDDGVGFDMKEQSNKAGSYGLNNIRERVVGMGGTVKIISFKGQGTSVEIKVPVIKEETASDQSNVSG"}}}}, "ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "41428": {"category_aro_name": "daptomycin resistant liaS", "category_aro_cvterm_id": "41428", "category_aro_accession": "3004264", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Mutations in the liaS histidine kinase that confer daptomycin resistance."}, "35985": {"category_aro_name": "daptomycin", "category_aro_cvterm_id": "35985", "category_aro_accession": "0000068", "category_aro_class_name": "Antibiotic", "category_aro_description": "Daptomycin is a novel lipopeptide antibiotic used in the treatment of certain infections caused by Gram-positive organisms. Daptomycin interferes with the bacterial cell membrane, reducing membrane potential and inhibiting cell wall synthesis."}}, "ARO_name": "Enterococcus faecalis liaS mutant conferring daptomycin resistance", "model_type": "protein variant model", "model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: \"strict\" and \"loose\". A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "ARO_id": "40476", "model_name": "Enterococcus faecalis liaS mutant conferring daptomycin resistance", "model_type_id": "40293"}, "2295": {"model_id": "2295", "ARO_accession": "3003790", "model_param": {"blastp_bit_score": {"param_value": "400", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}, "snp": {"param_type": "single resistance variant", "param_value": {"3860": "L39F", "3859": "I144T"}, "clinical": {"3860": "L39F", "3859": "I144T"}, "param_type_id": "36301", "param_description": "A nucleotide or amino acid substitution that confers elevated resistance to antibiotic(s) relative to wild type. The most common type encoded in the CARD is an amino acid substitution gleaned from the literature with format [wild-type][position][mutation], e.g. R184Q. When present in the associated gene or protein, a single resistance variant confers resistance to an antibiotic drug or drug class. Single resistance variants are used by the protein variant and rRNA mutation models to detect antibiotic resistance from submitted sequences."}}, "ARO_description": "liaF is an accessory protein that acts as a negative regulator of liaRS signal transduction pathway. Mutations confer daptomycin resistance.", "model_sequences": {"sequence": {"3561": {"dna_sequence": {"fmax": "1854982", "fmin": "1854250", "accession": "LN999844.1", "strand": "-", "sequence": "TCATATTCGTATCACCTCGACATCTCCAACCAAGGTATTGGTAATGATCTTCAATCTGCGAGGATTTTCATCATAATCACTGCTGCAGATTTTGATCTGTTCATTTTTTAAGGAAAACTGCTCTTCTTCAAACAAGACATTTCCTACTAATGTCGCATGCTCTAATCGAATAGCCACTCCCAGGGGTACTAAGATCCGTGTTCTGCCTATCCCTTTTCTTACAATCACAATATTATCATCTTTTGGCAAAAGTGTATTGCCCAAATCGATGATAGTATCACCAGAAATGATGGCAATGTTGATATCATCCCATTCATAGACGTCGTTTCCAATACGTTGGTTACCAAATAATTGCTGTCTTTTACGCTCATTATTATGTGTTTTTAATTGCTCTGTTTGGACCATCATGATCTGTTTTTTTCGCCAAAAAGCATTTTTTGTCAAATCTATTCCTGAAATCTCTACACCTTTCAGGCCGATAAATAAAACGGCCAATACAACCATCATCCATAAAGCAGGACTGTTGACTAAGCTAAAAAAAATGACCAAGCTCCCTAAGATCAATTGAAAATTTTGAAATTTAGTACGAGGATATTTGCGCATAGCTAGATATATATTGAAAATACCGAATATTACTAAAAGCAAAAGTCCAGTATTGTTTACGATTTGCCAAACAGCAAATAACAGCAGCAGTGCTTCGACTACCACAAAAAAACGCCAAGAACTATTCAT"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Enterococcus faecium", "NCBI_taxonomy_id": "1352", "NCBI_taxonomy_cvterm_id": "36779"}, "protein_sequence": {"accession": "CUX99269.1", "sequence": "MNSSWRFFVVVEALLLLFAVWQIVNNTGLLLLVIFGIFNIYLAMRKYPRTKFQNFQLILGSLVIFFSLVNSPALWMMVVLAVLFIGLKGVEISGIDLTKNAFWRKKQIMMVQTEQLKTHNNERKRQQLFGNQRIGNDVYEWDDINIAIISGDTIIDLGNTLLPKDDNIVIVRKGIGRTRILVPLGVAIRLEHATLVGNVLFEEEQFSLKNEQIKICSSDYDENPRRLKIITNTLVGDVEVIRI"}}}}, "ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "41426": {"category_aro_name": "daptomycin resistant liaF", "category_aro_cvterm_id": "41426", "category_aro_accession": "3004262", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Mutations to the liaF accessory protein that confer resistance to daptomycin."}, "35985": {"category_aro_name": "daptomycin", "category_aro_cvterm_id": "35985", "category_aro_accession": "0000068", "category_aro_class_name": "Antibiotic", "category_aro_description": "Daptomycin is a novel lipopeptide antibiotic used in the treatment of certain infections caused by Gram-positive organisms. Daptomycin interferes with the bacterial cell membrane, reducing membrane potential and inhibiting cell wall synthesis."}}, "ARO_name": "Enterococcus faecium liaF mutant conferring daptomycin resistance", "model_type": "protein variant model", "model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: \"strict\" and \"loose\". A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "ARO_id": "40475", "model_name": "Enterococcus faecium liaF mutant conferring daptomycin resistance", "model_type_id": "40293"}, "2369": {"model_id": "2369", "ARO_accession": "3003886", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-80 is a beta-lactamase found in Acinetobacter baumannii.", "model_sequences": {"sequence": {"3663": {"dna_sequence": {"fmax": "1152", "fmin": "0", "accession": "NG_048686.1", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGTCTACTTTTATCCCCGCTTTTTATTTTTAGTACCTCAATTTATGCGGGCAATACCCCAAAAGACCAAGAAATTAAAAAACTGGTAGATCAAAATTTTAAACCATTATTAGAAAAATATGATGTGCCGGGTATGGCTGTGGGTGTTATTCAAAATAATAAAAAGTATGAAATGTATTATGGTCTTCAATCTGTTCAAGATAAAAAAGCCGTAAATAGCAGTACTATTTTTGAGCTAGGTTCTGTCAGTAAATTATTTACCGCGACAGCAGGTGGATATGCAAAAAATAAAGGAAAAATCTCTTTTGACGATACGCCTGGTAAATATTGGAAAGTGCTAAAAAATACACCGATTGACCAAGTTAACTTACTTCAACTCGCGACGTATACAAGTGGTAACCTTGCCTTGCAGTTTCCAGATGAAGTACAAACAGACCAACAAGTTTTAACTTTTTTCAAAGACTGGAAACCTAAAAACCCAATCGGTGAATACAGACAATATTCAAATCCAAGTATTGGCCTATTTGGAAAGGTTGTAGCTTTGTCTATGAATAAACCTTTCGATCAAGTCTTAGAAAAAACAATTTTTCCGGCCCTTGGCTTAAAACATAGCTATGTAAATGTACCTAAGACCCAAATGCAAAACTATGCTTTTGGCTATAACCAAGAAAATCAGCCGATTCGAGTTAACCCCGGCCCACTCGATGCCCCAGCATACGGCGTCAAATCCACCTTACCGGATATGTTGAGTTTTATTCATGCCAACCTTAACCCACAGAAATATCCGACAGATATTCAACGGGCAATTAATGAAACACATCAAGGTCGCTATCAAGTAAATACCATGTATCAAGCGCTTGGTTGGGAAGAGTTTTCTTATCCGGCAACGTTACAAACTTTATTAGACAGTAATTCAGAACAGATTGTGATGAAACCTAATAAAGTGACTGCTATTTCAAAAGAGCCTTCAGTTAAGATGTACCATAAAACTGGCTCAACTAACGGTTTCGGAACATATATAGTGTTTATTCCTAAAGAAAATATTGGTTTAGTCATGTTAACCAATAAACGTATTCCAAATGAAGAGCGCATTAAGGCAGCTTATGCTGTGCTGAGTGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter baumannii", "NCBI_taxonomy_id": "470", "NCBI_taxonomy_cvterm_id": "35507"}, "protein_sequence": {"accession": "WP_029424536.1", "sequence": "MRFKKISCLLLSPLFIFSTSIYAGNTPKDQEIKKLVDQNFKPLLEKYDVPGMAVGVIQNNKKYEMYYGLQSVQDKKAVNSSTIFELGSVSKLFTATAGGYAKNKGKISFDDTPGKYWKVLKNTPIDQVNLLQLATYTSGNLALQFPDEVQTDQQVLTFFKDWKPKNPIGEYRQYSNPSIGLFGKVVALSMNKPFDQVLEKTIFPALGLKHSYVNVPKTQMQNYAFGYNQENQPIRVNPGPLDAPAYGVKSTLPDMLSFIHANLNPQKYPTDIQRAINETHQGRYQVNTMYQALGWEEFSYPATLQTLLDSNSEQIVMKPNKVTAISKEPSVKMYHKTGSTNGFGTYIVFIPKENIGLVMLTNKRIPNEERIKAAYAVLSAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-80", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40585", "model_name": "ADC-80", "model_type_id": "40292"}, "2368": {"model_id": "2368", "ARO_accession": "3003885", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-79 is a beta-lactamase found in Acinetobacter baumannii.", "model_sequences": {"sequence": {"3662": {"dna_sequence": {"fmax": "1152", "fmin": "0", "accession": "NG_048684.1", "strand": "+", "sequence": "ATGCAATTTAAAAAAATTTCTTGTCTACTTTTATCCCCGCTTTTTATTTTTAGTACCTCAATTTATGCGGACAATACACCAAAAGACCAAGAAATTAAAAAACTGGTAGATCAAAATTTTAAACCATTATTAGAAAAATATGATGTGCCGGGTATGGCTGTGGGTGTTATTCAAAATAATAAAAAGTATGAAATGTATTATGGTCTTCAATCTGTTCAAGATAAAAAAGCCGTAAATAGCAGTACTATTTTTGAGCTAGGTTCTGTCAGTAAATTATTTACCGCGACAGCAGGTGGATATGCAAAAAATAAAGGAAAAATCTCTTTTGACGATACGCCTGGTAAATATTGGAAAGAGCTAAAAAATACACCGATTGACCAAGTTAACTTACTTCAACTCGCGACGTATACAAGTGGTAACCTTGCCTTGCAGTTCCCAGATGAAGTACAAACAGATCAACAAGTTTTAACTTTTTTCAAAGACTGGAAACCTAAAAACCCAATCGGTGAATACAGACAATATTCAAATCCAAGTATTGGCCTATTTGGAAAGGTTGTAGCTTTGTCTATGAATAAACCTTTCGACCAAGTGTTAGAAAAAACAATTTTTCCGGCCCTTGGCTTAAAACATAGCTATGTAAATGTACCTAAGACCCAAATGCAAAACTATGCTTTTGGCTATAACCAAGAAAATCAGCCGATTCGAGTTAACCCCGGCCCACTCGATGCCCCAGCATATGGCGTCAAATCGACACTACCCGACATGTTGAGTTTTATTCATGCCAACCTTAACCCACAGAAATATCCGGCAGATATTCAACGGGCAATTAATGAAACACATCAAGGGTTCTATCAAGTAAATACCATGTATCAGGCACTCGGTTGGGAAGAGTTTTCTTATCCGGCAACGTTACAAACTTTATTAGACAGTAATTCAGAACAGATTGTGATGAAACCTAATAAAGTGACTGCTATTTCAAAGGAACCTTCAGTTAAGATGTACCATAAAACTGGCTCAACTAACGGTTTCGGAACATATGTAGTGTTTATTCCTAAAGAAAATATTGGTTTAGTCATGTTAACCAATAAACGTATTCCAAATGAAGAGCGCATTAAGGCAGCTTATGCTGTGCTGAATGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter baumannii", "NCBI_taxonomy_id": "470", "NCBI_taxonomy_cvterm_id": "35507"}, "protein_sequence": {"accession": "WP_001159760.1", "sequence": "MQFKKISCLLLSPLFIFSTSIYADNTPKDQEIKKLVDQNFKPLLEKYDVPGMAVGVIQNNKKYEMYYGLQSVQDKKAVNSSTIFELGSVSKLFTATAGGYAKNKGKISFDDTPGKYWKELKNTPIDQVNLLQLATYTSGNLALQFPDEVQTDQQVLTFFKDWKPKNPIGEYRQYSNPSIGLFGKVVALSMNKPFDQVLEKTIFPALGLKHSYVNVPKTQMQNYAFGYNQENQPIRVNPGPLDAPAYGVKSTLPDMLSFIHANLNPQKYPADIQRAINETHQGFYQVNTMYQALGWEEFSYPATLQTLLDSNSEQIVMKPNKVTAISKEPSVKMYHKTGSTNGFGTYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLNAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-79", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40584", "model_name": "ADC-79", "model_type_id": "40292"}, "2367": {"model_id": "2367", "ARO_accession": "3003884", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-78 is a beta-lactamase found in Acinetobacter baumannii.", "model_sequences": {"sequence": {"3661": {"dna_sequence": {"fmax": "1152", "fmin": "0", "accession": "NG_048683.1", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGTCTACTTTTATCCCCGCTTTTTATTTTTAGTACCTCAATTTATGCGGGCAATACACCAAAAGACCAAGAAATTAAAAAACTGGTAGATCAAAACTTTAAACCGTTATTAGAAAAATATGATGTGCCAGGTATGGCTGTGGGTGTTATTCAAAATAATAAAAAGTATGAAATGTATTATGGTCTTCAATCTGTTCAAGATAAAAAAGCCGTAAATAGCAGTACTATTTTTGAGCTAGGTTCTGTCAGTAAATTATTTACCGCGACAGCAGGTGGATATGCAAAAAATAAAGGAAAAATCTCTTTTGACGATACGCCTGGTAAGTATTGGAAAGAACTAAAAAATACACCGATTGACCAAGTTAACTTACTTCAACTCGCGACGTATACAAGTGGTAACCTTGCCTTGCAATTTCCAGATGAAGTAAAAACAGATCAGCAAGTTTTAACATTTTTTAAAGACTGGAAACCTAAAAACTCAATCGGTGAATATCGACAATATTCAAACCCAAGCATTGGTTTATTTGGAAAAGTTGTAGCTTTGTCTATGAATAAACCTTTCGACCAAGTCTTAGAAAAAACAATTTTTCCGGCCCTTGGCTTAAAACATAGCTATGTAAATGTACCTAAGACCCAGATGCAAAACTATGCTTTTGGCTATAACCAAGAAAATCAGCCGATTCGAGTTAACCCCGGCCCACTCGATGCCCCAGCATATGGCGTCAAATCGACACTACCCGACATGTTGAGTTTTATTCATGCCAACCTAAATCCACAAAAATATCCAGCAGATATTCAACGGGCAATTAATGAAACACATCAGGGTCGCTATCAAGTAAATACCATGTATCAGGCACTCGGTTGGGAAGAGTTTTCTTATCCGGCAACGTTACAAACTTTATTAGACAGTAATTCAGAACAGATTGTGATGAAACCTAATAAAGTGACTGCTATTTCAAAGGAACCTTCAGTTAAGATGTACCATAAAACTGGCTCAACTACCGGTTTCGGAACATATGTGGTGTTTATTCCTAAAGAAAATATTGGCTTAGTCATGTTAACCAATAAACGTATTCCAAATGAAGAGCGCATTAAGGCAGCTTATGCTGTGCTGGATGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter baumannii", "NCBI_taxonomy_id": "470", "NCBI_taxonomy_cvterm_id": "35507"}, "protein_sequence": {"accession": "WP_057691006.1", "sequence": "MRFKKISCLLLSPLFIFSTSIYAGNTPKDQEIKKLVDQNFKPLLEKYDVPGMAVGVIQNNKKYEMYYGLQSVQDKKAVNSSTIFELGSVSKLFTATAGGYAKNKGKISFDDTPGKYWKELKNTPIDQVNLLQLATYTSGNLALQFPDEVKTDQQVLTFFKDWKPKNSIGEYRQYSNPSIGLFGKVVALSMNKPFDQVLEKTIFPALGLKHSYVNVPKTQMQNYAFGYNQENQPIRVNPGPLDAPAYGVKSTLPDMLSFIHANLNPQKYPADIQRAINETHQGRYQVNTMYQALGWEEFSYPATLQTLLDSNSEQIVMKPNKVTAISKEPSVKMYHKTGSTTGFGTYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLDAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-78", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40583", "model_name": "ADC-78", "model_type_id": "40292"}, "2366": {"model_id": "2366", "ARO_accession": "3003883", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-77 is a beta-lactamase found in Acinetobacter baumannii.", "model_sequences": {"sequence": {"3660": {"dna_sequence": {"fmax": "1205", "fmin": "53", "accession": "NG_048682.1", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGTCTACTTTTATCTCCGCTTTTTATTTTTAGTACCTCAATTTATGCGGGCAATACACCAAAAGACCAAGAAATTAAAAAACTGGTAGATCAAAACTTTAAACCGTTATTAGAAAAATATGATGTGCCAGGTATGGCTGTGGGTGTTATTCAAAATAATAAAAAGTATGAAATGTATTATGGTCTTCAATCTGTTCAAGATAAAAAAGCCGTAAATAGCAGTACTATTTTTGAGCTAGGTTCTGTCAGTAAATTATTTACCGCGACAGCAGGTGGATATGCAAAAAATAAAGGAAAAATCTCTTTTGACGATACGCCTGGTAAGTATTGGAAAGAACTAAAAAATACACCGATTGACCAAGTTAACTTACTTCAACTCGCGACGTATACAAGTGGTAACCTTGCCTTGCAGTTTCCAGATGAAGTACAAACAGACCAACAAGTTTTAACTTTTTTCAAAGACTGGAAACCTAAAAACCCAATCGGTGAATACAGACAATATTCAAATCCAAGTATTGGCCTATTTGGAAAGGTTGTAGCTTTGTCTATGAATAAACCTTTCGACCAAGTCTTAGAAAAAACAATTTTTCCGGCCCTTGGCTTAAAACATAGCTATGTAAATGTACCTAAGACCCAAATGCAAAACTATGCTTTTGGCTATAACCAAGAAAATCAGCCGATTCGAGTTAACCCCGGCCCACTCGATGCCCCAGCATACGGCGTCAAATCCACCTTACCGGATATGTTGAGTTTTATTAATGCCAACCTTAACCCACAAAAATATCCGACAGATATTCAACGGGCAATTAATGAAACACATCAAGGTCGCTATCAAGTAAATACCATGTATCAAGCGCTTGGTTGGGAAGAGTTTTCTTATCCGGCAACGTTACAAACTTTATTAGACAGTAATTCAGAACAGATTGTGATGAAGCCTAATAAAGTGACTGCTATTTCAAAAGAGCCTTCAGTTAAGATGTACCATAAAACTGGCTCAACTACCGGTTTCGGAACATATGTAGTGTTTATTCCTAAAGAAAATATTGGTTTAGTCATGTTAACCAATAAACGTATTCCAAATGAAGAGCGCATTAAGGCAGCTTATGCTGTGCTGAATGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter baumannii", "NCBI_taxonomy_id": "470", "NCBI_taxonomy_cvterm_id": "35507"}, "protein_sequence": {"accession": "WP_063857818.1", "sequence": "MRFKKISCLLLSPLFIFSTSIYAGNTPKDQEIKKLVDQNFKPLLEKYDVPGMAVGVIQNNKKYEMYYGLQSVQDKKAVNSSTIFELGSVSKLFTATAGGYAKNKGKISFDDTPGKYWKELKNTPIDQVNLLQLATYTSGNLALQFPDEVQTDQQVLTFFKDWKPKNPIGEYRQYSNPSIGLFGKVVALSMNKPFDQVLEKTIFPALGLKHSYVNVPKTQMQNYAFGYNQENQPIRVNPGPLDAPAYGVKSTLPDMLSFINANLNPQKYPTDIQRAINETHQGRYQVNTMYQALGWEEFSYPATLQTLLDSNSEQIVMKPNKVTAISKEPSVKMYHKTGSTTGFGTYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLNAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-77", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40582", "model_name": "ADC-77", "model_type_id": "40292"}, "2365": {"model_id": "2365", "ARO_accession": "3003882", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-76 is a beta-lactamase found in Acinetobacter baumannii.", "model_sequences": {"sequence": {"3659": {"dna_sequence": {"fmax": "1152", "fmin": "0", "accession": "NG_048681.1", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGTCTACTTTTATCCCCGCTTTTTATTTTTAGTACCTCAATTTATGCGGGCAATACCCCAAAAGACCAAGAAATTAAAAAACTGGTAGATCAAAATTTTAAACCGTTATTAGAAAAATATGATGTGCCGGGTATGGCTGTGGGTGTTATTCAAAATAATAAAAAGTATGAAATGTATTATGGTCTTCAATCTGTTCAAGATAAAAAAGCCGTAAATAGCAGTACTATTTTTGAGCTAGGTTCTGTCAGTAAATTATTTACCGCGACAGCAGGTGGATATGCAAAAAATAAAGGAAAAATCTCTTTTGACGATACGCCTGGTAAATATTGGAAAGTGCTAAAAAATACACCGATTGACCAAGTTAACTTACTTCAACTCGCGACGTATACAAGTGGTAACCTTGCCTTGCAGTTTCCAGATGAAGTACAAACAGACCAACAAGTTTTAACTTTTTTCAAAGACTGGAAACCTAAAAACCCAATCGGTGAATCCAGACAATATTCAAATCCAAGTATTGGCCTATTTGGAAAGGTTGTAGCTTTGTCTATGAATAAACCTTTCGACCAAGTCTTAGAAAAAACAATTTTTCCGGCCCTTGGCTTAAAACATAGCTATGTAAATGTACCTAAGACCCAAATGCAAAACTATGCTTTTGGCTATAACCAAGAAAATCAGCCGATTCGAGTTAACCCCGGCCCACTCGATGCCCCAGCATACGGTGTCAAATCGACACTACCCGACATGTTGAGTTTTATTCATGCCAACCTTAACCCACAGAAATATCCGACAGATATTCAACGGGCAATTAATGAAACACATCAAGGTCGCTATCAAGTAAATACCATGTATCAAGCGCTTGGTTGGGAAGAGTTTTCTTATCCGGCAACGTTACAAACTTTATTAGACAGTAATTCAGAACAGATTGTGATGAAACCTAATAAAGTGACTGCTATTTCAAAGGAACCTTCAGTTAAGATGTACCATAAAACTGGCTCAACTAACGGTTTCGGAACATATGTGGTGTTTATTCCTAAAGAAAATATTGGTTTAGTCATGTTAACCAATAAACGTATTCCAAATGAAGAGCGTATTAAGGCAGCGTATGCAGTTTTAAATGCAATAAAAAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter baumannii", "NCBI_taxonomy_id": "470", "NCBI_taxonomy_cvterm_id": "35507"}, "protein_sequence": {"accession": "WP_001211237.1", "sequence": "MRFKKISCLLLSPLFIFSTSIYAGNTPKDQEIKKLVDQNFKPLLEKYDVPGMAVGVIQNNKKYEMYYGLQSVQDKKAVNSSTIFELGSVSKLFTATAGGYAKNKGKISFDDTPGKYWKVLKNTPIDQVNLLQLATYTSGNLALQFPDEVQTDQQVLTFFKDWKPKNPIGESRQYSNPSIGLFGKVVALSMNKPFDQVLEKTIFPALGLKHSYVNVPKTQMQNYAFGYNQENQPIRVNPGPLDAPAYGVKSTLPDMLSFIHANLNPQKYPTDIQRAINETHQGRYQVNTMYQALGWEEFSYPATLQTLLDSNSEQIVMKPNKVTAISKEPSVKMYHKTGSTNGFGTYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLNAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-76", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40581", "model_name": "ADC-76", "model_type_id": "40292"}, "2364": {"model_id": "2364", "ARO_accession": "3003881", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-75 is a beta-lactamase found in Acinetobacter baumannii.", "model_sequences": {"sequence": {"3658": {"dna_sequence": {"fmax": "1152", "fmin": "0", "accession": "NG_048680.1", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGTCTACTTTTATCCCCGCTTTTTATTTTTAGTACCTCAATTTATGCGGGCAATACACCAAAAGACCAAGAAATTAAAAAACTGGTAGATCAAAACTTTAAACCGTTATTAGAAAAATATGATGTGCCAGGTATGGCTGTGGGTGTTATTCAAAATAATAAAAAGTATGAAATGTATTATGGTCTTCAATCTGTTCAAGATAAAAAAGCCGTAAATAGCAGTACTATTTTTGAGCTAGGTTCTGTCAGTAAATTATTTACCGCGACAGCAGGTGGATATGCAAAAAATAAAGGAAAAATCTCTTTTGACGATACGCCTGGTAAGTATTGGAAAGAACTAAAAAATACACCGATTGACCAAGTTAACTTACTTCAACTCGCGACGTATACAAGTGGTAACCTTGCCTTGCAATTTCCAGATGAAGTAAAAACAGATCAGCAAGTTTTAACATTTTTTAAAGACTGGAAACCTAAAAACTCAATCGGTGAATATCGACAATATTCAAACCCAAGCATTGGTTTATTTGGAAAAGTTGTAGCTTTGTCTATGAATAAACCTTTCGACCAAGTCTTAGAAAAAACAATTTTTCCGGCCCTTGGCTTAAAACATAGCTATGTAAATGTACCTAAGACCCAGATGCAAAACTATGCTTTTGGCTATAACCAAGAAAATCAGCCGATTCGAGTTAACCCCGGCCCACTCGATGCCCCAGCATATGGCGTCAAATCGACACTACCCGACATGTTGAGTTTTATTCATGCCAACCTAAATCCACAAAAATATCCAGCAGATATTCAACGGGCAATTAATGAAACACATCAAGGGTTCTATCAAGTAAATACCATGTATCAGGCACTCGGTTGGGAAGAGTTTTCTTATCCGGCAACGTTACAAACTTTATTAGACAGTAATTCAGAACAGATTGTGATGAAACCTAATAAAGTGACTGCTATTTCAAAGGAACCTTCAGTTAAGATGTACCATAAAACTGGCTCAACTACCGGTTTCGGAACATATGTGGTGTTTATTCCTAAAGAAAATATTGGTTTAGTCATGTTAACCAATAAACGTATTCCAAATGAAGAGCGCATTAAGGCAGCTTATGCTGTGCTGAATGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter baumannii", "NCBI_taxonomy_id": "470", "NCBI_taxonomy_cvterm_id": "35507"}, "protein_sequence": {"accession": "WP_063857817.1", "sequence": "MRFKKISCLLLSPLFIFSTSIYAGNTPKDQEIKKLVDQNFKPLLEKYDVPGMAVGVIQNNKKYEMYYGLQSVQDKKAVNSSTIFELGSVSKLFTATAGGYAKNKGKISFDDTPGKYWKELKNTPIDQVNLLQLATYTSGNLALQFPDEVKTDQQVLTFFKDWKPKNSIGEYRQYSNPSIGLFGKVVALSMNKPFDQVLEKTIFPALGLKHSYVNVPKTQMQNYAFGYNQENQPIRVNPGPLDAPAYGVKSTLPDMLSFIHANLNPQKYPADIQRAINETHQGFYQVNTMYQALGWEEFSYPATLQTLLDSNSEQIVMKPNKVTAISKEPSVKMYHKTGSTTGFGTYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLNAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-75", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40580", "model_name": "ADC-75", "model_type_id": "40292"}, "2363": {"model_id": "2363", "ARO_accession": "3003880", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-74 is a beta-lactamase found in Acinetobacter baumannii.", "model_sequences": {"sequence": {"3657": {"dna_sequence": {"fmax": "1152", "fmin": "0", "accession": "NG_048679.1", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGTCTACTTTTATCCCCGCTTTTTATTTTTAGTACCTCAATTTATGCGGGCAATACACCAAAAGACCAAGAAATTAAAAAACTGGTAGATCAAAACTTTAAACCGTTATTAGAAAAATATGATGTGCCAGGTATGGCTGTGGGTGTTATTCAAAATAATAAAAAGTATGAAATGTATTATGGTCTTCAATCTGTTCAAGATAAAAAAGCCGTAAATCGCAGTACCATTTTTGAGCTAGGTTCTGTCAGTAAATTATTTACCGCGACAGCAGGTGGATATGCAAAAAATAAAGGAAAAATCTCTTTTGACGATACGCCTGGTAAATATTGGAAAGAACTAAAAAACACACCGATTGACCAAGTTAACTTACTTCAACTCGCGACGTATACAAGTGGTAACCTTGCCTTGCAGTTTCCAGATGAAGTACAAACAGACCAACAAGTTTTAACTTTTTTCAAAGACTGGCAACCTAAAAACCCAATCGGTGAATACAGACAATATTCAAATCCAAGTATTGGCCTATTTGGAAAGGTTGTGGCTTTGTCTATGAATAAACCTTTCGACCAAGTCTTAGAAAAAACAATTTTTCCGGCCCTTGGCTTAAAACATAGCTATGTAAATGTACCTAAGACCCAGATGCAAAACTATGCATTTGGTTATAACCAAGAAAATCAGCCGATTCGAGCTAACCCCGGCCCACTCGATGCCCCTGCATATGGCGTCAAATCGACACTACCCGACATGTTGAGTTTTATTCATGCCAACCTTAACCCACAGAAATATCCGGCTGATATTCAACGGGCAATTAATGAAACACATCAAGGGTTCTATCAAGTAAATACCATGTATCAGGCACTCGGTTGGGAAGAGTTTTCTTATCCGGCAACGTTACAAACTTTATTAGACAGTAATTCAGAACAGATTGTGATGAAACCTAATAAAGTGACTGCTATTTCAAAGGAACCTTCAGTTAAGATGTACCATAAAACTGGCTCAACCACCGGTTTCGGAACATATGTAGTGTTTATTCCTAAAGAAAATATTGGCTTAGTCATGTTAACCAATAAACGTATTCCAAATGAAGAGCGCATTAAGGCAGCTTATGCTGTGCTGGATGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter baumannii", "NCBI_taxonomy_id": "470", "NCBI_taxonomy_cvterm_id": "35507"}, "protein_sequence": {"accession": "WP_001211203.1", "sequence": "MRFKKISCLLLSPLFIFSTSIYAGNTPKDQEIKKLVDQNFKPLLEKYDVPGMAVGVIQNNKKYEMYYGLQSVQDKKAVNRSTIFELGSVSKLFTATAGGYAKNKGKISFDDTPGKYWKELKNTPIDQVNLLQLATYTSGNLALQFPDEVQTDQQVLTFFKDWQPKNPIGEYRQYSNPSIGLFGKVVALSMNKPFDQVLEKTIFPALGLKHSYVNVPKTQMQNYAFGYNQENQPIRANPGPLDAPAYGVKSTLPDMLSFIHANLNPQKYPADIQRAINETHQGFYQVNTMYQALGWEEFSYPATLQTLLDSNSEQIVMKPNKVTAISKEPSVKMYHKTGSTTGFGTYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLDAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-74", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40579", "model_name": "ADC-74", "model_type_id": "40292"}, "2362": {"model_id": "2362", "ARO_accession": "3003879", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-61 is a beta-lactamase found in Acinetobacter baumannii.", "model_sequences": {"sequence": {"3655": {"dna_sequence": {"fmax": "1152", "fmin": "0", "accession": "NG_048671.1", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGTCTACTTTTATCCCCGCTTTTTATTTTTAGTACCTCAATTTATGCGGGCAATACACCAAAAGACCAAGAAATTAAAAAACTGGTAGATCAAAACTTTAAACCGTTATTAGAAAAATATGATGTGCCAGGTATGGCTGTGGGTGTTATTCAAAATAATAAAAAGTATGAAATGTATTATGGTCTTCAATCTGTTCAAGATAAAAAAGCCGTAAATAGCAGTACTATTTTTGAGCTAGGTTCTGTCAGTAAATTATTTACCGCGACAGCAGGTGGATATGCAAAAAATAAAGGAAAAATCTCTTTTGACGATACGCCTGGTAAGTATTGGAAAGAACTAAAAAATACACCGATTGACCAAGTTAACTTACTTCAACTCGCGACGTATACAAGTGGTAACCTTGCCTTGCAATTTCCAGATGAAGTAAAAACAGATCAGCAAGTTTTAACATTTTTTAAAGACTGGAAACCTAAAAACTCAATCGGTGAATATCGACAATATTCAAACCCAAGCATTGGTTTATTTGGAAAAGTTGTAGCTTTGTCTATGAATAAACCTCTCGACCAAGTCTTAGAAAAAACAATTTTTCCGGCCCTTGGCTTAAAACATAGCTATGTAAATGTACCTAAGACCCAGATGCAAAACTATGCTTTTGGCTATAACCAAGAAAATCAGCCGATTCGAGTTAACCCCGGCCCACTCGATGCCCCAGCATATGGCGTCAAATCGACACTACCCGACATGTTGAGTTTTATTCATGCCAACCTAAATCCACAAAAATATCCAGCAGATATTCAACGGGCAATTAATGAAACACATCAGGGTCGCTATCAAGTAAATACCATGTATCAGGCACTCGGTTGGGAAGAGTTTTCTTATCCGGCAACGTTACAAACTTTATTAGACAGTAATTCAGAACAGATTGTGATGAAACCTAATAAAGTGACTGCTATTTCAAAGGAACCTTCAGTTAAGATGTACCATAAAACTGGCTCAACTACCGGTTTCGGAACATATGTGGTGTTTATTCCTAAAGAAAATATTGGTTTAGTCATGTTAACCAATAAACGTATTCCAAATGAAGAGCGCATTAAGGCAGCTTATGCTGTGCTGAATGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter baumannii", "NCBI_taxonomy_id": "470", "NCBI_taxonomy_cvterm_id": "35507"}, "protein_sequence": {"accession": "WP_033503051.1", "sequence": "MRFKKISCLLLSPLFIFSTSIYAGNTPKDQEIKKLVDQNFKPLLEKYDVPGMAVGVIQNNKKYEMYYGLQSVQDKKAVNSSTIFELGSVSKLFTATAGGYAKNKGKISFDDTPGKYWKELKNTPIDQVNLLQLATYTSGNLALQFPDEVKTDQQVLTFFKDWKPKNSIGEYRQYSNPSIGLFGKVVALSMNKPLDQVLEKTIFPALGLKHSYVNVPKTQMQNYAFGYNQENQPIRVNPGPLDAPAYGVKSTLPDMLSFIHANLNPQKYPADIQRAINETHQGRYQVNTMYQALGWEEFSYPATLQTLLDSNSEQIVMKPNKVTAISKEPSVKMYHKTGSTTGFGTYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLNAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-61", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40578", "model_name": "ADC-61", "model_type_id": "40292"}, "2361": {"model_id": "2361", "ARO_accession": "3003878", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-56 is a beta-lactamase found in Acinetobacter baumannii.", "model_sequences": {"sequence": {"3654": {"dna_sequence": {"fmax": "1252", "fmin": "100", "accession": "NG_048666.1", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGTCTACTTTTATCCCCGCTTTTTATTTTTAGTACCTCAATTTATGCGGGCAATACACCAAAAGACCAAGAAATTAAAAAACTGGTAGATCAAAACTTTAAACCGTTATTAGAAAAATATGATGTGCCAGGTATGGCTGTGGGTGTTATTCAAAATAATAAAAAGTATGAAATGTATTATGGTCTTCAATCTGTTCAAGATAAAAAAGCCGTAAATAGCAGTACTATTTTTGAGCTAGGTTCTGTCAGTAAATTATTTACCGCGACAGCAGGTGGATATGCAAAAAATAAAGGAAAAATCTCTTTTGACGATACGCCTGGTAAGTATTGGAAAGAACTAAAAAATACACCGATTGACCAAGTTAACTTACTTCAACTCGCGACGTATACAAGTGGTAACCTTGCCTTGCAATTTCCAGATGAAGTAAAAACAGATCAGCAAGTTTTAACATTTTTTAAAGACTGGAAACCTAAAAACTCAATCGGTGAATATCAACAATATTCAAACCCAAGCATTGGTTTATTTGGAAAAGTTGTAGCTTTGTCTATGAATAAACCTTTCGACCAAGTCTTAGAAAAAACAATTTTTCCGGCCCTTGGCTTAAAACATAGCTATGTAAATGTACCTAAGACCCAGATGCAAAACTATGCTTTTGGCTATAACCAAGAAAATCAGCCGATTCGAGTTAACCCCGGCCCACTCGATGCCCCAGCATATGGCGTCAAATCGACACTACCCGACATGTTGAGTTTTATTCATGCCAACCTAAATCCACAAAAATATCCAGCAGATATTCAACGGGCAATTAATGAAACACATCAGGGTCGCTATCAAGTAAATACCATGTATCAGGCACTCGGTTGGGAAGAGTTTTCTTATCCGGCAACGTTACAAACTTTATTAGACAGTAATTCAGAACAGATTGTGATGAAACCTAATAAAGTGACTGCTATTTCAAAGGAACCTTCAGTTAAGATGTACCATAAAACTGGCTCAACTACCGGTTTCGGAACATATGTGGTGTTTATTCCTAAAGAAAATATTGGTTTAGTCATGTTAACCAATAAACGTATTCCAAATGAAGAGCGCATTAAGGCAGCTTATGCTGTGCTGAATGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter baumannii", "NCBI_taxonomy_id": "470", "NCBI_taxonomy_cvterm_id": "35507"}, "protein_sequence": {"accession": "WP_031973850.1", "sequence": "MRFKKISCLLLSPLFIFSTSIYAGNTPKDQEIKKLVDQNFKPLLEKYDVPGMAVGVIQNNKKYEMYYGLQSVQDKKAVNSSTIFELGSVSKLFTATAGGYAKNKGKISFDDTPGKYWKELKNTPIDQVNLLQLATYTSGNLALQFPDEVKTDQQVLTFFKDWKPKNSIGEYQQYSNPSIGLFGKVVALSMNKPFDQVLEKTIFPALGLKHSYVNVPKTQMQNYAFGYNQENQPIRVNPGPLDAPAYGVKSTLPDMLSFIHANLNPQKYPADIQRAINETHQGRYQVNTMYQALGWEEFSYPATLQTLLDSNSEQIVMKPNKVTAISKEPSVKMYHKTGSTTGFGTYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLNAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-56", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40577", "model_name": "ADC-56", "model_type_id": "40292"}, "2360": {"model_id": "2360", "ARO_accession": "3003876", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-44 is a beta-lactamase found in Acinetobacter pittii.", "model_sequences": {"sequence": {"3653": {"dna_sequence": {"fmax": "1152", "fmin": "0", "accession": "NG_048659.1", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGCTTACTTTTACCCCCTCTTTTTATTTTTAGTACCTCAATTTATGCGGGCAATACATCAAAAGAACAAGAAATTAAAAAACTGGTAGATCAAAACTTTAAACCTTTATTAGATAAATATAATGTGCCAGGTATGGCTGTGGGTGTTATTCAAAATAATAAAAAGTATGAAATGTATTATGGTCTTCAATCTGTTCAAGATAAAAAAGCCGTAAATAGCAGTACCATTTTTGAGCTAGGTTCAGTTAGTAAATTATTTACCGCGACAGCAGGTGGATATGCCAAAACAAAAGGAACAATCTCTTTTAAAGACACACCCGGAAAATATTGGAAAGAGCTAAAAAATACACCGATTGACCAAGTTAACTTACTTCAACTTGCTACCTATACAAGTGGCAACCTTGGCTTACAGTTTCCAGATGAAGTACAAACAGACCAACAAGTTTTAACTTTTTTCAAAGACTGGAAGCCTAAAAACTCAATCGGTGAATATCGACAATATTCAAATCCAAGCATTGGTTTATTTGGAAAAGTTGTTGCATTGTCTATGAATAAACCTTTCGATCAAGTCTTAGAAAAAACAATTTTTCCGGGCCTTAGCTTAAAACATAGCTATGTAAATGTTCCTAAAACTCAGATGCAAAACTATGCTTTTGGCTATAACCAAGAAAATCAGCCAATTCGTGTTAACCCTGGTCCGTTAGATGCACCTGCGTACGGCGTCAAATCGACACTACCCGATATGCTTAAGTTTATTAATGCCAACCTCAACCCACAGAAATATCCGAAAGATATTCAACGTGCAATTAATGAAACACATCAGGGTTTCTACCAAGTCGGCACGATGTATCAGGCACTTGGTTGGGAAGAATTTTCTTATCCAGCGCCTTTACAAACTTTATTAGACAGTAATTCAGAGCAAATCGTGATGAAGCCTAATAAAGTGACTGCCATTTCAAAAGAACCTTCAATTAAGATGTTCCACAAAACTGGCTCAACAAATGGCTTTGGAACTTATGTGGTGTTTATTCCAAAAGAAAATATTGGCTTAGTCATGTTGACCAATAAACGTATTCCAAATGAAGAACGCATTAAGGCAGCATATGCGGTGCTGAATGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter pittii", "NCBI_taxonomy_id": "48296", "NCBI_taxonomy_cvterm_id": "36787"}, "protein_sequence": {"accession": "WP_063857804.1", "sequence": "MRFKKISCLLLPPLFIFSTSIYAGNTSKEQEIKKLVDQNFKPLLDKYNVPGMAVGVIQNNKKYEMYYGLQSVQDKKAVNSSTIFELGSVSKLFTATAGGYAKTKGTISFKDTPGKYWKELKNTPIDQVNLLQLATYTSGNLGLQFPDEVQTDQQVLTFFKDWKPKNSIGEYRQYSNPSIGLFGKVVALSMNKPFDQVLEKTIFPGLSLKHSYVNVPKTQMQNYAFGYNQENQPIRVNPGPLDAPAYGVKSTLPDMLKFINANLNPQKYPKDIQRAINETHQGFYQVGTMYQALGWEEFSYPAPLQTLLDSNSEQIVMKPNKVTAISKEPSIKMFHKTGSTNGFGTYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLNAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-44", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40575", "model_name": "ADC-44", "model_type_id": "40292"}, "651": {"model_id": "651", "ARO_accession": "3003769", "model_param": {"blastp_bit_score": {"param_value": "1600", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}, "snp": {"param_type": "single resistance variant", "param_value": {"8269": "T345A"}, "clinical": {"8269": "T345A"}, "param_type_id": "36301", "param_description": "A nucleotide or amino acid substitution that confers elevated resistance to antibiotic(s) relative to wild type. The most common type encoded in the CARD is an amino acid substitution gleaned from the literature with format [wild-type][position][mutation], e.g. R184Q. When present in the associated gene or protein, a single resistance variant confers resistance to an antibiotic drug or drug class. Single resistance variants are used by the protein variant and rRNA mutation models to detect antibiotic resistance from submitted sequences."}}, "ARO_description": "MprF is a integral membrane protein that modifies the negatively-charged phosphatidylglycerol on the membrane surface. A point mutation in the putative mprF synthase domain is associated with enhanced expression, increased synthesis and reduced daptomycin surface binding. This confers resistance to cationic peptides that disrupt the cell membrane, including defensins.", "model_sequences": {"sequence": {"59": {"dna_sequence": {"fmax": "2511", "fmin": "0", "accession": "HM140977", "strand": "+", "sequence": "ATGAATCAGGAAGTTAAAAACAAAATATTTTCAATCTTAAAAATTACGTTTGCTACAGCTTTATTTATTTTTGTAGCAATCACATTGTATCGGGAGTTATCTGGTATTAACTTTAAAGATACGTTGGTTGAATTTAGTAAGATTAACCGTATGTCCTTAGTGTTACTATTTATTGGTGGTGGGGCATCGCTTGTTATTCTATCAATGTATGATGTGATTTTATCTAGAGCTTTAAAAATGGATATATCCTTAGGCAAAGTTTTAAGAGTAAGTTATATCATCAATGCATTGAATGCGATTGTAGGTTTCGGTGGCTTTATTGGTGCAGGCGTTAGAGCAATGGTTTATAAAAACTATACGCATGATAAAAAGAAATTAGTTCACTTTATATCCTTAATACTTATTTCAATGTTGACAGGTTTAAGCTTATTATCATTGCTAATTGTATTCCATGTTTTCGATGCATCTTTAATCTTAGATAAGATTACATGGGTAAGATGGGTATTATATGTAGTGTCATTTTTCTTACCATTATTCATTATTTATTCAATGGTTAGACCACCCGATAAAAACAATCGTTTTGTAGGATTGTACTGCACTTTAGTGTCGTGTGTTGAATGGTTAGCAGCTGCAGTTGTATTATATTTCTGTGGTGTAATTGTTGACGCTCATGTATCATTCATGTCCTTTATTGCAATATTTATCATTGCTGCATTATCAGGTTTAGTCAGCTTTATTCCTGGTGGTTTCGGCGCTTTCGATTTAGTTGTATTACTAGGATTTAAAACTTTAGGTGTCCCTGAGGAAAAAGTATTATTAATGCTACTTCTATATCGTTTTGCGTACTATTTTGTACCGGTAATTATTGCATTAATTTTATCATCATTTGAATTTGGTACATCAGCTAAGAAGTACATTGAGGGATCTAAATACTTTATTCCTGCTAAAGATGTTACGTCATTTTTAATGTCTTATCAAAAGGATATTATTGCTAAAATTCCATCATTATCATTAGCAATTTTAGTATTCTTTACAAGTATGATCAACTTAACGATTGTTTACGATGCTTTATATGATGGAAATCACTTAACGTATTATATTCTATTGGCAATTCATACTAGTGCTTGTTTATTACTTTTACTGAATGTAGTTGGTATTTATAAGCAAAGTAGACGTGCCATTATCTTTGCTATGATTTCAATTTTATTAATCACAGTGGCGACATTCTTCACTTACGCTTCATATATTTTAATAACATGGTTAGCTATTATTTTTGTTCTGCTTATTGTAGCTTTCCGTAGAGCACGTAGGTTGAAACGCCCAGTAAGAATGAGAAATATAGTTGCAATGCTTTTATTCAGTTTATTTATTTTATATGTTAACCATATATTTATTGCTGGAACGTTATATGCATTAGATATTTATACGATTGAAATGCATACATCTGTATTGCGCTATTACTTCTGGCTTACGATTTTAATCATCGCTATCATCATAGGTATGATTGCATGGTTGTTTGATTATCAATTTAGCAAAGTACGTATTTCTTCTAAAATTGAAGATTGCGAGGAGATTATTAATCAGTACGGCGGTAATTATTTGAGTCACTTGATATATAGTGGTGACAAGCAGTTTTTCACTAATGAAAATAAAACAGCATTTTTAATGTATCGTTATAAAGCAAGTTCATTAGTGGTTCTTGGAGATCCGTTAGGTGATGAAAATGCCTTTGATGAATTGTTAGAAGCATTCTATAATTACGCTGAGTATTTAGGCTATGATGTTATATTCTATCAAGTTACAGATCAACACATGCCTTTATATCATAATTTCGGTAACCAATTTTTCAAATTAGGTGAAGAAGCAATTATTGATTTAACGCAATTTTCAACTTCAGGTAAAAAACGCCGTGGATTTAGAGCGACTTTAAATAAATTCGATGAACTTAATATTTCGTTCGAAATTATTGAACCACCGTTTTCAACTGAATTTATAAATGAACTTCAACATGTAAGTGATTTATGGCTAGATAATCGTCAGGAAATGCATTTCTCTGTTGGTGAATTTAATGAAGAATACTTATCTAAAGCGCCAATTGGTGTAATGCGAAATGAAGAAAATGAAGTAATTGCATTTTGTAGTTTAATGCCAACATACTTTAATGATGCCATTTCAGTCGATTTAATTAGATGGTTGCCAGAGTTAGATTTACCATTAATGGATGGTCTATACTTGCATATGTTACTTTGGAGTAAAGAACAAGGTTATACAAAATTTAATATGGGTATGGCAACGTTATCGAACGTTGGTCAATTGCATTATTCATATTTAAGAGAACGACTTGCAGGCCGTGTCTTTGAACATTTCAACGGTCTATATCGTTTCCAAGGATTACGTCGTTATAAATCTAAATATAATCCGAATTGGGAACCACGCTTTTTAGTTTATCGTAAAGATAATTCGCTTTGGGAATCACTTTCTAAAGTAATGCGTGTAATACGTCACAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Staphylococcus aureus", "NCBI_taxonomy_id": "1280", "NCBI_taxonomy_cvterm_id": "35508"}, "protein_sequence": {"accession": "ADJ67256.1", "sequence": "MNQEVKNKIFSILKITFATALFIFVAITLYRELSGINFKDTLVEFSKINRMSLVLLFIGGGASLVILSMYDVILSRALKMDISLGKVLRVSYIINALNAIVGFGGFIGAGVRAMVYKNYTHDKKKLVHFISLILISMLTGLSLLSLLIVFHVFDASLILDKITWVRWVLYVVSFFLPLFIIYSMVRPPDKNNRFVGLYCTLVSCVEWLAAAVVLYFCGVIVDAHVSFMSFIAIFIIAALSGLVSFIPGGFGAFDLVVLLGFKTLGVPEEKVLLMLLLYRFAYYFVPVIIALILSSFEFGTSAKKYIEGSKYFIPAKDVTSFLMSYQKDIIAKIPSLSLAILVFFTSMINLTIVYDALYDGNHLTYYILLAIHTSACLLLLLNVVGIYKQSRRAIIFAMISILLITVATFFTYASYILITWLAIIFVLLIVAFRRARRLKRPVRMRNIVAMLLFSLFILYVNHIFIAGTLYALDIYTIEMHTSVLRYYFWLTILIIAIIIGMIAWLFDYQFSKVRISSKIEDCEEIINQYGGNYLSHLIYSGDKQFFTNENKTAFLMYRYKASSLVVLGDPLGDENAFDELLEAFYNYAEYLGYDVIFYQVTDQHMPLYHNFGNQFFKLGEEAIIDLTQFSTSGKKRRGFRATLNKFDELNISFEIIEPPFSTEFINELQHVSDLWLDNRQEMHFSVGEFNEEYLSKAPIGVMRNEENEVIAFCSLMPTYFNDAISVDLIRWLPELDLPLMDGLYLHMLLWSKEQGYTKFNMGMATLSNVGQLHYSYLRERLAGRVFEHFNGLYRFQGLRRYKSKYNPNWEPRFLVYRKDNSLWESLSKVMRVIRHK"}}}}, "ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "37243": {"category_aro_name": "defensin resistant mprF", "category_aro_cvterm_id": "37243", "category_aro_accession": "3000863", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "MprF is a integral membrane protein that modifies the negatively-charged phosphatidylglycerol on the membrane surface of both Gram-positive and Gram-negative bacteria. This confers resistance to cationic peptides that disrupt the cell membrane, including defensins."}, "37037": {"category_aro_name": "defensin", "category_aro_cvterm_id": "37037", "category_aro_accession": "3000693", "category_aro_class_name": "Antibiotic", "category_aro_description": "Defensins are natural cationic peptides that have antibiotic properties. It is part of the innate immune system of plants and animals."}}, "ARO_name": "Staphylococcus aureus mprF", "model_type": "protein variant model", "model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: \"strict\" and \"loose\". A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "ARO_id": "40441", "model_name": "Staphylococcus aureus mprF", "model_type_id": "40293"}, "2358": {"model_id": "2358", "ARO_accession": "3003873", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-42 is a beta-lactamase found in Acinetobacter pittii.", "model_sequences": {"sequence": {"3651": {"dna_sequence": {"fmax": "1152", "fmin": "0", "accession": "NG_048657.1", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGTCTACTTTTATCCCCGCTTTTTATTTTTAGTACCTCAATTTATGCGGGCAATACACCAAAAGACCGAGAAATTAAAAAACTGGTAGATCAAAACTTTAAACCTTTATTAGATAAATATGATGTGCCGGGTATGGCCGTGGGCGTTATTCAGAATAATAAAAAATATGAAACGTATTATGGTCTTCAATCTGTTCAAGATAAAAAATCCGTAAGTAGCAGTACCATTTTTGAACTAGGTTCTGTCAGTAAATTATTTACCGCGACAGCAGGTGGATATGCAAAAAATAAAGGAAAAATCTCTTTTGACGATACGTCTGGTAAATATTGGAAAGAACTAAAAAACACACCGATTGACCAAGTTAACTTACTTCAACTCGCAACGTATACAAGTGGTAACCTTGCCTTGCAGTTCCCAGATGAAGTACAAACAGACCAACAAGTTTTAACTTTTTTCAAAGAATGGAAACCTAAAAACCCAATCGGTGAATACAGACAATATTCAAATCCAAGTATTGGCCTATTTGGAAAAGTTGTTGCTTTGTCTATGAATAAACCTTTCGACCAAGTCTTAGAAAAAACAATTTTTCCGGGCCTTGGCTTAAAACATAGCTATGTAAATGTACCGAAGACCCAGATGCAAAACTATGCTTTTGGCTATAATCAAGAAAATCAGCCAATTCGTGTTAACCCCGGTCCGCTAGATGCTCCAGCATACGGTGTTAAATCGACCTTACCTGATATGCTGAGTTTCATTAATGCCAATATAAATCCACAAAAATATCCGAAAGATACTCAACGTGCAATTAATGAAACACATCAAGGTTTCTACCAAGTCGGCACGATGTATCAGGCACTTGGTTGGGAAGAATTTTCTTATCCAGCGCCTTTACAAACTTTATTAGACAGTAATTCAGAGCAAATCGTGATGAAGCCTAATAAAGTGACTGCCATTTCCAAAGAACCTTCAGTTAAGATGTTCCACAAAACTGGCTCAACAAATGGCTTTGGATCTTATGTGGTGTTTATTCCAAAAGAAAATATTGGTTTAGTCATGTTAACCAATAAACGTATTCCAAATGAAGAACGCATTAAGGCAGCGTATGCAGTGCTGAATGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter pittii", "NCBI_taxonomy_id": "48296", "NCBI_taxonomy_cvterm_id": "36787"}, "protein_sequence": {"accession": "WP_063857803.1", "sequence": "MRFKKISCLLLSPLFIFSTSIYAGNTPKDREIKKLVDQNFKPLLDKYDVPGMAVGVIQNNKKYETYYGLQSVQDKKSVSSSTIFELGSVSKLFTATAGGYAKNKGKISFDDTSGKYWKELKNTPIDQVNLLQLATYTSGNLALQFPDEVQTDQQVLTFFKEWKPKNPIGEYRQYSNPSIGLFGKVVALSMNKPFDQVLEKTIFPGLGLKHSYVNVPKTQMQNYAFGYNQENQPIRVNPGPLDAPAYGVKSTLPDMLSFINANINPQKYPKDTQRAINETHQGFYQVGTMYQALGWEEFSYPAPLQTLLDSNSEQIVMKPNKVTAISKEPSVKMFHKTGSTNGFGSYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLNAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-42", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40572", "model_name": "ADC-42", "model_type_id": "40292"}, "2359": {"model_id": "2359", "ARO_accession": "3003874", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-43 is a beta-lactamase found in Acinetobacter pittii.", "model_sequences": {"sequence": {"3652": {"dna_sequence": {"fmax": "1152", "fmin": "0", "accession": "NG_048658.1", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGCTTACTTTTACCCCCTCTTTTTATTTTTAGTACCTCAATTTATGCGGGCAATACACCAAAAGACCAAGAAATTAAAAAACTGGTAGATCAAAATTTTAAACCTTTATTAGATAAATATGATGTGCCAGGTATGGCTGTGGGTGTTATTCAAAATAATAAAAAGTATGAAATGTATTATGGTCTTCAATCTGTTCAAGATAAAAAAGCCGTAAATAGCAGTACCATTTTTGAGCTCGGTTCAGTCAGTAAATTATTTACCGCGACAGCAGGTGGATATGCAAAAAATAAAGGAAAAATCTCTTTTGACGATACGCCTGGTAAATATTGGAAAGAATTAAAAAACACACCGATTGACCAAGTTAACTTACTTCAACTCGCAACGTATACAAGTGGTAACCTTGCCTTGCAATTCCCAGATGAAGTACAAACAGACCAACAAGTTTTAACTTTTTTCAAAGACTGGAAACCTAAAAACCCAATCGGTGAATACAGACAATATTCAAATCCAAGTATTGGCCTATTTGGAAAAGTTGTTGCTTTGTCTATGAATAAACCTTTCGACCAAGTCTTAGAAAAAACAATTTTTCCGGGCCTTGGCTTAAAACATAGCTATGTAAATGTTCCTAAAACTCAGATGCAAAACTATGCTTTTGGCTATAACCAAGAAAATCAGCCAATTCGTGTTAACCCTGGTCCGCTAGATGCTCCTGCATACGGCGTTAAATCGACACTACCAGACATGCTGAGTTTTATTAATGCCAACCTCAACCCACTGAAATATCCGAAAGATATTCAACGTGCAATTAATGAAACACATAAAGGTTTCTATCAAGTCGGCACCATGTATCAAGCCTTGGGTTGGGAAGAATTTTCTTATCCAGCGCCTTTACAAACTTTATTAGACAGTAATTCAGAGCAAATCGTGATGAAGCCTAATAAAGTGACTGCCATTTCCAAAGAACCTTCAGTTAAGATGTTCCACAAAACTGGCTCAACAAATGGCTTTGGAACTTATGTGGTGTTTATTCCAAAAGAAAATATTGGTTTAGTCATGTTAACCAATAAACGTATTCCAAATGAAGAACGCATTAAGGCAGCGTATGCAGTATTGAATGCTATAAAAAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter calcoaceticus/baumannii complex", "NCBI_taxonomy_id": "909768", "NCBI_taxonomy_cvterm_id": "40550"}, "protein_sequence": {"accession": "WP_032055358.1", "sequence": "MRFKKISCLLLPPLFIFSTSIYAGNTPKDQEIKKLVDQNFKPLLDKYDVPGMAVGVIQNNKKYEMYYGLQSVQDKKAVNSSTIFELGSVSKLFTATAGGYAKNKGKISFDDTPGKYWKELKNTPIDQVNLLQLATYTSGNLALQFPDEVQTDQQVLTFFKDWKPKNPIGEYRQYSNPSIGLFGKVVALSMNKPFDQVLEKTIFPGLGLKHSYVNVPKTQMQNYAFGYNQENQPIRVNPGPLDAPAYGVKSTLPDMLSFINANLNPLKYPKDIQRAINETHKGFYQVGTMYQALGWEEFSYPAPLQTLLDSNSEQIVMKPNKVTAISKEPSVKMFHKTGSTNGFGTYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLNAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-43", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40573", "model_name": "ADC-43", "model_type_id": "40292"}, "2352": {"model_id": "2352", "ARO_accession": "3003866", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-22 is a beta-lactamase found in Acinetobacter pittii.", "model_sequences": {"sequence": {"3645": {"dna_sequence": {"fmax": "1152", "fmin": "0", "accession": "NG_048647.1", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGCTTACTTTTACCTCCTCTTTTTATTTTTAGTACCTCAATTTATGCGGGCAATACACCAAAAGACCGAGAAATTAAAAAACTGGTAGATCAAAACTTTAAACCTTTATTAGATAAATATGATGTGCCGGGTATGGCCGTGGGCGTTATTCAGAATAATAAAAAATATGAAACGTATTATGGTCTTCAATCTGTTCAAGATAAAAAAGCCGTAAGTAGCAGCACCATTTTTGAACTAGGTTCTGTCAGTAAATTATTTACCGCGACAGCAGGTGGATATGCAAAAAATAAAGGAAAAATTTCTTTTGACGATACGCCTGGTAAATATTGGAAAGAACTAAAAAACACACCGATTGACCAAGTTAACTTACTTCAACTCGCAACGTATACAAGTGGTAACCTTGCCTTGCAGTTCCCAGATGAAGTACAAACAGACCAACAAGTTTTAACTTTTTTCAAAGACTGGAAACCTAAAAACTCAATCGGTGAATATAGACAATATTCAAATCCAAGCATTGGTTTATTTGGAAAAGTTGTGGCATTGTCTATGAATAAACCTTTCGACCAAGTCTTAGAAAAAACAATTTTTCCAGATCTTGGCTTAAAACATAGCTATGTAAATGTTCCTAAAACTCAGATGCAAAACTATGCTTTTGGCTATAACCAAGAAAATCAGCCAATTCGTGTTAACCCTGGTCCGCTAGATGCTCCAGCATATGGGGTTAAATCGACGCTACCCGATATGCTTAAGTTTATTAATGCCAACCTCAACACACAGAAATATCCGAAAGATATTCAACGTGCAATTAATGAAACACATCAGGGTTTCTATCAAGTCGGCACCATGTATCAGGCACTTGGTTGGGAAGAATTTTCTTATCCAGCGCCTTTACAAACTTTATTAGACAGTAATTCAGAACAAATTGTGATGAAGCCTAATAAAGTGACTGCCATTTCAAAAGAACCTTCAGTTAAGATGTTCCACAAAACTGGTTCAACCAATGGTTTCGGAACTTATGTCGTGTTCATTCCTAAAGAAAATATTGGTTTAGTCATGTTAACCAATAAACGTATTCCAAATGAAGAACGCATTAAGGCAGCGTATGCCGTGTTAAATGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter pittii", "NCBI_taxonomy_id": "48296", "NCBI_taxonomy_cvterm_id": "36787"}, "protein_sequence": {"accession": "WP_063857796.1", "sequence": "MRFKKISCLLLPPLFIFSTSIYAGNTPKDREIKKLVDQNFKPLLDKYDVPGMAVGVIQNNKKYETYYGLQSVQDKKAVSSSTIFELGSVSKLFTATAGGYAKNKGKISFDDTPGKYWKELKNTPIDQVNLLQLATYTSGNLALQFPDEVQTDQQVLTFFKDWKPKNSIGEYRQYSNPSIGLFGKVVALSMNKPFDQVLEKTIFPDLGLKHSYVNVPKTQMQNYAFGYNQENQPIRVNPGPLDAPAYGVKSTLPDMLKFINANLNTQKYPKDIQRAINETHQGFYQVGTMYQALGWEEFSYPAPLQTLLDSNSEQIVMKPNKVTAISKEPSVKMFHKTGSTNGFGTYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLNAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-22", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40565", "model_name": "ADC-22", "model_type_id": "40292"}, "2353": {"model_id": "2353", "ARO_accession": "3003867", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-23 is a beta-lactamase found in Acinetobacter pittii.", "model_sequences": {"sequence": {"3646": {"dna_sequence": {"fmax": "1152", "fmin": "0", "accession": "NG_048648.1", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGCTTACTTTTACCGCCTCTTTTTATTTTTAGTACCTCAATTTATGCGGGCAATACACCAAAAGAACAAGAAGTTAAAAAACTGGTAGATCAAAATTTTAAGCCTTTATTAGATAAATATGATGTGCCTGGTATGGCCGTGGGGGTCATTCAAAATAATAAAAAATATGAAATATATTATGGCCTACAATCCGTTCAGGATAAAAAAGCCGTAAATAGCAGTACCATTTTTGAACTAGGTTCGGTCAGTAAATTATTTACCGCTACAGCTGGTGGATATGCAAAAGCAAAAGGAAAAATCTCTTTTGATGACACACCCGGAAAATATTGGAAAGAACTAAAAAATACACCGATTGACCAAGTTAATCTTCTTCAACTTGCGACGTATACAAGTGGCAATCTCGCCTTACAATTTCCAGATGAAGTTCAAACAGACCAACAAGTTTTAACTTTTTTCAAAGATTGGAAAACTAAAAACGCAATCGGTGAATACAGACAATATTCAAATCCAAGTATTGGCTTATTTGGAAAAATTGTGGCTTTGTCTATGAATAAACCTTTTGACCAAGTCTTAGAAAAAACAATTTTTCCACCTCTCCATTTAAAAAATAGCTATGTAAATGTACCTAAAACTCAAATGCAAAATTATGCATATGGCTATAACCAAGAAAATCAGCCGATCCGAGTTAACCCTGGTCCGCTAGATGCCCCTGCGTACGGCGTTAAATCGACACTACCAGATATGCTGACTTTTATTAATGCCAACCTCAACCCACAGAAATATCCGAAAGATATTCAACGTGCAATTAATGAAACACATCAAGGTTTCTATCAAGTCGGTACGATGTATCAAGCATTGGGTTGGGAAGAATTTTCTTATCCAGCGTCTTTACAAACTTTATTAGACAGTAATTCAGAGCAAATCGTGATGAAGCCTAATAAAGTGACTGCCATTTCAAAAGAACCTTCAGTTAAGATGTTCCACAAAACTGGCTCAACAAATGGCTTTGGAACTTATGTGGTGTTTATTCCAAAAGAAAATATTGGTTTAGTCATGTTAACCAATAAACGTATTCCAAATGAAGAACGCATTAAGGCAGCGTATGCAGTATTAAATGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter pittii", "NCBI_taxonomy_id": "48296", "NCBI_taxonomy_cvterm_id": "36787"}, "protein_sequence": {"accession": "WP_063857797.1", "sequence": "MRFKKISCLLLPPLFIFSTSIYAGNTPKEQEVKKLVDQNFKPLLDKYDVPGMAVGVIQNNKKYEIYYGLQSVQDKKAVNSSTIFELGSVSKLFTATAGGYAKAKGKISFDDTPGKYWKELKNTPIDQVNLLQLATYTSGNLALQFPDEVQTDQQVLTFFKDWKTKNAIGEYRQYSNPSIGLFGKIVALSMNKPFDQVLEKTIFPPLHLKNSYVNVPKTQMQNYAYGYNQENQPIRVNPGPLDAPAYGVKSTLPDMLTFINANLNPQKYPKDIQRAINETHQGFYQVGTMYQALGWEEFSYPASLQTLLDSNSEQIVMKPNKVTAISKEPSVKMFHKTGSTNGFGTYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLNAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-23", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40566", "model_name": "ADC-23", "model_type_id": "40292"}, "2350": {"model_id": "2350", "ARO_accession": "3003864", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-20 is a beta-lactamase found in Acinetobacter pittii.", "model_sequences": {"sequence": {"3643": {"dna_sequence": {"fmax": "1152", "fmin": "0", "accession": "NG_048645", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGTCTACTTTTATCCCCGCTTTTTATTTTTAGTACCTCAATTTATGCGGACAATACACCAAAAGACCAAGAAATTAAAAAACTGGTAGATCAAAATTTTAAACCTTTATTAGATAAATATGATGTGCCGGGTATGGCCGTGGGTGTTATTCAGAATAATAAAAAGTATGAAATGTATTATGGTCTTCAATCTGTTCAAGATAAAAAAACCGTAAATAGCAGTACCATTTTTGAGCTAGGTTCTGTCAGTAAATTATTTACCGCGACAGCAGGTGGATATGCAAAAAATAAAGGAAAAATCTCTTTTGACGATACGTCTGGTAAATATTGGAAAGAACTAAAAAACACACCGATTGACCAAGTTAACTTACTTCAACTCGCAACGTATACAAGTGGTAACCTTGCCTTGCAATTCCCAGATGAAGTACAAACAGACCAACAAGTTTTAACTTTTTTCAAAGACTGGAAACCTAAAAACCCAATCGGTGAATACAGACAATATTCAAATCCAAGCATTGGTTTATTTGGAAAAGTTGTTGCTTTGTCTATGAATAAACCTTTCGACCAAGTCTTAGAAAAAACAATTTTTCCGGGCCTTGGCTTAAAACATAGCTATGTAAATGTTCCTAAAACTCAGATGCAAAACTATGCTTTTGGCTATAACCAAGAAAATCAGCCAATTCGTGTTAACCCTGGTCCGCTAGATGCTCCAGCATATGGGGTTAAATCGACGCTACCCGATATGCTTAAGTTTATTAATGCCAACCTCAACCCACAGAAATATCCGAAAGATATTCAACGTGCAATTAATGAAACACATCAGGGTTTCTATCAAGTCGGCACCATGTATCAGGCACTTGGTTGGGAAGAATTTTCTTATCCAGCGCCTTTACAAACTTTATTAGACAGTAATTCAGAACAAATTGTGATGAAGCCTAATAAAGTGACTGCCATTTCAAAAGAACCTTCAGTTAAGATGTTCCACAAAACTGGTTCAACCAATGGTTTCGGAACTTATGTCGTGTTCATTCCTAAAGAAAATATTGGCCTAGTCATGTTAACCAATAAACGTATTCCAAATGAAGAACGCATTAAAGCAGCGTATGCCGTGTTAAATGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter pittii", "NCBI_taxonomy_id": "48296", "NCBI_taxonomy_cvterm_id": "36787"}, "protein_sequence": {"accession": "WP_063857794.1", "sequence": "MRFKKISCLLLSPLFIFSTSIYADNTPKDQEIKKLVDQNFKPLLDKYDVPGMAVGVIQNNKKYEMYYGLQSVQDKKTVNSSTIFELGSVSKLFTATAGGYAKNKGKISFDDTSGKYWKELKNTPIDQVNLLQLATYTSGNLALQFPDEVQTDQQVLTFFKDWKPKNPIGEYRQYSNPSIGLFGKVVALSMNKPFDQVLEKTIFPGLGLKHSYVNVPKTQMQNYAFGYNQENQPIRVNPGPLDAPAYGVKSTLPDMLKFINANLNPQKYPKDIQRAINETHQGFYQVGTMYQALGWEEFSYPAPLQTLLDSNSEQIVMKPNKVTAISKEPSVKMFHKTGSTNGFGTYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLNAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-20", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40563", "model_name": "ADC-20", "model_type_id": "40292"}, "2351": {"model_id": "2351", "ARO_accession": "3003865", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-21 is a beta-lactamase found in Acinetobacter pittii.", "model_sequences": {"sequence": {"3644": {"dna_sequence": {"fmax": "1152", "fmin": "0", "accession": "NG_048646", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGTCTACTTTTATCCCCGCTTTTTATTTTTAGTACCTCAATTTATGCGGGCAATACACCAAAAGACCAAGAAATTAAAAAACTGGTAGATCAAAATTTTAAACCTTTATTAGATAAATATGATGTGCCGGGTATGGCCGTGGGTGTTATTCAGAATAATAAAAAGTATGAAATGTATTATGGTCTACAATCTGTTCAAGATAAAAAAGCCGTAAGTAGCAGTACCATTTTTGAACTAGGTTCTGTCAGTAAATTATTTACCGCGACAGCAGGTGGATATGCAAAAAATAAAGGAAAAATCTCTTTTGACGATACGCCTGGTAAATATTGGAAAGAACTAAAAAACACACCGATTGACCAAGTTAACTTACTTCAACTCGCAACGTATACAAGTGGTAACCTTGCCTTGCAGTTCCCAGATGAAGTACAAACAGACCAACAAGTTTTAACTTTTTTCAAAGACTGGAAACTTAAAAACCCAATCGGTGAATACAGACAATATTCAAATCCAAGTATTGGCCTATTTGGAAAAGTTGTTGCTTTGTCTATGAATAAACCTTTCGACCAAGTCTTAGAAAAAACAATTTTTCCAGATCTGGGATTAAAACATAGTTATGTAAATGTGCCTAAAACTCAGATGCAAAACTATGCTTTTGGCTATAATCAAGAAAATCAGCCAATTCGTGTTAACCCCGGTCCGCTAGATGCTCCAGCATACGGCGTTAAATCGACCCTACCTGATATGCTGAGTTTCATTAATGCCAATATAAATCCACAAAAATATCCAGCAGATATTCAACGTGCAATTAATGAAACACATCAAGGTTTCTATCAAGTCGGCACCATGTATCAGGCACTTGGTTGGGAAGAATTTTCTTATCCAGCGCCTTTACAAACTTTATTAGACAGTAATTCAGAACAAATTGTGATGAAGCCTAATAAAGTGACTGCCATTTCCAAAGAACCTTCAATTAAGATGTTCCACAAAACTGGTTCGACTAACGGTTTTGGAACATATGTCGTGTTCATTCCTAAAGAAAATATTGGCTTAGTCATGTTGACCAATAAACGTATTCCGAATGAAGAACGCATTAAAGCAGCTTATGCTGTGTTAAATGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter pittii", "NCBI_taxonomy_id": "48296", "NCBI_taxonomy_cvterm_id": "36787"}, "protein_sequence": {"accession": "WP_063857795.1", "sequence": "MRFKKISCLLLSPLFIFSTSIYAGNTPKDQEIKKLVDQNFKPLLDKYDVPGMAVGVIQNNKKYEMYYGLQSVQDKKAVSSSTIFELGSVSKLFTATAGGYAKNKGKISFDDTPGKYWKELKNTPIDQVNLLQLATYTSGNLALQFPDEVQTDQQVLTFFKDWKLKNPIGEYRQYSNPSIGLFGKVVALSMNKPFDQVLEKTIFPDLGLKHSYVNVPKTQMQNYAFGYNQENQPIRVNPGPLDAPAYGVKSTLPDMLSFINANINPQKYPADIQRAINETHQGFYQVGTMYQALGWEEFSYPAPLQTLLDSNSEQIVMKPNKVTAISKEPSIKMFHKTGSTNGFGTYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLNAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-21", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40564", "model_name": "ADC-21", "model_type_id": "40292"}, "2356": {"model_id": "2356", "ARO_accession": "3003871", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-39 is a beta-lactamase found in Acinetobacter baumannii.", "model_sequences": {"sequence": {"3649": {"dna_sequence": {"fmax": "1152", "fmin": "0", "accession": "NG_048654.1", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGTCTACTTTTATCCCCGCTTTTTATTTTTAGTACCTCAATTTATGCGGGCAATACACCAAAAGACCAAGAAATTAAAAAACTGGTAGATCAAAACTTTAAACCGTTATTAGAAAAATATGATGTGCCAGGTATGGCTGTGGGTGTTATTCAAAATAATAAAAAGTATGAAATGTATTATGGTCTTCAATCTGTTCAAGATAAAAAAGCCGTAAATCGCAGTACCATTTTTGAGCTAGGTTCTGTCAGTAAATTATTTACCGCGACAGCAGGTGGATATGCAAAAAATAAAGGAAAAATCTCTTTTGACGATACGCCTGGTAAATATTGGAAAGAACTAAAAAACACACCGATTGACCAAGTTAACTTACTTCAACTCGCGACGTATACAAGTGGTAACCTTGCCTTGCAGTTTCCAGATGAAGTACAAACAGACCAACAAGTTTTAACTTTTTTCAAAGACTGGCAACCTAAAAACCCAATCGGTGAATACAGACAATATTCAAATCCAAGTATTGGCCTATTTGGAAAGGTTGTGGCTTTGTCTATGAATAAACCTTTCGACCAAGTCTTAGAAAAAACAATTTTTCCGGCCCTTGGCTTAAAACATAGCTATGTAAATGTACCTAAGACCCAGATGCAAAACTATGCATTTGGTTATAACCAAGAAAATCAGCCGATTCGAGTTAACCCCGGCCCACTCGATGCCCCTGCATATGGCGTCAAATCGACACTACCCGACATGTTGAGTTTTATTCATGCCAACCTTAACCCACAGAAATATCCGGCTGATATTCAACGGGCAATTAATGAAACACATCAAGGGTTCTATCAAGTAAATACCATGTATCAGGCACTCGGTTGGGAAGAGTTTTCTTATCCGGCAACGTTACAAACTTTATTAGACAGTAATTCAGAACAGATTGTGATGAAACCTAATAAAGTGACTGCTATTTCAAAGGAACCTTCAGTTAAGATGTACCATAAAACTGGCTCAACCACCGGTTTCGGAACATATGTAGTGTTTATTCCTAAAGAAAATATTGGCTTAGTCATGTTAACCAATAAACGTATTCCAAATGAAGAGCGCATTAAGGCAGCTTATGCTGTGCTGAATGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter baumannii", "NCBI_taxonomy_id": "470", "NCBI_taxonomy_cvterm_id": "35507"}, "protein_sequence": {"accession": "WP_063857800.1", "sequence": "MRFKKISCLLLSPLFIFSTSIYAGNTPKDQEIKKLVDQNFKPLLEKYDVPGMAVGVIQNNKKYEMYYGLQSVQDKKAVNRSTIFELGSVSKLFTATAGGYAKNKGKISFDDTPGKYWKELKNTPIDQVNLLQLATYTSGNLALQFPDEVQTDQQVLTFFKDWQPKNPIGEYRQYSNPSIGLFGKVVALSMNKPFDQVLEKTIFPALGLKHSYVNVPKTQMQNYAFGYNQENQPIRVNPGPLDAPAYGVKSTLPDMLSFIHANLNPQKYPADIQRAINETHQGFYQVNTMYQALGWEEFSYPATLQTLLDSNSEQIVMKPNKVTAISKEPSVKMYHKTGSTTGFGTYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLNAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-39", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40570", "model_name": "ADC-39", "model_type_id": "40292"}, "2357": {"model_id": "2357", "ARO_accession": "3003872", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-41 is a beta-lactamase found in Acinetobacter pittii.", "model_sequences": {"sequence": {"3650": {"dna_sequence": {"fmax": "1152", "fmin": "0", "accession": "NG_048656.1", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGTCTACTTTTATCCCCGCTTTTTATTTTTAGTACCTCAATTTATGCGGGCAATACACCAAAAGACCAAGAAATTAAAAAACTGGTAGATCAAAACTTTAAACCTTTATTAGATAAATATGATGTGCCGGGTATGGCCGTGGGCGTTATTCAGAATAATAAAAAATATGAAACGTATTATGGTCTTCAATCTGTTCAAGATAAAAAAGCCGTAAGTAGCAGTACCATTTTTGAACTAGGTTCTGTCAGTAAATTATTTACCGCGACAGCAGGTGGATATGCAAAAAATAAAGGAAAAATCTCTTTTGACGATACGCCTGGTAAATATTGGAAAGAACTAAAAAACACACCGATTGACCAAGTTAACTTACTTCAACTCGCAACGTATACAAGTGGTAACCTTGCCTTGCAGTTCCCAGATGAAGTACAAACAGACCAACAAGTTTTAACTTTTTTCAAAGACTGGAAACCTAAAAACCCAATCGGTGAATACAGACAATATTCAAATCCAAGTATTGGCCTATTTGGAAAAGTTGTTGCTTTGTCTATGAATAAACCTTTCGACCAAGTCTTAGAAAAAACAATTTTTCCGGGCCTTGGCTTAAAACATAGCTATGTAAATGTACCGAAGAACCAGATGCAAAACTATGCTTTTGGCTATAATCAAGAAAATCAGCCAATTCGTGTTAACCCTGGTCCGCTAGATGCTCCAGCATACGGCGTCAAATCGACACTACCCGATATGCTTAAGTTTATTAATGCCAACCTAAATCCACAAAAATATCCAGCAGATATTCAACGTGCAATTAATGAAACACATCAAGGTTTCTATCAAGTCGGCATCATGTATCAAGCATTAGGTTGGGAAGAATTTTCTTATCCAGCGCCTTTACAAACTTTATTAGACAGTAATTCAGAACAAATTGTGATGAAGCCTAATAAAGTGACTGCCATTTCAAAAGAACCTTCAGTTAAGATGTTCCACAAAACTGGTTCAACCAATGGTTTCGGAACTTATGTCGTGTTCATTCCTAAAGAAAATATTGGCTTAGTCATGTTAACCAATAAACGTATTCCAAATGAAGAACGCATTAAGGCAGCGTATGCCGTGCTGAATGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter pittii", "NCBI_taxonomy_id": "48296", "NCBI_taxonomy_cvterm_id": "36787"}, "protein_sequence": {"accession": "WP_063857802.1", "sequence": "MRFKKISCLLLSPLFIFSTSIYAGNTPKDQEIKKLVDQNFKPLLDKYDVPGMAVGVIQNNKKYETYYGLQSVQDKKAVSSSTIFELGSVSKLFTATAGGYAKNKGKISFDDTPGKYWKELKNTPIDQVNLLQLATYTSGNLALQFPDEVQTDQQVLTFFKDWKPKNPIGEYRQYSNPSIGLFGKVVALSMNKPFDQVLEKTIFPGLGLKHSYVNVPKNQMQNYAFGYNQENQPIRVNPGPLDAPAYGVKSTLPDMLKFINANLNPQKYPADIQRAINETHQGFYQVGIMYQALGWEEFSYPAPLQTLLDSNSEQIVMKPNKVTAISKEPSVKMFHKTGSTNGFGTYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLNAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-41", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40571", "model_name": "ADC-41", "model_type_id": "40292"}, "2354": {"model_id": "2354", "ARO_accession": "3003868", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-25 is a beta-lactamase found in Acinetobacter baumannii.", "model_sequences": {"sequence": {"3647": {"dna_sequence": {"fmax": "1152", "fmin": "0", "accession": "NG_048649.1", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGTCTACTTTTATCCCCGCTTTTTATTTTTAGTACCTCAATTTATGCGGGCAATACACCAAAAGACCAAGAAATTAAAAAACTGGTAGATCAAAACTTTAAACCGTTATTAGAAAAATATGATGTGCCAGGTATGGCTGTGGGTGTTATTCAAAATAATAAAAAGTATGAAATGTATTATGGTCTTCAATCTGTTCAAGATAAAAAAGCCGTAAATAGCAGTACTATTTTTGAGCTAGGTTCTGTCAGTAAATTATTTACCGCGACAGCAGGTGGATATGCAAAAAATAAAGGAAAAATCTCTTTTGACGATACGCCTGGTAAGTATTGGAAAGAACTAAAAAATACACCGATTGACCAAGTTAACTTACTTCAACTCGCGACGTATACAAGTGGTAACCTTGCCTTGCAATTTCCAGATGAAGTAAAAACAGATCAGCAAGTTTTAACATTTTTTAAAGACTGGAAACCTAAAAACTCAATCGGTGAATATCGACAATATTCAAACCCAAGCATTGGTTTATTTGGAAAAGTTGTAGCTTTGTCTATGAATAAACCTTTCGACCAAGTCTTAGAAAAAACAATTTTTCCGGCCCTTGGCTTAAAACATAGCTATGTAAATGTACCTAAGACCCAGATGCAAAACTATGCTTTTGGCTATAACCAAGAAAATCAGCCGATTCGAGTTAACCCCGGCCCACTCGATGCCCCAGCATATGGCGTCAAATCGACACTACCCGACATGTTGAGTTTTATTCATGCCAACCTAAATCCACAAAAATATCCAGCAGATATTCAACGGGCAATTAATGAAACACATCAGGGTCGCTATCAAGTAAATACCATGTATCAGGCACTCGGTTGGGAAGAGTTTTCTTATCCGGCAACGTTACAAACTTTATTAGACAGTAATTCAGAACAGATTGTGATGAAACCTAATAAAGTGACTGCTATTTCAAAGGAACCTTCAGTTAAGATGTACCATAAAACTGGCTCAACTAACGGTTTCGGAACATATGTGGTGTTTATTCCTAAAGAAAATATTGGTTTAGTCATGTTAACCAATAAACGTATTCCAAATGAAGAGCGCATTAAGGCAGCTTATGCTGTGCTGAATGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter baumannii", "NCBI_taxonomy_id": "470", "NCBI_taxonomy_cvterm_id": "35507"}, "protein_sequence": {"accession": "WP_001211217.1", "sequence": "MRFKKISCLLLSPLFIFSTSIYAGNTPKDQEIKKLVDQNFKPLLEKYDVPGMAVGVIQNNKKYEMYYGLQSVQDKKAVNSSTIFELGSVSKLFTATAGGYAKNKGKISFDDTPGKYWKELKNTPIDQVNLLQLATYTSGNLALQFPDEVKTDQQVLTFFKDWKPKNSIGEYRQYSNPSIGLFGKVVALSMNKPFDQVLEKTIFPALGLKHSYVNVPKTQMQNYAFGYNQENQPIRVNPGPLDAPAYGVKSTLPDMLSFIHANLNPQKYPADIQRAINETHQGRYQVNTMYQALGWEEFSYPATLQTLLDSNSEQIVMKPNKVTAISKEPSVKMYHKTGSTNGFGTYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLNAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-25", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40567", "model_name": "ADC-25", "model_type_id": "40292"}, "2355": {"model_id": "2355", "ARO_accession": "3003870", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-31 is a beta-lactamase found in Acinetobacter baumannii.", "model_sequences": {"sequence": {"3648": {"dna_sequence": {"fmax": "1252", "fmin": "100", "accession": "NG_050716.1", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGTCTACTTTTATCCCCGCTTTTTATTTTTAGTACCTCAATTTATGCGGGCAATACACCAAAAGACCAAGAAATTAAAAAACTGGTAGATCAAAACTTTAAACCGTTATTAGAAAAATATGATGTGCCAGGTATGGCTGTGGGTGTTATTCAAAATAATAAAAAGTATGAAATGTATTATGGTCTTCAATCTGTTCAAGATAAAAAAGCCGTAAATAGCAGTACTATTTTTGAGCTAGGTTCTGTCAGTAAATTATTTACCGCGACAGCAGGTGGATATGCAAAAAATAAAGGAAAAATCTCTTTTGACGATACGCCTGGTAAGTATTGGAAAGAACTAAAAAATACACCGATTGACCAAGTTAACTTACTTCAACTCGCGACGTATACAAGTGGTAACCTTGCCTTGCAATTTCCAGATGAAGTAAAAACAGATCAGCAAGTTTTAACATTTTTTAAAGACTGGAAACCTAAAAACTCAATCGGTGAATATCGACAATATTCAAACCCAAGCATTGGTTTATTTGGAAAAGTTGTAGCTTTGTCTATGAATAAACCTTTAGACCAAGTCTTAGAAAAAACAATTTTTCCGGCCCTTGGCTTAAAACATAGCTATGTAAATGTACCTAAGACCCAGATGCAAAACTATGCTTTTGGCTATAACCAAGAAAATCAGCCGATTCGAGTTAACCCCGGCCCACTCGATGCCCCAGCATATGGCGTCAAATCGACACTACCCGACATGTTGAGTTTTATTCATGCCAACCTAAATCCACAAAAATATCCAGCAGATATTCAACGGGCAATTAATGAAACACATCAGGGTCGCTATCAAGTAAATACCATGTATCAGGCACTCGGTTGGGAAGAGTTTTCTTATCCGGCAACGTTACAAACTTTATTAGACAGTAATTCAGAACAGATTGTGATGAAACCTAATAAAGTGACTGCTATTTCAAAGGAACCTTCAGTTAAGATGTACCATAAAACTGGCTCAACTAGCGGTTTCGGAACATATGTGGTGTTTATTCCTAAAGAAAATATTGGTTTAGTCATGTTAACCAATAAACGTATTCCAAATGAAGAGCGCATTAAGGCAGCTTATGCTGTGCTGAATGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter baumannii", "NCBI_taxonomy_id": "470", "NCBI_taxonomy_cvterm_id": "35507"}, "protein_sequence": {"accession": "WP_001211223.1", "sequence": "MRFKKISCLLLSPLFIFSTSIYAGNTPKDQEIKKLVDQNFKPLLEKYDVPGMAVGVIQNNKKYEMYYGLQSVQDKKAVNSSTIFELGSVSKLFTATAGGYAKNKGKISFDDTPGKYWKELKNTPIDQVNLLQLATYTSGNLALQFPDEVKTDQQVLTFFKDWKPKNSIGEYRQYSNPSIGLFGKVVALSMNKPLDQVLEKTIFPALGLKHSYVNVPKTQMQNYAFGYNQENQPIRVNPGPLDAPAYGVKSTLPDMLSFIHANLNPQKYPADIQRAINETHQGRYQVNTMYQALGWEEFSYPATLQTLLDSNSEQIVMKPNKVTAISKEPSVKMYHKTGSTSGFGTYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLNAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-31", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40569", "model_name": "ADC-31", "model_type_id": "40292"}, "2860": {"model_id": "2860", "ARO_accession": "3004344", "model_param": {"blastp_bit_score": {"param_value": "750", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "An AmpC-like beta-lactamase found in Pseudomonas aeruginosa", "model_sequences": {"sequence": {"4217": {"dna_sequence": {"fmax": "1116", "fmin": "0", "accession": "KR057750.1", "strand": "+", "sequence": "GGCGAGGCCCCGGCGGATCGCCTGAAGGCATTGGTCGACGCCGCCGTACAACCGGTGATGAAGGCCAATGACATTCCGGGCCTGGCCGTAGCCATCAGCCTGAAAGGAGAACCGCATTACTTCAGCTATGGGCTGGCCTCGAAAGAGGACGGCCGCCGGGTGACGCCGGAGACCCTGTTCGAGATCGGCTCGGTGAGCAAGACCTTCACCGCCACCCTCGCCGGCTATGCCCTGGCCCAGGACAAGATGCGCCTCGACGACCGCGCCAGCCAGCACTGGCCGGCACTGCAGGGCAGCCGCTTCGACGGCATCAGCCTGCTCGACCTCGCGACCTATACCGCCGGCGGCTTGCCGCTGCAGTTCCCCGACTCGGTGCAGAAGGACCAGGCACAGATCCGCGACTACTACCGCCAGTGGCAGCCGACCTACGCGCCGGGCAGTCAGCGCCTCTATTCCAACCTGAGCATCGGCCTGTTCGGCTATCTCGCCGCGCGCAGCCTGGGCCAGCCGTTCGAACGGCTCATGGAGCAGCAAGTGTTCCCGGCACTGGGCCTCGAACAGACCCACCTCGACGTGCCCGAGGCGGCGCTGGCGCAGTACGCCCAGGGCTACGGCAAGGACGACCGCCCGCTACGGGTCGGTCCCGGCCCGCTGGATGCCGAAGGCTACGGGGTGAAGACCAGCGCGGCCGACCTGCTGCGCTTCGTCGATGCCAACCTGCATCCGGAGCGCCTGGACAGGCCCTGGGCGCAGGCGCTCGATGCCACCCATCGCGGTTACTACAAGGTCGGCGACATGACCCAGGGCCTGGGCTGGGAAGCCTACGACTGGCCGATCTCCCTGAAGCGCCTGCAGGCCGGCAACTCGACGCCGATGGCGCTGCAACCACACAGGATCGCTAGGCTGCCCGCGCCACAGGCGCTGGAGGGCCAGCGCCTGCTGAACAAGACCGGCTCCACCAACGGCTTCGGCGCCTACGTGGCGTTCGTCCCGGGCCGCGACCTGGGCCTGGTGATCCTGGCCAACCGCAACTATCCCAATGCCGAGCGGGTGAAGATCGCCTATGCCATCCTCAGCGGCCTGGAGCAGCAGGCCAAGGTGCCGCTGAAGCGCTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa", "NCBI_taxonomy_id": "287", "NCBI_taxonomy_cvterm_id": "36752"}, "protein_sequence": {"accession": "AKR18021.1", "sequence": "GEAPADRLKALVDAAVQPVMKANDIPGLAVAISLKGEPHYFSYGLASKEDGRRVTPETLFEIGSVSKTFTATLAGYALAQDKMRLDDRASQHWPALQGSRFDGISLLDLATYTAGGLPLQFPDSVQKDQAQIRDYYRQWQPTYAPGSQRLYSNLSIGLFGYLAARSLGQPFERLMEQQVFPALGLEQTHLDVPEAALAQYAQGYGKDDRPLRVGPGPLDAEGYGVKTSAADLLRFVDANLHPERLDRPWAQALDATHRGYYKVGDMTQGLGWEAYDWPISLKRLQAGNSTPMALQPHRIARLPAPQALEGQRLLNKTGSTNGFGAYVAFVPGRDLGLVILANRNYPNAERVKIAYAILSGLEQQAKVPLKR"}}}}, "ARO_category": {"36237": {"category_aro_name": "PDC beta-lactamase", "category_aro_cvterm_id": "36237", "category_aro_accession": "3000098", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PDC beta-lactamases are class C beta-lactamases that are found in Pseudomonas aeruginosa."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}, "ARO_name": "PDC-81", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "41512", "model_name": "PDC-81", "model_type_id": "40292"}, "2861": {"model_id": "2861", "ARO_accession": "3004345", "model_param": {"blastp_bit_score": {"param_value": "750", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "An AmpC-like beta-lactamase found in Pseudomonas aeruginosa", "model_sequences": {"sequence": {"4218": {"dna_sequence": {"fmax": "1116", "fmin": "0", "accession": "KR057751.1", "strand": "+", "sequence": "GGCGAGGCCCCGGCGGATCGCCTGAAGGCATTGGTCGACGCCGCCGTACAACCGGTGATGAAGGCCAATGACATTCCGGGCCTGGCCGTAGCCATCAGCCTGAAAGGAGAACCGCATTACTTCAGCTATGGGCTGGCCTCGAAAGAGGACGGCCGCCGGGTGACGCCGGAGACCCTGTTCGAGATCGGCTCGGTGAGCAAGACCTTCACCGCCACCCTCGCCGGCTATGCCCTGGCCCAGGACAAGATGCGCCTCGACGACCGCGCCAGCCAGCACTGGCCGGCACTGCAGGGCAGCCGCTTCGACGGCATCAGCCTGCTCGACCTCGCGACCTATACCGCCGGCGGCTTGCCGCTGCAGCTCCCCGACTCGGTGCAGAAGGACCAGGCACAGATCCGCGACTACTACCGCCAGTGGCAGCCGACCTACGCGCCGGGCAGTCAGCGCCTCTATTCCAACCCGAGCATCGGCCTGTTCGGCTATCTCGCCGCGCGCAGCCTGGGCCAGCCGTTCGAACGGCTCCTGGAGCAGCAAGTGTTCCCGGCACTGGGCCTCGAACAGACCCACCTCGACGTGCCCGAGGCGGCGCTGGCGCAGTACGCCCAGGGCTACGGCAAGGACGACCGCCCGCTACGGGTCGGTCCCGGCCCGCTGGATGCCGAAGGCTACGGGGTGAAGACCAGCGCGGCCGACCTGCTGCGCTTCGTCGATGCCAACCTGCATCCGGAGCGCCTGGACAGGCCCTGGGCGCAGGCGCTCGATGCCACCCATCGCGGTTACTACAAGGTCGGCGACATGACCCAGGGCCTGGGCTGGGAAGCCTACGACTGGCCGATCTCCCTGAAGCGCCTGCAGGCCGGCAACTCGACGCCGATGGCGCTGCAACCACACAGGATCGCTAGGCTGCCCGCGCCACAGGCGCTGGAGGGCCAGCGCCTGCTGAACAAGACCGGCTCCACCAACGGCTTCGGCGCCTACGTGGCGTTCGTCCCGGGCCGCGACCTGGGCCTGGTGATCCTGGCCAACCGCAACTATCCCAATGCCGAGCGGGTGAAGATCGCCTATGCCATCCTCAGCGGCCTGGAGCAGCAGGCCAAGGTGCCGCTGAAGCGCTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa", "NCBI_taxonomy_id": "287", "NCBI_taxonomy_cvterm_id": "36752"}, "protein_sequence": {"accession": "AKR18022.1", "sequence": "GEAPADRLKALVDAAVQPVMKANDIPGLAVAISLKGEPHYFSYGLASKEDGRRVTPETLFEIGSVSKTFTATLAGYALAQDKMRLDDRASQHWPALQGSRFDGISLLDLATYTAGGLPLQLPDSVQKDQAQIRDYYRQWQPTYAPGSQRLYSNPSIGLFGYLAARSLGQPFERLLEQQVFPALGLEQTHLDVPEAALAQYAQGYGKDDRPLRVGPGPLDAEGYGVKTSAADLLRFVDANLHPERLDRPWAQALDATHRGYYKVGDMTQGLGWEAYDWPISLKRLQAGNSTPMALQPHRIARLPAPQALEGQRLLNKTGSTNGFGAYVAFVPGRDLGLVILANRNYPNAERVKIAYAILSGLEQQAKVPLKR"}}}}, "ARO_category": {"36237": {"category_aro_name": "PDC beta-lactamase", "category_aro_cvterm_id": "36237", "category_aro_accession": "3000098", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PDC beta-lactamases are class C beta-lactamases that are found in Pseudomonas aeruginosa."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}, "ARO_name": "PDC-82", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "41513", "model_name": "PDC-82", "model_type_id": "40292"}, "2862": {"model_id": "2862", "ARO_accession": "3004346", "model_param": {"blastp_bit_score": {"param_value": "750", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "An AmpC-like beta-lactamase found in Pseudomonas aeruginosa", "model_sequences": {"sequence": {"4219": {"dna_sequence": {"fmax": "1116", "fmin": "0", "accession": "KR057752.1", "strand": "+", "sequence": "GGCGAGGCCCCGGCGGATCGCCTGAAGGCATTGGTCGACGCCGCCGTACAACCGGCGATGAAGGCCAATGACATTCCGGGCCTGGCCGTAGCCATCAGCCTGAAAGGAGAACCGCATTACTTCAGCTATGGGCTGGCCTCGAAAGAGGACGGCCGCCGGGTGACGCCGGAGACCCTGTTCGAGATCGGCTCGGTGAGCAAGACCTTCACCGCCACCCTCGCCGGCTATGCCCTGGCCCAGGACAAGATGCGCCTCGACGACCGCGCCAGCCAGCACTGGCCGGCACTGCAGGGCAGCCGCTTCGACGGCATCAGCCTGCTCGACCTCGCGACCTATACCGCCGGCGGCTTGCCGCTGCAGTTCCCCGACTCGGTGCAGAAGGACCAGGCACAGATCCGCGACTACTACCGCCAGTGGCAGCCGACCTACGCGCCGGGCAGTCAGCGCCTCTATTCCAACCCGAGCATCGGCCTGTTCGGCTATCTCGCCGCGCGCAGCCTGGGCCAGCCGTTCGAACGGCTCATGGAGCAGCAAGTGTTCCCGGCACTGGGCCTCGAACAGACCCACCTCGACGTGCCCGAGGCGGCGCTGGCGCAGTACGCCCAGGGCTACGGCAAGGACGACCGCCCGCTACGGGCCGGTCCCGGCCCGCTGGATGCCGAAGGCTACGGGGTGAAGACCAGCGCGGCCGACCTGCTGCGCTTCGTCGATGCCAACCTGCATCCGGAGCGCCTGGACAGGCCCTGGGCGCAGGCGCTCGATGCCACCCATCGCGGTTACTACAAGGTCGGCGACATGACCCAGGGCCTGGGCTGGGAAGCCTACGACTGGCCGATCTCCCTGAAGCGCCTGCAGGCCGGCAACTCGACGCCGATGGCGCTGCAACCACACAGGATCGCTAGGCTGCCCGCGCCACAGGCGCTGGAGGGCCAGCGCCTGCTGAACAAGACCGGCTCCACCAACGGCTTCGGCGCCTACGTGGCGTTCGTCCCGGGCCGCGACCTGGGCCTGGTGATCCTGGCCAACCGCAACTATCCCAATGCCGAGCGGGTGAAGATCGCCTATGCCATCCTCAGCGGCCTGGAGCAGCAGGCCAAGGTGCCGCTGAAGCGCTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa", "NCBI_taxonomy_id": "287", "NCBI_taxonomy_cvterm_id": "36752"}, "protein_sequence": {"accession": "AKR18023.1", "sequence": "GEAPADRLKALVDAAVQPAMKANDIPGLAVAISLKGEPHYFSYGLASKEDGRRVTPETLFEIGSVSKTFTATLAGYALAQDKMRLDDRASQHWPALQGSRFDGISLLDLATYTAGGLPLQFPDSVQKDQAQIRDYYRQWQPTYAPGSQRLYSNPSIGLFGYLAARSLGQPFERLMEQQVFPALGLEQTHLDVPEAALAQYAQGYGKDDRPLRAGPGPLDAEGYGVKTSAADLLRFVDANLHPERLDRPWAQALDATHRGYYKVGDMTQGLGWEAYDWPISLKRLQAGNSTPMALQPHRIARLPAPQALEGQRLLNKTGSTNGFGAYVAFVPGRDLGLVILANRNYPNAERVKIAYAILSGLEQQAKVPLKR"}}}}, "ARO_category": {"36237": {"category_aro_name": "PDC beta-lactamase", "category_aro_cvterm_id": "36237", "category_aro_accession": "3000098", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PDC beta-lactamases are class C beta-lactamases that are found in Pseudomonas aeruginosa."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}, "ARO_name": "PDC-83", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "41514", "model_name": "PDC-83", "model_type_id": "40292"}, "2863": {"model_id": "2863", "ARO_accession": "3004347", "model_param": {"blastp_bit_score": {"param_value": "750", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "An AmpC-like beta-lactamase found in Pseudomonas aeruginosa", "model_sequences": {"sequence": {"4220": {"dna_sequence": {"fmax": "1116", "fmin": "0", "accession": "KR057753.1", "strand": "+", "sequence": "GGCGAGGCCCCGGCGGATCGCCTGAAGGCATTGGTCGACGCCGCCGTACAACCGGCGATGAAGGCCAATGACATTCCGGGCCTGGCCGTAGCCATCAGCCTGAAAGGAGAACCGCATTACTTCAGCTATGGGCTGGCCTCGAAAGAGGACGGCCGCCGGGTGACGCCGGAGACCCTGTTCGAGATCGGCTCGGTGAGCAAGACCTTCACCGCCACCCTCGCCGGCTATGCCCTGGCCCAGGACAAGATGCGCCTCGACGACCGCGCCAGCCAGCACTGGCCGGCACTGCAGGGCAGCCGCTTCGACGGCATCAGCCTGCTCGACCTCGCGACCTATACCGCCGGCGGCTTGCCGCTGCAGTTCCCCGACTCGGTGCAGAAGGACCAGGCACAGATCCGCGACTACTACCGCCAGTGGCAGCCGACCTACGCGCCGGGCAGTCAGCGCCTCTATTCCAACCCGAGCATCGGCCTGTTCGGCTATCTCGCCGCGCGCAGCCTGGGCCAGCCGTTCGAACGGCTCATGGAGCAGCAAGTGTTCCCGGCACTGGGCCTCGAACAGACCCACCTCGACGTGCCCGAGGCGGCGCTGGCGCAGTACGCCCAGGGCTACGGCAAGGACGACCGCCCGCTACGGGCCGGTCCCGGCCCGCTGGATGCCGAAGGCTACGGGGTGAAGACCAGCGCGGCCGACCTGCTGCGCTTCGTCGATGCCAACCTGCATCCGGAGCGCCTGGACAGGCCCTGGGCGCAGGCGCTCGATGCCACCCATCGCGGTTACTACAAGGTCGGCGACATGACCCAGGGCCTGGGCTGGGAAGCCTACGACTGGCCGATCTCCCTGAAGCGCCTGCAGGCCGGCAACTCGACGCCGATGGCGCTGCAACCACACAGGATCGCTAGGCTGCCCGCGCCACAGGCGCTGGAGGGCCAGCGCCTGCTGAACAAGACCGGCTCCACCAACGGCTTCGGCGCCTACGTGGCGTTCGTCCCGGGCCGCGACCTGGGCCTGGTGATCCTGGCCAACCGCAACTATCCCATTGCCGAGCGGGTGAAGATCGCCTATGCCATCCTCAGCGGCCTGGAGCAGCAGGCCAAGGTGCCGCTGAAGCGCTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa", "NCBI_taxonomy_id": "287", "NCBI_taxonomy_cvterm_id": "36752"}, "protein_sequence": {"accession": "AKR18024.1", "sequence": "GEAPADRLKALVDAAVQPAMKANDIPGLAVAISLKGEPHYFSYGLASKEDGRRVTPETLFEIGSVSKTFTATLAGYALAQDKMRLDDRASQHWPALQGSRFDGISLLDLATYTAGGLPLQFPDSVQKDQAQIRDYYRQWQPTYAPGSQRLYSNPSIGLFGYLAARSLGQPFERLMEQQVFPALGLEQTHLDVPEAALAQYAQGYGKDDRPLRAGPGPLDAEGYGVKTSAADLLRFVDANLHPERLDRPWAQALDATHRGYYKVGDMTQGLGWEAYDWPISLKRLQAGNSTPMALQPHRIARLPAPQALEGQRLLNKTGSTNGFGAYVAFVPGRDLGLVILANRNYPIAERVKIAYAILSGLEQQAKVPLKR"}}}}, "ARO_category": {"36237": {"category_aro_name": "PDC beta-lactamase", "category_aro_cvterm_id": "36237", "category_aro_accession": "3000098", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PDC beta-lactamases are class C beta-lactamases that are found in Pseudomonas aeruginosa."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}, "ARO_name": "PDC-84", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "41515", "model_name": "PDC-84", "model_type_id": "40292"}, "2864": {"model_id": "2864", "ARO_accession": "3004348", "model_param": {"blastp_bit_score": {"param_value": "750", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "An AmpC-like beta-lactamase found in Pseudomonas aeruginosa", "model_sequences": {"sequence": {"4221": {"dna_sequence": {"fmax": "1116", "fmin": "0", "accession": "KR057754.1", "strand": "+", "sequence": "GGCGAGGCCCCGGCGGATCGCCTGAAGGCATTGGTCGACGCCGCCGTACAACCGGTGATGAAGGCCAATGACATTCCGGGCCTGGCCGTAGCCATCAGCCTGAAAGGAGAACCGCATTACTTCAGCTATGGGCTGGCCTCGAAAGAGGACGGCCGCCGGGTGACGCCGGAGACCCTGTTCGAGATCGGCTCGGTGAGCAAGACCTTCACCGCCACCCTCGCCGGCTATGCCCTGGCCCAGGACAAGATGCGCCTCGACGACCGCGCCAGCCAGCACTGGCCGGCACTGCAGGGCAGCCGCTTCGACGGCATCAGCCTGCTCGACCTCGCGACCTATACCGCCGGCGGCTTGCCGCTGCAGTTCCCCGACTCGGTGCAGAAGGACCAGGCACAGATCCGCGACTACTACCGCCAGTGGCAGCCGACCTACGCGCCGGGCAGTCAGCGCCTCTATTCCAACCCGAGCATCGGCCTGTTCGGCTATCTCGCCGCGCGCAGCCTGGGCCAGCCGTTCGAACGGCTCATGGAGCAGCAAGTGTTCCCGGCACTGGGCCTCGAACAGACCCACCTCGACGTGCCCGAGGCGGCGCTGGCGCAGTACGCCCAGGGCTACGGCAAGGACGACCGCCCGCTACGGGTCGGTCCCGGCCCGCTGGATGCCGAAGGCCATGGGGTGAAGACCAGCGCGGCCGACCTGCTGCGCTTCGTCGATGCCAACCTGCATCCGGAGCGCCTGGACAGGCCCTGGGCGCAGGCGCTCGATGCCACCCATCGCGGTTACTACAAGGTCGGCGACATGACCCAGGGCCTGGGCTGGGAAGCCTACGACTGGCCGATCTCCCTGAAGCGCCTGCAGGCCGGCAACTCGACGCCGATGGCGCTGCAACCACACAGGATCGCTAGGCTGCCCGCGCCACAGGCGCTGGAGGGCCAGCGCCTGCTGAACAAGACCGGCTCCACCAACGGCTTCGGCGCCTACGTGGCGTTCGTCCCGGGCCGCGACCTGGGCCTGGTGATCCTGGCCAACCGCAACTATCCCAATGCCGAGCGGGTGAAGATCGCCTATGCCATCCTCAGCGGCCTGGAGCAGCAGGCCAAGGTGCCGCTGAAGCGCTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa", "NCBI_taxonomy_id": "287", "NCBI_taxonomy_cvterm_id": "36752"}, "protein_sequence": {"accession": "AKR18025.1", "sequence": "GEAPADRLKALVDAAVQPVMKANDIPGLAVAISLKGEPHYFSYGLASKEDGRRVTPETLFEIGSVSKTFTATLAGYALAQDKMRLDDRASQHWPALQGSRFDGISLLDLATYTAGGLPLQFPDSVQKDQAQIRDYYRQWQPTYAPGSQRLYSNPSIGLFGYLAARSLGQPFERLMEQQVFPALGLEQTHLDVPEAALAQYAQGYGKDDRPLRVGPGPLDAEGHGVKTSAADLLRFVDANLHPERLDRPWAQALDATHRGYYKVGDMTQGLGWEAYDWPISLKRLQAGNSTPMALQPHRIARLPAPQALEGQRLLNKTGSTNGFGAYVAFVPGRDLGLVILANRNYPNAERVKIAYAILSGLEQQAKVPLKR"}}}}, "ARO_category": {"36237": {"category_aro_name": "PDC beta-lactamase", "category_aro_cvterm_id": "36237", "category_aro_accession": "3000098", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PDC beta-lactamases are class C beta-lactamases that are found in Pseudomonas aeruginosa."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}, "ARO_name": "PDC-85", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "41516", "model_name": "PDC-85", "model_type_id": "40292"}, "2865": {"model_id": "2865", "ARO_accession": "3004349", "model_param": {"blastp_bit_score": {"param_value": "750", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "An AmpC-like beta-lactamase found in Pseudomonas aeruginosa", "model_sequences": {"sequence": {"4222": {"dna_sequence": {"fmax": "1116", "fmin": "0", "accession": "KR057755.1", "strand": "+", "sequence": "GATGAGGCCCCGGCGGATCGCCTGAAGGCACTGGTCGACGCCGCCGTACAACCGGTGATGAAGGCCAATGACATTCCGGGCCTGGCCGTAGCCATCAGCCTGAAAGGAGAACCGCATTACTTCAGCTATGGGCTGGCCTCGAAAGAGGACGGCCGCCGGGTGACGCCGGAGACCCTGTTCGAGATCGGCTCGGTGAGCAAGACCTTCACCGCCACCCTCGCCGGCTATGCCCTGGCCCAGGACAAGATGCGCCTCGACGACCGCGCCAGCCAGCACTGGCCGGCACTGCAGGGCAGCCGCTTCGACGGCATCAGCCTGCTCGACCTCGCGACCTATACCGCCGGCGGCTTGCCGCTGCAGTTCCCCGACTCGGTGCAGAAGGACCAGGCACAGATCCGCGACTACTACCGCCAGTGGCAGCCGACCTACGCGCCGGGCAGCCAGCGCCTCTATTCCAACCCGAGCATCGGCCTGTTCGGCTATCTCGCCGCGCGCAGCCTGGGCCAGCCGTTCGAACGGCTCATGGAGCAGCAATTGTTCCCGGCACTGGGCCTCGAACAGACCCACCTCGACGTGCCCGAGGCGGCGCTGGCGCAGTACGCCCAGGGCTACGGCAAGGACGACCGCCCGCTACGGGTCGGTCCCGGCCCGCTGGATGCCAAAGGCTACGGGGTGAAGACCAGCGCCGCCGACCTGCTGCGCTTCGTCGATGCCAACCTGCATCCGGAGCGCCTGGACAGGCCCTGGGCGCAGGCGCTCGATGCCACTCATCGCGGTTACTACAAGGTCGGCGACATGACCCAGGGCCTGGGCTGGGAAGCCTACGACTGGCCGATCTCCCTGAAGCGCCTGCAGGCCGGCAACTCGACGCCGATGGCGCTGCAACCACACAGGATCGCCAGGCTGCCCGCGCCACAGGCGCTGGAGGGCCAGCGCCTGCTGAACAAGACCGGCTCCACCAACGGCTTCGGCGCCTACGTGGCGTTCATTCCGGGCCGCGACCTGGGCCTGGTGATCCTGGCCAACCGCAACTATCCCAATGCCGAGCGGGTGAAGATCGCCTACGCCATCCTCAGCGGCCTGGAGCAGCAGGCCAAGGTGCCGCTGAAGCGCTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa", "NCBI_taxonomy_id": "287", "NCBI_taxonomy_cvterm_id": "36752"}, "protein_sequence": {"accession": "AKR18026.1", "sequence": "DEAPADRLKALVDAAVQPVMKANDIPGLAVAISLKGEPHYFSYGLASKEDGRRVTPETLFEIGSVSKTFTATLAGYALAQDKMRLDDRASQHWPALQGSRFDGISLLDLATYTAGGLPLQFPDSVQKDQAQIRDYYRQWQPTYAPGSQRLYSNPSIGLFGYLAARSLGQPFERLMEQQLFPALGLEQTHLDVPEAALAQYAQGYGKDDRPLRVGPGPLDAKGYGVKTSAADLLRFVDANLHPERLDRPWAQALDATHRGYYKVGDMTQGLGWEAYDWPISLKRLQAGNSTPMALQPHRIARLPAPQALEGQRLLNKTGSTNGFGAYVAFIPGRDLGLVILANRNYPNAERVKIAYAILSGLEQQAKVPLKR"}}}}, "ARO_category": {"36237": {"category_aro_name": "PDC beta-lactamase", "category_aro_cvterm_id": "36237", "category_aro_accession": "3000098", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PDC beta-lactamases are class C beta-lactamases that are found in Pseudomonas aeruginosa."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}, "ARO_name": "PDC-86", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "41517", "model_name": "PDC-86", "model_type_id": "40292"}, "2866": {"model_id": "2866", "ARO_accession": "3004350", "model_param": {"blastp_bit_score": {"param_value": "750", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "An AmpC-like beta-lactamase found in Pseudomonas aeruginosa", "model_sequences": {"sequence": {"4223": {"dna_sequence": {"fmax": "1116", "fmin": "0", "accession": "KR057756.1", "strand": "+", "sequence": "GATGAGGCCCCGGCGGATCGCCTGAAGGCACTGGTCGACGCCGCCGTACAACCGGTGATGAAGGCCAATGACATTCCGGGCTTGGCCGTAGCCATCAGCCTGAAAGGAGAACCGCATTACTTCAGCTATGGGCTGGCCTCGAAAGAGGACGGCCGCCGGGTGACGCCGGAGACCCTGTTCGAGATCGGCTCGGTGAGCAAGACCTTCACCGCCACCCTCGCCGGCTATGCCCTGGCCCAGGACAAGATGCGCCTCGACGACCGCGCCAGCCAGCACTGGCCGGCGCTGCAGGGCAGCCGCTTCGACGGCATCAGCCTGCTCGACCTCGCGACCTATACCGCCGGCGGCTTGCCGCTGCAGTTCCCCGACTCGGTGCAGAAGGACCAGGCACAGATCCGCGACTACTACCGCCAGTGGCAGCCGACCTACGCGCCGGGCAGCCAGCGCCTCTATTCCAACCCGAGCATCGGCCTGTTCGGCTATCTCGCCGCGCGCAGCCTGGGCCAGCCGTTCGAACGGCTCATGGAGCAGCAATTGTTCCCGGCACTGGGCCTCGAACAGACCCACCTCGACGTGCCCGAGGCGGCGCTGGCGCAGTACGCCCAGGGCTACGGCAAGGACGACCGCCCGCTACGGGTCGGTCCCGGCCCGCTGGATGCCGAAGGCTACGGGGTGAAGACCAGCGCGGCCGACCTGCTGCGCTTCGTCGATGCCAACCTGCATCCGGAGCGCCTGGACAGGCCCTGGGCGCAGGCGCTCGATGCCACCCATCGCGGTTACTACAAGGTCGGCGACATGACCCAGGGCCTGGGCTGGGAAGCCTACGACTGGCCGATCTCCCTGAAGCGCCTGCAGGCCGGCAACTCGACGCCGATGGCGCTGCAACCACACAGGATCGCCAGGCTGCCCGCGCCACAGGCGCTGGAGGGCCAGCGCCTGCTGAACAAGACCGGCTCCACCAACGGCTTCGGCGCCTACGTGGCGTTCATTCCGGGCCGCGACCTGGGCCTGGTGATCCTGGCCAACCGCAACTATCCCATTGCCGAGCGGGTGAAGATCGCCTACGCCATCCTCAGCGGCCTGGAGCAGCAGGCCAAGGTGCCGCTGAAGCGCTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa", "NCBI_taxonomy_id": "287", "NCBI_taxonomy_cvterm_id": "36752"}, "protein_sequence": {"accession": "AKR18027.1", "sequence": "DEAPADRLKALVDAAVQPVMKANDIPGLAVAISLKGEPHYFSYGLASKEDGRRVTPETLFEIGSVSKTFTATLAGYALAQDKMRLDDRASQHWPALQGSRFDGISLLDLATYTAGGLPLQFPDSVQKDQAQIRDYYRQWQPTYAPGSQRLYSNPSIGLFGYLAARSLGQPFERLMEQQLFPALGLEQTHLDVPEAALAQYAQGYGKDDRPLRVGPGPLDAEGYGVKTSAADLLRFVDANLHPERLDRPWAQALDATHRGYYKVGDMTQGLGWEAYDWPISLKRLQAGNSTPMALQPHRIARLPAPQALEGQRLLNKTGSTNGFGAYVAFIPGRDLGLVILANRNYPIAERVKIAYAILSGLEQQAKVPLKR"}}}}, "ARO_category": {"36237": {"category_aro_name": "PDC beta-lactamase", "category_aro_cvterm_id": "36237", "category_aro_accession": "3000098", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PDC beta-lactamases are class C beta-lactamases that are found in Pseudomonas aeruginosa."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}, "ARO_name": "PDC-87", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "41518", "model_name": "PDC-87", "model_type_id": "40292"}, "2867": {"model_id": "2867", "ARO_accession": "3004351", "model_param": {"blastp_bit_score": {"param_value": "750", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "An AmpC-like beta-lactamase found in Pseudomonas aeruginosa", "model_sequences": {"sequence": {"4224": {"dna_sequence": {"fmax": "1110", "fmin": "0", "accession": "KR057757.1", "strand": "+", "sequence": "GATGAGGCCCCGGCGGATCGCCTGAAGGCACTGGTCGACGCCGCCGTACAACCGGTGATGAAGGCCAATGACATTCCGGGCTTGGCCGTAGCCATCAGCCTGAAAGGAGAACCGCATTACTTCAGCTATGGGCTGGCCTCGAAAGAGGACGGCCGCCGGGTGACGCCGGAGACCCTGTTCGAGATCGGCTCGGTGAGCAAGACCTTCACCGCCACCCTCGCCGGCTATGCCCTGGCCCAGGACAAGATGCGCCTCGACGACCGCGCCAGCCAGCACTGGCCGGCGCTGCAGGGCAGCCGCTTCGACGGCATCAGCCTGCTCGACCTCGCGACCTATACCGCCGGCGGCTTGCCGCTGCAGTTCCCCGACTCGGTGCAGAAGGACCAGGCACAGATCCGCGACTACTACCGCCAGTGGCAGCCGACCTACGCGCCGGGCAGCCAGCGCCTCTATTCCAACCCGAGCATCGGCCTGTTCGGCTATCTCGCCGCGCGCAGCCTGGGCCAGCCGTTCGAACGGCTCATGGAGCAGCAATTGTTCCCGGCACTGGGCCTCGAACAGACCCACCTCGACGTGCCCGAGGCGGCGCTGGCGCAGTACGCCCAGGGCTACGGCAAGGACGACCGCCCGCTACGGGTCGGTCCCGGCCCGCTGGATGCCGAAGGCTACGGGGTGAAGACCAGCGCGGCCGACCTGCTGCGCTTCGTCGATGCCAACCTGCATCCGGAGCGCCTGGACAGGCCCTGGGCGCAGGCGCTCGATGCCACCCATCGCGGTTACTACAAGGTCGGCGACATGACCCAGGGCCTGGGCTGGGAAGCCTACGACTGGCCGATCTCCCTGAAGCGCCTGCAGGCCGGCAACTCGATGGCGCTGCAACCACACAGGATCGCCAGGCTGCCCGCGCCACAGGCGCTGGAGGGCCAGCGCCTGCTGAACAAGACCGGCTCCACCAACGGCTTCGGCGCCTACGTGGCGTTCATTCCGGGCCGCGACCTGGGCCTGGTGATCCTGGCCAACCGCAACTATCCCAATGCCGAGCGGGTGAAGATCGCCTACGCCATCCTCAGCGGCCTGGAGCAGCAGGCCAAGGTGCCGCTGAAGCGCTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa", "NCBI_taxonomy_id": "287", "NCBI_taxonomy_cvterm_id": "36752"}, "protein_sequence": {"accession": "AKR18028.1", "sequence": "DEAPADRLKALVDAAVQPVMKANDIPGLAVAISLKGEPHYFSYGLASKEDGRRVTPETLFEIGSVSKTFTATLAGYALAQDKMRLDDRASQHWPALQGSRFDGISLLDLATYTAGGLPLQFPDSVQKDQAQIRDYYRQWQPTYAPGSQRLYSNPSIGLFGYLAARSLGQPFERLMEQQLFPALGLEQTHLDVPEAALAQYAQGYGKDDRPLRVGPGPLDAEGYGVKTSAADLLRFVDANLHPERLDRPWAQALDATHRGYYKVGDMTQGLGWEAYDWPISLKRLQAGNSMALQPHRIARLPAPQALEGQRLLNKTGSTNGFGAYVAFIPGRDLGLVILANRNYPNAERVKIAYAILSGLEQQAKVPLKR"}}}}, "ARO_category": {"36237": {"category_aro_name": "PDC beta-lactamase", "category_aro_cvterm_id": "36237", "category_aro_accession": "3000098", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PDC beta-lactamases are class C beta-lactamases that are found in Pseudomonas aeruginosa."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}, "ARO_name": "PDC-88", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "41519", "model_name": "PDC-88", "model_type_id": "40292"}, "2868": {"model_id": "2868", "ARO_accession": "3004352", "model_param": {"blastp_bit_score": {"param_value": "750", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "An AmpC-like beta-lactamase found in Pseudomonas aeruginosa", "model_sequences": {"sequence": {"4225": {"dna_sequence": {"fmax": "1107", "fmin": "0", "accession": "KR057758.1", "strand": "+", "sequence": "GATGAGGCCCCGGCGGATCGCCTGAAGGCACTGGTCGACGCCGCCGTACAACCGGTGATGAAGGCCAATGACATTCCGGGCCTGGCCGTAGCCATCAGCCTGAAAGGAGAACCGCATTACTTCAGCTATGGGCTGGCCTCGAAAGAGGACGGCCGCCGGGTGACGCCGGAGACCCTGTTCGAGATCGGCTCGGTGAGCAAGACCTTCACCGCCACCCTCGCCGGCTATGCCCTGGCCCAGGACAAGATGCGCCTCGACGACCGCGCCAGCCAGCACTGGCCGGCACTGCAGGGCAGCCGCTTCGACGGCATCAGCCTGCTCGACCTCGCGACCTATACCGCCGGCGGCTTGCCGCTGCAGTTCCCCGACTCGGTGCAGAAGGACCAGGCACAGATCCGCGACTACTACCGCCAGTGGCAGCCGACCTACGCGCCGGGCAGCCAGCGCCTCTATTCCAACCCGAGCATCGGTCTGTTCGGCTATCTCGCCGCGCGCAGCCTGGGCCAGCCGTTCGAACGGCTCATGGAGCAGCAATTGTTCCCGGCACTGGGCCTCGAACAGACCCACCTCGACGTGCCCGAGGCGGCGCTGGCGCAGTACGCCCAGGGCTACGGCAAGGACGACCGCCCGCTACGGGTCGGTCCCGGCCCGCTGGATGCCGAAGGCTACGGGGTGAAGACCAGCGCGGCCGACCTGCTGCGCTTCGTCGATGCCAACCTGCATCCGGAGCGCCTGGACAGGCCCTGGGCGCAGGCGCTCGATGCCACCCATCGCGGTTACTACAAGGTCGGCGACATGACCCAGGGCCTGGGCTGGGAAGCCTACGACTGGCCAATCTCCCTGAAGCGCCTGCAGGCCGGCAACTCGGCGCTGCAGCCGCACAGGATCGCCAGGCTGCCCGCGCCACAGGCGCTGGAGGGCCAGCGCCTGCTGAACAAGACCGGCTCCACCAACGGCTTCGGCGCCTACGTGGCGTTCGTCCCGGGCCGCGACCTGGGCCTGGTGATCCTGGCCAACCGCAACTATCCCAATGCCGAGCGGGTGAAGATCGCCTACGCCATCCTCAGCGGCCTGGAGCAGCAGGCCAAGGTGCCGCTGAAGCGCTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa", "NCBI_taxonomy_id": "287", "NCBI_taxonomy_cvterm_id": "36752"}, "protein_sequence": {"accession": "AKR18029.1", "sequence": "DEAPADRLKALVDAAVQPVMKANDIPGLAVAISLKGEPHYFSYGLASKEDGRRVTPETLFEIGSVSKTFTATLAGYALAQDKMRLDDRASQHWPALQGSRFDGISLLDLATYTAGGLPLQFPDSVQKDQAQIRDYYRQWQPTYAPGSQRLYSNPSIGLFGYLAARSLGQPFERLMEQQLFPALGLEQTHLDVPEAALAQYAQGYGKDDRPLRVGPGPLDAEGYGVKTSAADLLRFVDANLHPERLDRPWAQALDATHRGYYKVGDMTQGLGWEAYDWPISLKRLQAGNSALQPHRIARLPAPQALEGQRLLNKTGSTNGFGAYVAFVPGRDLGLVILANRNYPNAERVKIAYAILSGLEQQAKVPLKR"}}}}, "ARO_category": {"36237": {"category_aro_name": "PDC beta-lactamase", "category_aro_cvterm_id": "36237", "category_aro_accession": "3000098", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PDC beta-lactamases are class C beta-lactamases that are found in Pseudomonas aeruginosa."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}, "ARO_name": "PDC-89", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "41520", "model_name": "PDC-89", "model_type_id": "40292"}, "2869": {"model_id": "2869", "ARO_accession": "3004353", "model_param": {"blastp_bit_score": {"param_value": "750", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "An AmpC-like beta-lactamase found in Pseudomonas aeruginosa", "model_sequences": {"sequence": {"4226": {"dna_sequence": {"fmax": "1107", "fmin": "0", "accession": "KR057759.1", "strand": "+", "sequence": "GATGAGGCCCCGGCGGATCGCCTGAAGGCACTGGTCGACGCCGCCGTACAACCGGTGATGAAGGCCAATGACATTCCGGGCCTGGCCGTAGCCATCAGCCTGAAAGGAGAACCGCATTACTTCAGCTATGGGCTGGCCTCGAAAGAGGACGGCCGCCGGGTGACGCCGGAGACCCTGTTCGAGATCGGCTCGGTGAGCAAGACCTTCACCGCCACCCTCGCCGGCTATGCCCTGGCCCAGGACAAGATGCGCCTCGACGACCGCGCCAGCCAGCACTGGCCGGCACTGCAGGGCAGCCGCTTCGACGGCATCAGCCTGCTCGACCTCGCGACCTATACCGCCGGCGGCTTGCCGCTGCAGTTCCCCGACTCGGTGCAGAAGGACCAGGCACAGATCCGCGACTACTACCGCCAGTGGCAGCCGACCTACGCGCCGGGCAGCCAGCGCCTCTATTCCAACCCGAGCATCGGCCTGTTCGGCTATCTCGCCGCGCGCAGCCTGGGCCAGCCGTTCGAACGGCTCATGGAGCAGCAATTGTTCCCGGCACTGGGCCTCGAACAGACCCACCTCGACGTGCCCGAGGCGGCGCTGGCGCAGTACGCCCAGGGCTACGGCAAGGACGACCGCCCGCTACGGGTCGGTCCCGGCCCGCTGGATGCCGAAGGCTACGGGGTGAAGACCAGCGCCGCCGACCTGCTGCGCTTCGTCGATGCCAACCTGCATCCGGAGCGCCTGGACAGGCCCTGGGCGCAGGCGCTCGATGCCACTCATCGCGGTTACTACAAGGTCGGCGACATGACCCAGGGCCTGGGCTGGGAAGCCTACGACTGGCCGATCTCCCTGAAGCGCCTGCAGGCCGGCAACTCGGCGCTGCAACCACACAGGATCGCCAGGCTGCCCGCGCCACAGGCGCTGGAGGGCCAGCGCCTGCTGAACAAGACCGGCTCCACCAACGGCTTCGGCGCCTACGTGGCGTTCATTCCGGGCCGCGACCTGGGCCTGGTGATCCTGGCCAACCGCAACTATCCCAATGCCGAGCGGGTGAAGATCGCCTACGCCATCCTCAGCGGCCTGGAGCAGCAGGCCAAGGTGCCGCTGAAGCGCTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa", "NCBI_taxonomy_id": "287", "NCBI_taxonomy_cvterm_id": "36752"}, "protein_sequence": {"accession": "AKR18030.1", "sequence": "DEAPADRLKALVDAAVQPVMKANDIPGLAVAISLKGEPHYFSYGLASKEDGRRVTPETLFEIGSVSKTFTATLAGYALAQDKMRLDDRASQHWPALQGSRFDGISLLDLATYTAGGLPLQFPDSVQKDQAQIRDYYRQWQPTYAPGSQRLYSNPSIGLFGYLAARSLGQPFERLMEQQLFPALGLEQTHLDVPEAALAQYAQGYGKDDRPLRVGPGPLDAEGYGVKTSAADLLRFVDANLHPERLDRPWAQALDATHRGYYKVGDMTQGLGWEAYDWPISLKRLQAGNSALQPHRIARLPAPQALEGQRLLNKTGSTNGFGAYVAFIPGRDLGLVILANRNYPNAERVKIAYAILSGLEQQAKVPLKR"}}}}, "ARO_category": {"36237": {"category_aro_name": "PDC beta-lactamase", "category_aro_cvterm_id": "36237", "category_aro_accession": "3000098", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PDC beta-lactamases are class C beta-lactamases that are found in Pseudomonas aeruginosa."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}, "ARO_name": "PDC-90", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "41521", "model_name": "PDC-90", "model_type_id": "40292"}, "2345": {"model_id": "2345", "ARO_accession": "3003859", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-15 is a beta-lactamase found in Acinetobacter pittii.", "model_sequences": {"sequence": {"3638": {"dna_sequence": {"fmax": "1152", "fmin": "0", "accession": "NG_048639", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGTCTACTTTTATCCCCGCTTTTTATTTTTAATACCTCAATTTATGCAGGGAATACACCAAAAGACCAAGAAATTAAAAAACTGGTAGATCAAAACTTTAAACCTTTATTAGATAAATATGATGTGCCGGGTATGGCCGTGGGCGTTATTCAGAATAATAAAAAATATGAAACGTATTACGGCCTACAATCCGTTCAAGATAAAAAAGCCGTAAATAGCAGTACCATTTTTGAGCTCGGTTCAGTTAGTAAATTATTTACCGCTACAGCAGGTGGATATGCCAAAACAAAAGGAACAATTTCTTTTAAAGACACAACCGGAAAATATTGGAAAGAATTAAAAAACACACCAATTGACCAAGTTAACTTATTTCAACTTGCTACTTATACGAGTGGCAACCTTGGCTTACAGTTTCCAGATGAAGTCCAAACAGATCAGCAAGTTTTAACTTTTTTCAAAGACTGGAAGCCTAAAAACTCAATCGGTGAATATCGACAATATTCAAATCCAAGCATTGGTTTATTTGGAAAAGTTGTTGCATTGTCTATGAATAAACCTTTCGACCAACTCTTAGAAAAAACAATTTTTCCAGATCTTGGCTTAAAACATAGCTATGTAAATGTACCGAAGACCCAGATGCAAAACTATGCTTTTGGCTATAATCAAGAAAATCAGCCAATTCGTGTTAACCCTGGTCCGTTAGATGCACCTGCGTACGGCGTCAAATCGACACTACCCGATATGCTTAAGTTTATTAATGCCAACCTCAACCCACAGAAATATCCGAAAGATATTCAACGTGCAATTAATGAAACACATCAGGGTTTCTATCAAGTCGGCACCATGTATCAGGCACTTGGTTGGGAAGAATTTTCTTATCCAGCGCCTTTACAAACTTTATTAGACAGTAATTCAGAACAAATTGTGATGAAGCCTAATAAAGTGACTGCCATTTCAAAAGAACCTTCAGTTAAGATATTCCACAAAACTGGTTCAACCAATGGTTTCGGAACTTATGTCGTGTTTATTCCTAAAGAAAATATTGGCTTAGTCATGTTGACCAATAAACGTATTCCAAATGAAGAACGCATTAAGGCAGCGTATGCGGTGTTAAATGCAATAAAAAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter pittii", "NCBI_taxonomy_id": "48296", "NCBI_taxonomy_cvterm_id": "36787"}, "protein_sequence": {"accession": "WP_063857790.1", "sequence": "MRFKKISCLLLSPLFIFNTSIYAGNTPKDQEIKKLVDQNFKPLLDKYDVPGMAVGVIQNNKKYETYYGLQSVQDKKAVNSSTIFELGSVSKLFTATAGGYAKTKGTISFKDTTGKYWKELKNTPIDQVNLFQLATYTSGNLGLQFPDEVQTDQQVLTFFKDWKPKNSIGEYRQYSNPSIGLFGKVVALSMNKPFDQLLEKTIFPDLGLKHSYVNVPKTQMQNYAFGYNQENQPIRVNPGPLDAPAYGVKSTLPDMLKFINANLNPQKYPKDIQRAINETHQGFYQVGTMYQALGWEEFSYPAPLQTLLDSNSEQIVMKPNKVTAISKEPSVKIFHKTGSTNGFGTYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLNAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-15", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40558", "model_name": "ADC-15", "model_type_id": "40292"}, "2344": {"model_id": "2344", "ARO_accession": "3003858", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-14 is a beta-lactamase found in Acinetobacter pittii.", "model_sequences": {"sequence": {"3637": {"dna_sequence": {"fmax": "1152", "fmin": "0", "accession": "NG_048638", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGTCTACTTTTATCCCCGCTTTTTATTTTTAGTACCTCAATTTATGCGGGCAATACACCAAAAGACCAAGAAATTAAAAAACTTGTAGATCAAAATTTTAAACCGTTATTAGAAAAATATGATGTGCCGGGTATGGCTGTGGGTGTTATTCAAAATAATAAAAAGTATGAAATTTATTATGGTCTACAATCCGTTCAAGATAAAAAAGCCGTAAATAGCAGTACCATTTTTGAGCTAGGTTCAGTCAGTAAATTATTTACCGCGACAGCAGGTGGATATGCAAAAACAAAAGGAACAATCTCTTTTAAAGACACACCCGGAAAATATTGGAAAGAGCTAAAAAATACACCGATTGACCAAGTTAACTTACTTCAGCTTGCTACCTATACAAGTGGGAACCTTGCTTTGCAATTTCCAGATGAAGTACAAACAGATCAACAAGTTTTAACTTTTTTCAAAGATTGGAAACCTAAAAACCCAATCGGTGAATACAGACAATATTCAAATCCAAGTATTGGCCTATTTGGAAAAGTTGTTGCTTTGTCTATGAATAAACCTTTCGACCAAGTCTTAGAAAAAACAATTTTTCCGGGCCTTAGCTTAAAACATAGCTATGTAAATGTACCTAAGACCCAGATGCAAAACTATGCTTTTGGCTATAATCAAGAAAATCAGCCAATTCGTGTTAACCCTGGTCCGCTAGATGCTCCAGCATACGGCGTTAAATCGACACTACCAGACATGCTTAAGTTTATTAATGCCAACCTAAATCCACAAAAATATCCAGCAGATATTCAACGTGCAATTAATGAAACACATCAAGGTTTCTATCAAGTCGGCACCATGTATCAAGCATTAGGTTGGGAAGAATTTTCTTATCCAGCGCCTTTACAAACTTTATTAGACAGTAATTCAGAACAAATTGTGATGAAGCCTAATAAAGTGACCGCTATTTCAAAAGAACCTTCAGTTAAGATGTTCCACAAAACTGGCTCAACCAATGGTTTCGGAACATATGTCGTGTTCATTCCTAAAGAAAATATTGGCTTAGTCATGTTGACCAATAAACGTATTCCAAATGAAGAACGCTTTAAGGCAGCGTATGCAGTGTTAAACGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter pittii", "NCBI_taxonomy_id": "48296", "NCBI_taxonomy_cvterm_id": "36787"}, "protein_sequence": {"accession": "WP_063857789.1", "sequence": "MRFKKISCLLLSPLFIFSTSIYAGNTPKDQEIKKLVDQNFKPLLEKYDVPGMAVGVIQNNKKYEIYYGLQSVQDKKAVNSSTIFELGSVSKLFTATAGGYAKTKGTISFKDTPGKYWKELKNTPIDQVNLLQLATYTSGNLALQFPDEVQTDQQVLTFFKDWKPKNPIGEYRQYSNPSIGLFGKVVALSMNKPFDQVLEKTIFPGLSLKHSYVNVPKTQMQNYAFGYNQENQPIRVNPGPLDAPAYGVKSTLPDMLKFINANLNPQKYPADIQRAINETHQGFYQVGTMYQALGWEEFSYPAPLQTLLDSNSEQIVMKPNKVTAISKEPSVKMFHKTGSTNGFGTYVVFIPKENIGLVMLTNKRIPNEERFKAAYAVLNAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-14", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40557", "model_name": "ADC-14", "model_type_id": "40292"}, "2347": {"model_id": "2347", "ARO_accession": "3003861", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-17 is a beta-lactamase found in Acinetobacter pittii.", "model_sequences": {"sequence": {"3640": {"dna_sequence": {"fmax": "1152", "fmin": "0", "accession": "NG_048641.1", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGCTTACTTTTACCTCCTCTTTTTATTTTTAGTACCTCAATTTATGCGGGCAATACACCAAAAGACCGAGAAATTAAAAAACTGGTAGATCAAAACTTTAAACCTTTGTTAGATAAATATGATGTGCCGGGTATGGCCGTGGGCGTTATTCAGAATAATAAAAAATATGAAACGTATTATGGTCTTCAATCTGTTCAAGATAAAAAAGCCGTAAGTAGCAGTACCATTTTTGAACTAGGTTCTGTCAGTAAATTATTTACCGCGACAGCAGGTGGATATGCAAAAAATAAAGGAAAAATTTCTTTTGACGATACGCCTGGTAAATATTGGAAAGAACTAAAAAACACGCCGATTGACCAAGTTAACTTACTTCAACTCGCAACGTATACAAGTGGTAACCTTGCCTTGCAGTTCCCAGATGAAGTACAAACAGACCGACAAGTTTTAACTTTTTTCAAAGACTGGAAACCTAAAAACTCAATCGGTGAATATAGACAATATTCAAATCCAAGCATTGGTTTATTTGGAAAAGTTGTGGCATTGTCTATGAATAAACCTTTCGACCAAGTCTTAGAAAAAACAATTTTTCCAGATCTTGGCCTAAAACATAGCTATGTAAATGTTCCTAAAACTCAGATGCAAAACTATGCTTTTGGCTATAACCGAGAAAATCAGCCAATTCGTGTTAACCCTGGTCCGCTAGATGCTCCAGCATATGGGGTTAAATCGACGCTACCCGATATGCTTAAGTTTATTAATGCCAACCTCAACACACAGAAATATCCGAAAGATATTCAACGTGCAATTAATGAAACACATCAGGGTTTCTATCAAGTCGGCACCATGTATCAGGCACTTGGTTGGGAAGAATTTTCTTATCCAGCGCCTTTACAAACTTTATTAGACAGTAATTCAGAACAAATTGTGATGAAGCCTAATAAAGTGACTGCCATTTCAAAAGAACCTTCAGTTAAGATGTTCCACAAAACTGGTTCAACCAATGGTTTCGGAACTTATGTCGTGTTCATTCCTAAAGAAAATATTGGTTTAGTCATGTTAACCAATAAACGTATTCCAAATGAAGAACGCATTAAGGCAGCGTATGCCGTGTTGAATGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter pittii", "NCBI_taxonomy_id": "48296", "NCBI_taxonomy_cvterm_id": "36787"}, "protein_sequence": {"accession": "WP_063857792.1", "sequence": "MRFKKISCLLLPPLFIFSTSIYAGNTPKDREIKKLVDQNFKPLLDKYDVPGMAVGVIQNNKKYETYYGLQSVQDKKAVSSSTIFELGSVSKLFTATAGGYAKNKGKISFDDTPGKYWKELKNTPIDQVNLLQLATYTSGNLALQFPDEVQTDRQVLTFFKDWKPKNSIGEYRQYSNPSIGLFGKVVALSMNKPFDQVLEKTIFPDLGLKHSYVNVPKTQMQNYAFGYNRENQPIRVNPGPLDAPAYGVKSTLPDMLKFINANLNTQKYPKDIQRAINETHQGFYQVGTMYQALGWEEFSYPAPLQTLLDSNSEQIVMKPNKVTAISKEPSVKMFHKTGSTNGFGTYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLNAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-17", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40560", "model_name": "ADC-17", "model_type_id": "40292"}, "2346": {"model_id": "2346", "ARO_accession": "3003860", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-16 is a beta-lactamase found in Acinetobacter pittii.", "model_sequences": {"sequence": {"3639": {"dna_sequence": {"fmax": "1152", "fmin": "0", "accession": "NG_048640.1", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGCTTACTTTTACCGCCTCTTTTTATTTTTAGTAGCTCAATTTATGCGGGTAATACACCAAAAGAGCAAGAGATCAAAAAACTGGTTGATCAAAATTTTAAGCCTTTATTAGAAAAATATGATGTGCCCGGTATGGCTGTGGGCGTTATTCAAAATAACAAAAAGTATGAAATGTATTATGGTCTACAATCCGTTCAAGATAAAAAAGCCGTTAATAGCAATACCATTTTTGAGCTAGGCTCGGTCAGTAAATTATTTACCGCTACAGCAGGCGGATATGCCAAAACAAAAGGAACAATCTCTTTTAATGACACGCCTGGAAAATATTGGAAAGAACTAAAAAATACACCGATTGATCAAGTGAATTTACTTCAACTTGCGACATATACCAGTGGCAACCTTGCCTTGCAATTTCCAGATGAAGTAAAAACAGATCAGCAAGTTTTAACGTTTTTCAAAGAATGGAAACCTAAAAACCCAATCGGTGAATATCGACAATATTCAAACCCAAGCATTGGTTTATTTGGAAAAGTTGTTGCTTTGTCTATGAATAAACCTTTTGACCAAGTCTTGGAAAAAACCATTTTTCCAGATCTTGGCTTAAAACATAGCTATGTAAATGTGCCTAAAACTCAAATGCAAAACTATGCATTTGGCTATAACCAAGAAAATCAGCCGATTCGCGTCAATCCTGGTCCACTCGATGCACCAGCATACGGCGTTAAATCTACCCTACCGGATATGCTGAGTTTTATTAATGCAAACCTAAATCCACAAAAATATCCAGCAAATATTCAACGTGCAATTAATGAAACACATCAAGGTTTCTACCAAGTCGGCACCATGTATCAAGCACTAGGTTGGGAAGAGTTCTCTTATCCAGCACTTTTACAAACTTTATTAGACAGTAATTCAGAACAAATCGTGATGAAACCTAATAAAGTGACTGCTATTTCAAAAGAACCTTCCGTTAAGATGTTCCACAAAACTGGATCGACTAACGGTTTTGGAACATATGTCGTGTTCATTCCTAAAGAAAATATTGGTTTAGTCATGTTAACTAATAAACGTATTCCCAATGAAGAACGCATTAAAGCAGCTTATGCTGTGTTAAATGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter pittii", "NCBI_taxonomy_id": "48296", "NCBI_taxonomy_cvterm_id": "36787"}, "protein_sequence": {"accession": "WP_063857791.1", "sequence": "MRFKKISCLLLPPLFIFSSSIYAGNTPKEQEIKKLVDQNFKPLLEKYDVPGMAVGVIQNNKKYEMYYGLQSVQDKKAVNSNTIFELGSVSKLFTATAGGYAKTKGTISFNDTPGKYWKELKNTPIDQVNLLQLATYTSGNLALQFPDEVKTDQQVLTFFKEWKPKNPIGEYRQYSNPSIGLFGKVVALSMNKPFDQVLEKTIFPDLGLKHSYVNVPKTQMQNYAFGYNQENQPIRVNPGPLDAPAYGVKSTLPDMLSFINANLNPQKYPANIQRAINETHQGFYQVGTMYQALGWEEFSYPALLQTLLDSNSEQIVMKPNKVTAISKEPSVKMFHKTGSTNGFGTYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLNAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-16", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40559", "model_name": "ADC-16", "model_type_id": "40292"}, "2341": {"model_id": "2341", "ARO_accession": "3003854", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-8 is a beta-lactamase found in Acinetobacter sp.", "model_sequences": {"sequence": {"4033": {"dna_sequence": {"fmax": "1194", "fmin": "0", "accession": "AM293332.3", "strand": "+", "sequence": "ATGATGAAAGACATATTAGGTAACTTAGATAACGTGCCATTTAAGATCATGACAGGCTGTATTGCAGGACTATTGTCCTGTGGTACGGTCGCTCAATCGACAGTCCAACAATCAATTCAACAAAGTGTAGATCGACATTTTAAGCCCCTTATGGCTCAGTATCAAATTTCAGGAATGGCGATTGCGGTCAGCATAAATGGGCAACATTACTATCAGAATTATGGCGTAGCATCTAAACAGACCGAGCAAAATGTCTCTGAACATACTCTATTTGAGTTGGGTTCGGTGAGTAAGCTCTTTAATGCAACGCTGACGGGATATGCTCAAGCACAAGGTCAACTTAAGTTGAGTGATCATCCTGCCCAATATTTTCCAGAATTAAAAAATACAGCAGTGAATCAGGCGACTCTCCTGAATCTGGGGACCTATACCGCAGGTGGTTTTCCGCTACAGTTTCCTGAGCAGATCAAGACAACACAAGACATGACTCAGTATTTTCAGCACTGGCAGCCTAAAGCGGCTCCAAGACGTATTCGAGAATATTCAAATCCAAGCATTGGCTTGATGGGCTATGTCACCGCACTTGCGATGAAAAATAGCTATTCAAATCTAATTGAAAATACGTTATTCCCTGCGTTGGGGATGCATCATAGCTATATCAACGTTCCAGCAGCGCAGATGTCAAATTATGCATGGGGATATCAGGCAGATCAGGCGATACGTGTCTCACCAGGTATGTTTGATGCAGAGGCGTATGGCATCAAAAGTAACACTGCCGATATGCTTAAATTTCTAGATGCTCAAATAAATCCCCAAAATCTAAAACCCACGCTCCGAAAGGCCATACAAACCACTCAGATGGGTTATTTTCGGGTGGGACAGATGCGACAGGGCTTGGGTTGGGAGCAATATACTTATCCAGTATCCTTAACAACCTTGCTGGCGGGAAATTCCGCTAAAATGGCTCTACAGCCTCAACCTGTTACAGGCATTTCAAAACCTATCACTGCTCCGCAGCAGGCCCTTTTGAATAAAACTGGTGCAACCAATGGTTTTTCGGCTTATGTGGTGGTTATTCCGAGCCAAAAGATTGGACTGGTGATGCTTGCCAATCGTAATTTTCCCAATGATGCACGGGTGAAAGCAGCTTATGCCACACTACAGCAAATCCTCAATGCAGATATTCAGAAATGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter sp. ADP1", "NCBI_taxonomy_id": "62977", "NCBI_taxonomy_cvterm_id": "41144"}, "protein_sequence": {"accession": "CAL25116.3", "sequence": "MMKDILGNLDNVPFKIMTGCIAGLLSCGTVAQSTVQQSIQQSVDRHFKPLMAQYQISGMAIAVSINGQHYYQNYGVASKQTEQNVSEHTLFELGSVSKLFNATLTGYAQAQGQLKLSDHPAQYFPELKNTAVNQATLLNLGTYTAGGFPLQFPEQIKTTQDMTQYFQHWQPKAAPRRIREYSNPSIGLMGYVTALAMKNSYSNLIENTLFPALGMHHSYINVPAAQMSNYAWGYQADQAIRVSPGMFDAEAYGIKSNTADMLKFLDAQINPQNLKPTLRKAIQTTQMGYFRVGQMRQGLGWEQYTYPVSLTTLLAGNSAKMALQPQPVTGISKPITAPQQALLNKTGATNGFSAYVVVIPSQKIGLVMLANRNFPNDARVKAAYATLQQILNADIQK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-8", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40553", "model_name": "ADC-8", "model_type_id": "40292"}, "2340": {"model_id": "2340", "ARO_accession": "3003853", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-7 is a beta-lactamase that is found in Acinetobacter baumannii.", "model_sequences": {"sequence": {"3633": {"dna_sequence": {"fmax": "1152", "fmin": "0", "accession": "NG_048677.1", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGTTTACTTTTATCCCCGCTTTTTATTTTTAGTACCTCAATTTATGCGGACAATACACCAAAAGACCAAGAAATTAAAAAACTGGTAGATCAAAATTTTAAACCGTTATTAGAAAAATATGATGTGCCAGGTATGGCTGTGGGTGTTATTCAAAATAATAAAAAGTATGAAATGTATTATGGTCTTCAATCTGTTCAAGATAAAAAAGCTGTAAATAGCAATACCATTTTTGAGCTAGGTTCTGTCAGTAAATTATTTACCGCGACAGCAGGTGGATATGCAAAAAATAAAGGAAAAATCTCTTTTGACGATACGCCTGGTAAGTATTGGAAAGAACTAAAAAATACACCGATTGACCAAGTTAACTTACTTCAACTCGCGACGTATACAAGTGGTAACCTTGCCTTGCAGTTTCCAGATGAAGTACAAACAGACCAACAAGTTTTAACTTTTTTCAAAGACTGGAAACCTAAAAACCCAATCGGTGAATACAGACAATATTCAAATCCAAGTATTGGCCTATTTGGAAAGGTTGTAGCTTTGTCTATGAATAAACCTTTCGACCAAGTCTTAGAAAAAACAATTTTTCCGGCCCTTGGCTTAAAACATAGCTATGTAAATGTACCTAAGACCCAAATGCAAAACTATGCTTTTGGCTATAACCAAGAAAATCAGCCGATTCGAGTTAACCCTGGCCCACTCGATGCCCCAGCATACGGCGTCAAATCCACCTTACCGGATATGTTGAGTTTTATTCATGCCAACCTTAACCCACAGAAATATCCGACAGATATTCAACGGGCAATTAATGAAACACATCAAGGTCGCTATCAAGTAAATACCATGTATCAAGCGCTTGGTTGGGAAGAGTTTTCTTATCCGGCAACGTTACAAACTTTATTAGACAGTAATTCAGAACAGATTGTGATGAAACCTAATAAAGTGACTGCTATTTCAAAGGAACCTTCAGTTAAGATGTACCATAAAACTGGCTCAACCAGCGGTTTCGGAACATATGTAGTGTTTATTCCTAAAGAAAATATTGGCTTAGTCATGTTAACCAATAAACGTATTCCAAATGAAGAGCGCATTAAGGCAGCTTATGTTGTGCTGAATGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter baumannii", "NCBI_taxonomy_id": "470", "NCBI_taxonomy_cvterm_id": "35507"}, "protein_sequence": {"accession": "WP_063857816.1", "sequence": "MRFKKISCLLLSPLFIFSTSIYADNTPKDQEIKKLVDQNFKPLLEKYDVPGMAVGVIQNNKKYEMYYGLQSVQDKKAVNSNTIFELGSVSKLFTATAGGYAKNKGKISFDDTPGKYWKELKNTPIDQVNLLQLATYTSGNLALQFPDEVQTDQQVLTFFKDWKPKNPIGEYRQYSNPSIGLFGKVVALSMNKPFDQVLEKTIFPALGLKHSYVNVPKTQMQNYAFGYNQENQPIRVNPGPLDAPAYGVKSTLPDMLSFIHANLNPQKYPTDIQRAINETHQGRYQVNTMYQALGWEEFSYPATLQTLLDSNSEQIVMKPNKVTAISKEPSVKMYHKTGSTSGFGTYVVFIPKENIGLVMLTNKRIPNEERIKAAYVVLNAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-7", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40552", "model_name": "ADC-7", "model_type_id": "40292"}, "2343": {"model_id": "2343", "ARO_accession": "3003857", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-13 is a beta-lactamase found in Acinetobacter pittii.", "model_sequences": {"sequence": {"3636": {"dna_sequence": {"fmax": "1152", "fmin": "0", "accession": "NG_048637.1", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGTCTACTTTTATCCCCGCTTTTTATTTTTAGTACCTCAATTTATGCGGGCAATACACCAAAAGACCAAGAAATTAAAAAACTTGTAGATCAAAATTTTAAACCGTTATTAGAAAAATATGATGTGCCGGGTATGGCTGTGGGTGTTATTCAAAATAATAAAAAGTATGAAATTTATTATGGTCTACAATCCGTTCAAGATAAAAAAGCCGTAAATAGCAGTACCATTTTTGAGCTAGGTTCAGTCAGTAAATTATTTACCGCGACAGCAGGTGGATATGCAAAAACAAAAGGAACAATCTCTTTTAAAGACACACCCGGAAAATATTGGAAAGAGCTAAAAAATACACCGATTGACCAAGTTAACTTACTTCAACTTGCTACCTATACAAGTGGGAACCTTGCTTTGCAATTTCCAGATGAAGTACAAACAGATCAACAAGTTTTAACTTTTTTCAAAGATTGGAAACCTAAAAACCCAATCGGTGAATACAGACAATATTCAAATCCAAGTATTGGCCTATTTGGAAAAGTTGTTGCTTTGTCTATGAATAAACCTTTCGACCAAGTCTTAGAAAAAACAATTTTTCCGGGCCTTAGCTTAAAACATAGCTATGTAAATGTACCTAAGACCCAGATGCAAAACTATGCTTTTGGCTATAATCAAGAAAATCAGCCAATTCGTGTTAACCCTGGTCCGCTAGATGCTCCAGCATACGGCGTTAAATCGACACTACCAGACATGCTTAAGTTTATTAATGCCAACCTAAATCCACAAAAATATCCAGCAGATATTCAACGTGCAATTAATGAAACACATCAAGGTTTCTATCAAGTCGGCACCATGTATCAAGCATTAGGTTGGGAAGAATTTTCTTATCCAGCGCCTTTACAAACTTTATTAGACAGTAATTCAGAACAAATTGTGATGAAGCCTAATAAAGTGACTGCTATTTCAAAAGAACCTTCAGTTAAGATGTTCCACAAAACTGGCTCAACCAATGGTTTCGGAACATATGTCGTGTTCATTCCTAAAGAAAATATTGGCTTAGTCATGTTGACCAATAAACGTATTCCAAATGAAGAACGCATTAAGGCAGCGTATGCAGTGTTAAACGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter pittii", "NCBI_taxonomy_id": "48296", "NCBI_taxonomy_cvterm_id": "36787"}, "protein_sequence": {"accession": "WP_063857788.1", "sequence": "MRFKKISCLLLSPLFIFSTSIYAGNTPKDQEIKKLVDQNFKPLLEKYDVPGMAVGVIQNNKKYEIYYGLQSVQDKKAVNSSTIFELGSVSKLFTATAGGYAKTKGTISFKDTPGKYWKELKNTPIDQVNLLQLATYTSGNLALQFPDEVQTDQQVLTFFKDWKPKNPIGEYRQYSNPSIGLFGKVVALSMNKPFDQVLEKTIFPGLSLKHSYVNVPKTQMQNYAFGYNQENQPIRVNPGPLDAPAYGVKSTLPDMLKFINANLNPQKYPADIQRAINETHQGFYQVGTMYQALGWEEFSYPAPLQTLLDSNSEQIVMKPNKVTAISKEPSVKMFHKTGSTNGFGTYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLNAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-13", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40556", "model_name": "ADC-13", "model_type_id": "40292"}, "2342": {"model_id": "2342", "ARO_accession": "3003856", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-12 is a beta-lactamase found in Acinetobacter pittii.", "model_sequences": {"sequence": {"3635": {"dna_sequence": {"fmax": "1152", "fmin": "0", "accession": "NG_048636", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGTCTACTTTTATCCCCGCTTTTTATTTTTAGTACCTCAATTTATGCGGGCAATACACCAAAAGACCGAGAAATTAAAAAACTGGTAGATCAAAATTTTAAACCTTTATTAGATAAATATGATGTGCCGGGTATGGCCGTGGGCGTTATTCAGAATAATAAAAAATATGAAACGTATTATGGTCTTCAATCTGTTCAAGATAAAAAATCCGTAAGTAGCAGTACCATTTTTGAACTAGGTTCTGTCAGTAAATTATTTACCGCGACAGCAGGTGGATATGCAAAAAATAAAGGAAAAATCTCTTTTGACGATACGCCTGGTAAATATTGGAAAGAACTAAAAAACACACCGATTGACCAAGTTAACTTACTTCAACTCGCAACGTATACAAGTGGTAACCTTGCCTTGCAGTTCCCAGATGAAGTACAAACAGACCAACAAGTTTTAACTTTTTTCAAAGAATGGAAACCTAAAAACCCAATCGGTGAATACAGACAATATTCAAATCCAAGTATTGGCCTATTTGGAAAAGTTGTTGCTTTGTCTATGAATAAACCTTTCGACCAAGTCTTAGAAAAAACAATTTTTCCGGGCCTTGGCTTAAAACATAGCTATGTAAATGTACCGAAGACCCAGATGCAAAACTATGCTTTTGGCTATAATCAAGAAAATCAGCCAATTCGTGTTAACCCCGGTCCGCTAGATGCTCCAGCATATGGGGTTAAATCGACGCTACCCGATATGCTTAAGTTTATTAATGCCAACCTCAACCCACAGAAATATCCGAAAGATACTCAACGTGCAATTAATGAAACACATCAAGGTTTCTACCAAGTCGGCACGATGTATCAGGCACTTGGTTGGGAAGAATTTTCTTATCCAGCGCCTTTACAAACTTTATTAGACAGTAATTCAGAGCAAATCGTGATGAAGCCTAATAAAGTGACTGCCATTTCCAAAGAACCTTCAGTTAAGATGTTCCACAAAACTGGCTCAACAAATGGCTTTGGATCTTATGTGGTGTTTATTCCAAAAGAAAATATTGGTTTAGTCATGTTAACCAATAAACGTATTCCAAATGAAGAACGCATTAAGGCAGCGTATGCAGTATTGAATGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter pittii", "NCBI_taxonomy_id": "48296", "NCBI_taxonomy_cvterm_id": "36787"}, "protein_sequence": {"accession": "WP_063857787.1", "sequence": "MRFKKISCLLLSPLFIFSTSIYAGNTPKDREIKKLVDQNFKPLLDKYDVPGMAVGVIQNNKKYETYYGLQSVQDKKSVSSSTIFELGSVSKLFTATAGGYAKNKGKISFDDTPGKYWKELKNTPIDQVNLLQLATYTSGNLALQFPDEVQTDQQVLTFFKEWKPKNPIGEYRQYSNPSIGLFGKVVALSMNKPFDQVLEKTIFPGLGLKHSYVNVPKTQMQNYAFGYNQENQPIRVNPGPLDAPAYGVKSTLPDMLKFINANLNPQKYPKDTQRAINETHQGFYQVGTMYQALGWEEFSYPAPLQTLLDSNSEQIVMKPNKVTAISKEPSVKMFHKTGSTNGFGSYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLNAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-12", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40555", "model_name": "ADC-12", "model_type_id": "40292"}, "953": {"model_id": "953", "ARO_accession": "3003077", "model_param": {"41344": {"param_value": {"3868": "+I177"}, "param_type_id": "41344", "param_type": "insertion mutation from peptide sequence", "param_description": "A subtype of the insertion mutation detection model parameter. This parameter is used when a set of insertion mutations is reported in a peptide sequence format. These are specific to codon insertions, where a multiple of three nucleotides are inserted. This does not cause a frameshift mutation. Mutation parameters of this type are reported in CARD with the notation: [+][AAs][position range]."}, "blastp_bit_score": {"param_value": "400", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}, "snp": {"param_value": {"3862": "T194I"}, "param_type_id": "36301", "param_type": "single resistance variant", "param_description": "A nucleotide or amino acid substitution that confers elevated resistance to antibiotic(s) relative to wild type. The most common type encoded in the CARD is an amino acid substitution gleaned from the literature with format [wild-type][position][mutation], e.g. R184Q. When present in the associated gene or protein, a single resistance variant confers resistance to an antibiotic drug or drug class. Single resistance variants are used by the protein variant and rRNA mutation models to detect antibiotic resistance from submitted sequences.", "experimental": {"3862": "T194I"}}, "41342": {"param_value": {"3861": "-I177"}, "param_type_id": "41342", "param_type": "deletion mutation from peptide sequence", "param_description": "A subtype of the deletion mutation detection model parameter. This parameter is used when a set of deletion mutations is reported in a peptide sequence format. These are specific to codon deletions, where a multiple of 3 nucleotides are deleted. Mutations of this type are reported in the CARD with the notation: [-][AAs][position range]."}}, "ARO_description": "liaF is an accessory protein that acts as a negative regulator of liaRS signal transduction pathway. Mutations confer daptomycin resistance.", "model_sequences": {"sequence": {"751": {"dna_sequence": {"fmax": "2791552", "fmin": "2790820", "accession": "AE016830", "strand": "-", "sequence": "TCATACACGGATCACCTCAACATCTCCTACTAAAGTGTTCGTCATAATTTTCAAACGACGAAGATTGGTATCATAATCATTGCTGTAAATTTTTAATGATTCGTTTTTCAATTGATATTTTTCTTCTTCAAAACGTACCGTTCCGTAAAAAGTTGAATGTTCTAACAAAATAGCTACACCTAACGGCACTAGAATTCGCGTGCGGCCAAAACCTTTACGAATAATAATAATATTGTCTTCTTTCGGTAGTAGCGTATTACCTAAATCAATAATGGTGTCCCCAGAGATTAAATCAATATTGATATCGTCCCATTCATAGATATTGTTACCAATGCGTTCGTTGGCAAACCAGCGGCGTTTAAACCGTTTGCCATTTTTAGGTTCTTTTGCCGCCGTCTCCACCATAATCATTTGTTTTTTTCGCCAAGGTGCTCGCTCAGCTATATCCACGCCTGAAATCTCAAAGCCTTTTAAGCCGATAAAGAGTACGCCAAAAATCAACATAAACCAAACAGCCGTGCTATTCATTGCACCAATGACAATAAAAACAACGCCGAGGACGAATTGAAAGTTGTTAAAATGTGTTTTAGATGCTTTCCTGGAAACGTAGGCCACAAGTAAAACGCCAATTGTTAATAAAACAGCTAATCCAGGATTATGTACAATTTGCCATAACGCCAGAATAAAAAGTAATGCTTCTGCGACGATAAAAAAGCGCCAAGGGTTATTCATA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Enterococcus faecalis V583", "NCBI_taxonomy_id": "226185", "NCBI_taxonomy_cvterm_id": "37592"}, "protein_sequence": {"accession": "AAO82601.1", "sequence": "MNNPWRFFIVAEALLFILALWQIVHNPGLAVLLTIGVLLVAYVSRKASKTHFNNFQFVLGVVFIVIGAMNSTAVWFMLIFGVLFIGLKGFEISGVDIAERAPWRKKQMIMVETAAKEPKNGKRFKRRWFANERIGNNIYEWDDINIDLISGDTIIDLGNTLLPKEDNIIIIRKGFGRTRILVPLGVAILLEHSTFYGTVRFEEEKYQLKNESLKIYSNDYDTNLRRLKIMTNTLVGDVEVIRV"}}}}, "ARO_category": {"36192": {"category_aro_name": "peptide antibiotic", "category_aro_cvterm_id": "36192", "category_aro_accession": "3000053", "category_aro_class_name": "Drug Class", "category_aro_description": "Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics."}, "35997": {"category_aro_name": "antibiotic target alteration", "category_aro_cvterm_id": "35997", "category_aro_accession": "0001001", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance."}, "41426": {"category_aro_name": "daptomycin resistant liaF", "category_aro_cvterm_id": "41426", "category_aro_accession": "3004262", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "Mutations to the liaF accessory protein that confer resistance to daptomycin."}, "35985": {"category_aro_name": "daptomycin", "category_aro_cvterm_id": "35985", "category_aro_accession": "0000068", "category_aro_class_name": "Antibiotic", "category_aro_description": "Daptomycin is a novel lipopeptide antibiotic used in the treatment of certain infections caused by Gram-positive organisms. Daptomycin interferes with the bacterial cell membrane, reducing membrane potential and inhibiting cell wall synthesis."}}, "ARO_name": "Enterococcus faecalis liaF mutant conferring daptomycin resistance", "model_type": "protein variant model", "model_description": "The protein variant model is an AMR detection model. Protein variant models are similar to protein homolog models - they detect the presence of a protein sequence based on its similarity to a curated reference sequence, but secondarily search submitted query sequences for curated sets of mutations shown clinically to confer resistance relative to wild-type. This model includes a protein reference sequence, a curated BLASTP cut-off, and mapped resistance variants. Mapped resistance variants may include any or all of: single resistance variants, insertions, deletions, co-dependent resistance variants, nonsense SNPs, and/or frameshift mutations. Protein variant model matches to reference sequences are categorized on two criteria: \"strict\" and \"loose\". A strict match has a BLASTP bitscore above the curated BLASTP cutoff value and contains at least one detected mutation from amongst the mapped resistance variants; a loose match has a BLASTP bitscore below the curated BLASTP cutoff value but still contains at least one detected mutation from amongst the mapped resistance variants. Regardless of BLASTP bitscore, if a sequence does not contain one of the mapped resistance variants, it is not considered a match and not detected by the protein variant model.", "ARO_id": "39624", "model_name": "Enterococcus faecalis liaF mutant conferring daptomycin resistance", "model_type_id": "40293"}, "2349": {"model_id": "2349", "ARO_accession": "3003863", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-19 is a beta-lactamase found in Acinetobacter pittii.", "model_sequences": {"sequence": {"3642": {"dna_sequence": {"fmax": "1152", "fmin": "0", "accession": "NG_048643.1", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGCTTACTTTTATCTCCTCTTTTTATTTTTAATACATCAATTTATGCGGGCAATACATCAAAAGAACAAGAAATTAAAAAACTGGTAGATCAGAACTTTAAACCGTTATTAGAAAAATATGATGTGCCAGGTATGGCTGTGGGTGTTATTCAAAATAATAAAAAGTATGAAATGTATTATGGTCTTCAATCTGTTCAAGATAAAAAAGCTGTAAATAGCAGTACCATTTTTGAGCTAGGTTCAGTTAGTAAATTATTTACCGCAACAGCAGGTGGATATGCAAAAAATAAAGGAAAAATCTCTTTTGACGATACGCCTGGTAAATATTGGAAAAAACTAAAAAACACACCGATTGACCAAGTTAACTTACTTCAACTCGCAACGTATACAAGTGGTAACCTTGCCTTGCAGTTCCCAGATGAAGTACAAACAGACCAACAAGTTTTAACTTTTTTCAAAGACTGGAAACCTAAAAACTCAATCGGTGAATATAGACAATATTCAAATCCAAGCATTGGTTTATTTGGAAAAGTTGTGGCATTGTCTATGAATAAACCTTTCGACCAAGTCTTAGAAAAAACAATTTTTCCAGATCTTGGCTTAAAACATAGCTATGTAAATGTTCCTAAAACTCAGATGCAAAACTATGCTTTTGGCTATAACCAAGAAAATCAGCCAATTCGTGTTAACCCTGGTCCACTAGATGCTCCAGCATATGGGGTTAAATCGACGCTACCCGATATGCTTAAGTTTATTAATGCCAACCTCAACCCACAGAAATATCCGAAAGATATTCAACGTGCAATTAATGAAACACATCAAGGTTTCTACCAAGTCGGCACGATGTATCAGGCACTTGGTTGGGAAGAATTTTCTTATCCAGCGCTTTTACAAACTTTATTAGACAGTAATTCAGAACAAATTGTGATGAAGCCTAATAAAGTGACTGCCATTTCAAAAGAACCTTCAGTTAAGATGTTCCACAAAACTGGTTCAACCAATGGTTTCGGAACTTATGTCGTGTTCATTCCTAAAGAAAATATTGGCTTAGTCATGTTAACCAATAAACGTATTCCAAATGAAGAACGCATTAAGGCAGCGTATGCAGTATTAAATGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter pittii", "NCBI_taxonomy_id": "48296", "NCBI_taxonomy_cvterm_id": "36787"}, "protein_sequence": {"accession": "WP_063857793.1", "sequence": "MRFKKISCLLLSPLFIFNTSIYAGNTSKEQEIKKLVDQNFKPLLEKYDVPGMAVGVIQNNKKYEMYYGLQSVQDKKAVNSSTIFELGSVSKLFTATAGGYAKNKGKISFDDTPGKYWKKLKNTPIDQVNLLQLATYTSGNLALQFPDEVQTDQQVLTFFKDWKPKNSIGEYRQYSNPSIGLFGKVVALSMNKPFDQVLEKTIFPDLGLKHSYVNVPKTQMQNYAFGYNQENQPIRVNPGPLDAPAYGVKSTLPDMLKFINANLNPQKYPKDIQRAINETHQGFYQVGTMYQALGWEEFSYPALLQTLLDSNSEQIVMKPNKVTAISKEPSVKMFHKTGSTNGFGTYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLNAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-19", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40562", "model_name": "ADC-19", "model_type_id": "40292"}, "2348": {"model_id": "2348", "ARO_accession": "3003862", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-18 is a beta-lactamase found in Acinetobacter pittii.", "model_sequences": {"sequence": {"3641": {"dna_sequence": {"fmax": "1152", "fmin": "0", "accession": "NG_048642", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGCTTACTTTTACCGCCTCTTTTTATTTTTAGTACCTCAATTTATGCGGGCAATACACCAAAAGAACAAGAAGTTAAAAAACTGGTAGATCAAAATTTTAAGCCTTTATTAGATAAATATGATGTGCCTGGTATGGCCGTGGGGGTCATTCAAAATAATAAAAAATATGAAATATATTATGGCCTACAATCCGTTCAGGATAAAAAAGCCGTAAATAGCAGTACCATTTTTGAACTAGGTTCGGTCAGTAAATTATTTACCGCTACAGCTGGTGGATATGCAAAAGCAAAAGGAAAAATCTCTTTTGATGACACACCCGGAAAATATTGGAAAGAACTAAAAAATACACCGATTGACCAAGTTAATCTTCTTCAACTTGCGACGTATACAAGTGGCAATCTCGCCTTACAATTTCCAGATGAAGTTCAAACAGACCAACAAGTTTTAACTTTTTTCAAAGATTGGAAAACTAAAAACGCAATCGGTGAATACAGACAATATTCAAATCCAAGTATTGGCTTATTTGGAAAAGTTGTGGCTTTGTCTATGAATAAACCTTTTGACCAAGTCTTAGAAAAAACAATTTTTCCACCTCTCCATTTAAAAAATAGCTATGTAAATGTACCCAAAACTCAAATGCAAAATTATGCATATGGCTATAACCAAGAAAATCAGCCGATCCGAGTTAACCCTGGCCCGCTAGATGCTCCAGCATACGGCGTTAAATCGACACTACCAGATATGCTGACTTTTATTAATGCCAACCTCAACCCACAGAAATATCCGAAAGATATTCAACGTGCAATTAGTGAAACACATCAAGGTTTCTATCAAGTCGGTACGATGTATCAAGCATTGGGTTGGGAAGAATTTTCTTATCCAGCACCTTTACAAACTTTATTAGACAGTAATTCAGAGCAAATCGTGATGAAGCCTAATAAAGTGACTGCCATTTCCAAAGAACCTTCAGTTAAGATGTTCCACAAAACTGGCTCAACAAATGGCTTTGGATCTTATGTGGTGTTTATTCCAAAAGAAAATATTGGTTTAGTCATGTTAACCAATAAACGTATTCCAAATGAAGAACGCATTAAGGCAGCGTATGCAGTATTGAATGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter calcoaceticus/baumannii complex", "NCBI_taxonomy_id": "909768", "NCBI_taxonomy_cvterm_id": "40550"}, "protein_sequence": {"accession": "WP_002118772.1", "sequence": "MRFKKISCLLLPPLFIFSTSIYAGNTPKEQEVKKLVDQNFKPLLDKYDVPGMAVGVIQNNKKYEIYYGLQSVQDKKAVNSSTIFELGSVSKLFTATAGGYAKAKGKISFDDTPGKYWKELKNTPIDQVNLLQLATYTSGNLALQFPDEVQTDQQVLTFFKDWKTKNAIGEYRQYSNPSIGLFGKVVALSMNKPFDQVLEKTIFPPLHLKNSYVNVPKTQMQNYAYGYNQENQPIRVNPGPLDAPAYGVKSTLPDMLTFINANLNPQKYPKDIQRAISETHQGFYQVGTMYQALGWEEFSYPAPLQTLLDSNSEQIVMKPNKVTAISKEPSVKMFHKTGSTNGFGSYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLNAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-18", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40561", "model_name": "ADC-18", "model_type_id": "40292"}, "2872": {"model_id": "2872", "ARO_accession": "3004356", "model_param": {"blastp_bit_score": {"param_value": "750", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "An AmpC-like beta-lactamase found in Pseudomonas aeruginosa", "model_sequences": {"sequence": {"4229": {"dna_sequence": {"fmax": "1116", "fmin": "0", "accession": "KR057762.1", "strand": "+", "sequence": "GATGAGGCCCCGGCGGATCGCCTGAAGGCACTGGTCGACGCCGCCGTACAACCGGTGATGAAGGCCAATGACATTCCGGGCCTGGCCGTAGCCATCAGCCTGAAAGGAGAACCGCATTACTTCAGCTATGGGCTGGCCTCGAAAGAGGACGGCCGCCGGGTGACGCCGGAGACCCTGTTCGAGATCGGCTCGGTGAGCAAGACCTTCACCGCCACCCTCGCCGGCTATGCCCTGGCCCAGGACAAGATGCGCCTCGACGACCGCGCCAGCCAGCACTGGCCGGCACTGCAGGGCAGCCGCTTCGACGGCATCAGCCTGCTCGACCTCGCGACCTATACCGCCGGCGGCTTGCCGCTGCAGTTCCCCGACTCGGTGCAGAAGGACCAGGCACAGATCCGCGACTACTACCGCCAGTGGCAGCCGACCTACGCGCCGGGCAGCCAGCGCCTCTATTCCAACCCGAGCATCGGCCTGTTCGGCTATCTCGCCGCGCGCAGCCTGGGCCAGCCGTTCGAACGGCTCATGGAGCAGCAACTGTTCCCGGCACTGGGCCTCGAACAGACCCACCTCGACGTGCCCGAGGCGGCGCTGGCGCAGTACGCCCAGGGCTACGGCAAGGACGACCGCCCGCTACGGGTCGGTCCCGGCCCGCTGGATGCCGAAGGCTACGGGGTGAAGACCAGCGCGGCCGACCTGCTGCGCTTCGTCGATGCCAACCTGCATCCGGAGCGCCTGGACAGGCCCTGGGCGCAGGCGCTCGATGCCACCCATCGCGGTTACTACAAGGTCGGCGACATGACCCAGGGCCTGGGCTGGGAAGCCTACGACTGGCCGATCTCCCTGAAGCGCCTGCAGGCCGGCAACTCGACGCCGATGGCGCCGCAACCACACAGGATCGCCAGGCTGCCCGCGCCACAGGCGCTGGAGGGCCAGCGCCTGCTGAACAAGACCGGCTCCACCAACGGCTTCGGCGCCTACGTGGCGTTCGTCCCGGGCCGCGACCTGGGCCTGGTGATCCTGGCCAACCGCAACTATCCCAATGCCGAGCGGGTGAAGATCGCCTACGCCATCCTCAGCGGCCTGGAGCAGCAGGCCAAGGTGCCGCTGAAGCGCTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa", "NCBI_taxonomy_id": "287", "NCBI_taxonomy_cvterm_id": "36752"}, "protein_sequence": {"accession": "AKR18033.1", "sequence": "DEAPADRLKALVDAAVQPVMKANDIPGLAVAISLKGEPHYFSYGLASKEDGRRVTPETLFEIGSVSKTFTATLAGYALAQDKMRLDDRASQHWPALQGSRFDGISLLDLATYTAGGLPLQFPDSVQKDQAQIRDYYRQWQPTYAPGSQRLYSNPSIGLFGYLAARSLGQPFERLMEQQLFPALGLEQTHLDVPEAALAQYAQGYGKDDRPLRVGPGPLDAEGYGVKTSAADLLRFVDANLHPERLDRPWAQALDATHRGYYKVGDMTQGLGWEAYDWPISLKRLQAGNSTPMAPQPHRIARLPAPQALEGQRLLNKTGSTNGFGAYVAFVPGRDLGLVILANRNYPNAERVKIAYAILSGLEQQAKVPLKR"}}}}, "ARO_category": {"36237": {"category_aro_name": "PDC beta-lactamase", "category_aro_cvterm_id": "36237", "category_aro_accession": "3000098", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PDC beta-lactamases are class C beta-lactamases that are found in Pseudomonas aeruginosa."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}, "ARO_name": "PDC-93", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "41524", "model_name": "PDC-93", "model_type_id": "40292"}, "2871": {"model_id": "2871", "ARO_accession": "3004355", "model_param": {"blastp_bit_score": {"param_value": "750", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "An AmpC-like beta-lactamase found in Pseudomonas aeruginosa", "model_sequences": {"sequence": {"4228": {"dna_sequence": {"fmax": "1110", "fmin": "0", "accession": "KR057761.1", "strand": "+", "sequence": "GATGAGGCCCCGGCGGATCGCCTGAAGGCACTGGTCGACGCCGCCGTACAACCGGTGATGAAGGCCAATGACATTCCGGGCCTGGCCGTAGCCATCAGCCTGAAAGGAGAACCGCATTACTTCAGCTATGGGCTGGCCTCGAAAGAGGACGGCCGCCGGGTGACGCCGGAGACCCTGTTCGAGATCGGCTCGGTGAGCAAGACCTTCACCGCCACCCTCGCCGGCTATGCCCTGGCCCAGGACAAGATGCGCCTCGACGACCGCGCCAGCCAGCACTGGCCGGCACTGCAGGGCAGCCGCTTCGACGGCATCAGCCTGCTCGACCTCGCGACCTATACCGCCGGCGGCTTGCCGCTGCAGTTCCCCGACTCGGTGCAGAAGGACCAGGCACAGATCCGCGACTACTACCGCCAGTGGCAGCCGACCTACGCGCCGGGCAGCCAGCGCCTCTATTCCAACCCGAGCATCGGCCTGTTCGGCTATCTCGCCGCGCGCAGCCTGGGCCAGCCGTTCGAACGGCTCATGGAGCAGCAACTGTTCCCGGCACTGGGCCTCGAACAGACCCACCTCGACGTGCCCGAGGCGGCGCTGGCGCAGTACGCCCAGGGCTACGGCAAGGACGACCGCCCGCTACGGGTCGGTCCCGGCCCGCTGGATGCCGAAGGCTACGGGGTGAAGACCAGCGCGGCCGACCTGCTGCGCTTCGTCGATGCCAACCTGCATCCGGAGCGCCTGGACAGGCCCTGGGCGCAGGCGCTCGATGCCACCCATCGCGGTTACTACAAGGTCGGCGACATGACCCAGGGCCTGGGCTGGGAAGCCTACGACTGGCCGATCTCCCTGAAGCGCCTGCAGGCCGGCAACTCGACGCCGATGGCACCACACAGGATCGCCAGGCTGCCCGCGCCACAGGCGCTGGAGGGCCAGCGCCTGCTGAACAAGACCGGCTCCACCAACGGCTTCGGCGCCTACGTGGCGTTCGTCCCGGGCCGCGACCTGGGCCTGGTGATCCTGGCCAACCGCAACTATCCCAATGCCGAGCGGGTGAAGATCGCCTACGCCATCCTCAGCGGCCTGGAGCAGCAGGCCAAGGTGCCGCTGAAGCGCTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa", "NCBI_taxonomy_id": "287", "NCBI_taxonomy_cvterm_id": "36752"}, "protein_sequence": {"accession": "AKR18032.1", "sequence": "DEAPADRLKALVDAAVQPVMKANDIPGLAVAISLKGEPHYFSYGLASKEDGRRVTPETLFEIGSVSKTFTATLAGYALAQDKMRLDDRASQHWPALQGSRFDGISLLDLATYTAGGLPLQFPDSVQKDQAQIRDYYRQWQPTYAPGSQRLYSNPSIGLFGYLAARSLGQPFERLMEQQLFPALGLEQTHLDVPEAALAQYAQGYGKDDRPLRVGPGPLDAEGYGVKTSAADLLRFVDANLHPERLDRPWAQALDATHRGYYKVGDMTQGLGWEAYDWPISLKRLQAGNSTPMAPHRIARLPAPQALEGQRLLNKTGSTNGFGAYVAFVPGRDLGLVILANRNYPNAERVKIAYAILSGLEQQAKVPLKR"}}}}, "ARO_category": {"36237": {"category_aro_name": "PDC beta-lactamase", "category_aro_cvterm_id": "36237", "category_aro_accession": "3000098", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PDC beta-lactamases are class C beta-lactamases that are found in Pseudomonas aeruginosa."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}, "ARO_name": "PDC-92", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "41523", "model_name": "PDC-92", "model_type_id": "40292"}, "2870": {"model_id": "2870", "ARO_accession": "3004354", "model_param": {"blastp_bit_score": {"param_value": "750", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "An AmpC-like beta-lactamase found in Pseudomonas aeruginosa", "model_sequences": {"sequence": {"4227": {"dna_sequence": {"fmax": "1104", "fmin": "0", "accession": "KR057760.1", "strand": "+", "sequence": "GATGAGGCCCCGGCGGATCGCCTGAAGGCACTGGTCGACGCCGCCGTACAACCGGTGATGAAGGCCAATGACATTCCGGGCTTGGCCGTAGCCATCAGCCTGAAAGGAGAACCGCATTACTTCAGCTATGGGCTGGCCTCGAAAGAGGACGGCCGCCGGGTGACGCCGGAGACCCTGTTCGAGATCGGCTCGGTGAGCAAGACCTTCACCGCCACCCTCGCCGGCTATGCCCTGGCCCAGGACAAGATGCGCCTCGACGACCGCGCCAGCCAGCACTGGCCGGCGCTGCAGGGCAGCCGCTTCGACGGCATCAGCCTGCTCGACCTCGCGACCTATACCGCCGGCGGCTTGCCGCTGCAGTTCCCCGACTCGGTGCAGAAGGACCAGGCACAGATCCGCGACTACTACCGCCAGTGGCAGCCGACCTACGCGCCGGGCAGCCAGCGCCTCTATTCCAACCCGAGCATCGGCCTGTTCGGCTATCTCGCCGCGCGCAGCCTGGGCCAGCCGTTCGAACGGCTCATGGAGCAGCAATTGTTCCCGGCACTGGGCCTCGAACAGACCCACCTCGACGTGCCCGAGGCGGCGCTGGCGCAGTACGCCCAGGGCTACGGCAAGGACGACCGCCCGCTACGGGTCGGTCCCGGCCCGCTGGATGCCGAAGGCTACGGGGTGAAGACCAGCGCGGCCGACCTGCTGCGCTTCGTCGATGCCAACCTGCATCCGGAGCGCCTGGACAGGCCCTGGGCGCAGGCGCTCGATGCCACCCATCGCGGTTACTACAAGGTCGGCGACATGACCCAGGGCCTGGGCTGGGAAGCCTACGACTGGCCGATCTCCCTGAAGCGCCTGCAGGCCGGCAACTCGCTGCAACCACACAGGATCGCCAGGCTGCCCGCGCCACAGGCGCTGGAGGGCCAGCGCCTGCTGAACAAGACCGGCTCCACCAACGGCTTCGGCGCCTACGTGGCGTTCATTCCGGGCCGCGACCTGGGCCTGGTGATCCTGGCCAACCGCAACTATCCCAATGCCGAGCGGGTGAAGATCGCCTACGCCATCCTCAGCGGCCTGGAGCAGCAGGCCAAGGTGCCGCTGAAGCGCTGA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Pseudomonas aeruginosa", "NCBI_taxonomy_id": "287", "NCBI_taxonomy_cvterm_id": "36752"}, "protein_sequence": {"accession": "AKR18031.1", "sequence": "DEAPADRLKALVDAAVQPVMKANDIPGLAVAISLKGEPHYFSYGLASKEDGRRVTPETLFEIGSVSKTFTATLAGYALAQDKMRLDDRASQHWPALQGSRFDGISLLDLATYTAGGLPLQFPDSVQKDQAQIRDYYRQWQPTYAPGSQRLYSNPSIGLFGYLAARSLGQPFERLMEQQLFPALGLEQTHLDVPEAALAQYAQGYGKDDRPLRVGPGPLDAEGYGVKTSAADLLRFVDANLHPERLDRPWAQALDATHRGYYKVGDMTQGLGWEAYDWPISLKRLQAGNSLQPHRIARLPAPQALEGQRLLNKTGSTNGFGAYVAFIPGRDLGLVILANRNYPNAERVKIAYAILSGLEQQAKVPLKR"}}}}, "ARO_category": {"36237": {"category_aro_name": "PDC beta-lactamase", "category_aro_cvterm_id": "36237", "category_aro_accession": "3000098", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "PDC beta-lactamases are class C beta-lactamases that are found in Pseudomonas aeruginosa."}, "35923": {"category_aro_name": "monobactam", "category_aro_cvterm_id": "35923", "category_aro_accession": "0000004", "category_aro_class_name": "Drug Class", "category_aro_description": "Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35939": {"category_aro_name": "carbapenem", "category_aro_cvterm_id": "35939", "category_aro_accession": "0000020", "category_aro_class_name": "Drug Class", "category_aro_description": "Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}}, "ARO_name": "PDC-91", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "41522", "model_name": "PDC-91", "model_type_id": "40292"}, "2334": {"model_id": "2334", "ARO_accession": "3003847", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-1 is a beta-lactamase found in Acinetobacter baumannii.", "model_sequences": {"sequence": {"3627": {"dna_sequence": {"fmax": "1152", "fmin": "0", "accession": "NG_048633.1", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGTCTACTTTTATCCCCGCTTTTTATTTTTAGTACCTCAATTTATGCGGGCAATACACCAAAAGACCAAGAAATTAAAAAACTGGTAGATCAAAACTTTAAACCGTTATTAGAAAAATATGATGTGCCAGGTATGGCTGTGGGTGTTATTCAAAATAATAAAAAGTATGAAATGTATTATGGTCTTCAATCTGTTCAAGATAAAAAAGCCGTAAATAGCAGTACTATTTTTGAGCTAGGTTCTGTCAGTAAATTATTTACCGCGACAGCAGGTGGATATGCAAAAAATAAAGGAAAAATCTCTTTTGACGATACGCCTGGTAAGTATTGGAAAGAACTAAAAAATACACCGATTGACCAAGTTAACTTACTTCAACTCGCGACGTATACAAGTGGTAACCTTGCCTTGCAATTTCCAGATGAAGTAAAAACAGATCAGCAAGTTTTAACATTTTTTAAAGACTGGAAACCTAAAAACTCAATCGGTGAATATCGACAATATTCAAACCCAAGCATTGGTTTATTTGGAAAAGTTGTAGCTTTGTCTATGAATAAACCTTTCGACCAAGTCTTAGAAAAAACAATTTTTCCGGCCCTTGGCTTAAAACATAGCTATGTAAATGTACCTAAGACCCAGATGCAAAACTATGCTTTTGGCTATAACCAAGAAAATCAGCCGATTCGAGTTAACCCCGGCCCACTCGGTGCCCCAGCATATGGCGTCAAATCGACACTACCCGACATGTTGAGTTTTATTCATGCCAACCTAAATCCACAAAAATATCCAGCAGATATTCAACGGGCAATTAATGAAACACATCAGGGTCGCTATCAAGTAAATACCATGTATCAGGCACTCGGTTGGGAAGAGTTTTCTTATCCGGCAACGTTACAAACTTTATTAGACAGTAATTCAGAACAGATTGTGATGAAACCTAATAAAGTGACTGCTATTTCAAAGGAACCTTCAGTTAAGATGTACCATAAAACTGGCTCAACTAACCGTTTCGGAACATATGTGGTGTTTATTCCTAAAGAAAATATTGGTTTAGTCATGTTAACCAATAAACGTATTCCAAATGAAGAGCGCATTAAGGCAGCTTATGCTGTGCTGAATGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter baumannii", "NCBI_taxonomy_id": "470", "NCBI_taxonomy_cvterm_id": "35507"}, "protein_sequence": {"accession": "WP_004714775.1", "sequence": "MRFKKISCLLLSPLFIFSTSIYAGNTPKDQEIKKLVDQNFKPLLEKYDVPGMAVGVIQNNKKYEMYYGLQSVQDKKAVNSSTIFELGSVSKLFTATAGGYAKNKGKISFDDTPGKYWKELKNTPIDQVNLLQLATYTSGNLALQFPDEVKTDQQVLTFFKDWKPKNSIGEYRQYSNPSIGLFGKVVALSMNKPFDQVLEKTIFPALGLKHSYVNVPKTQMQNYAFGYNQENQPIRVNPGPLGAPAYGVKSTLPDMLSFIHANLNPQKYPADIQRAINETHQGRYQVNTMYQALGWEEFSYPATLQTLLDSNSEQIVMKPNKVTAISKEPSVKMYHKTGSTNRFGTYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLNAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-1", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40544", "model_name": "ADC-1", "model_type_id": "40292"}, "2336": {"model_id": "2336", "ARO_accession": "3003849", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-3 is a beta-lactamase found in Acinetobacter baumannii.", "model_sequences": {"sequence": {"3629": {"dna_sequence": {"fmax": "1152", "fmin": "0", "accession": "NG_048651", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGTCTACTTTTATCCCCGCTTTTTTTTTTTAGTACCTCAATTTATGCGGGCAATACACCAAAAGACCAAGAAATTAAAAAACTGGTAGATCAAAACTTTAAACCGTTATTAGAAAAATATGATGTGCCGGGTATGGCTGTGGGTGTTATTCAAAATAATAAAAAGTATGAAATGTATTATGGTCTTCAATCTGTTCAAGATAAAAAAGCCGTAAATAGCAGTACCATTTTTGAGCTAGGTTCTGTCAGTAAATTATTTACTGCGACAGCAGGTGGATATGCAAAAAATAAAGGAAAAATCTCTTTTGACGATACGCCTGGTAAATATTGGAAAGAACTAAAAAATACACCGATTGACCAAGTTAACTTACTTCAACTCGCGACGTATACAAGTGGTAACCTTGCCTTGCAGTTCCCAGATGAAGTACAAACAGACCAACAAGTTTTAACTTTTTTCAAAGACTGGAAACCTAAAAACCCAATCGGTGAATACAGACAATATTCAAATCCAAGTATTGGCCTATTTGGAAAGGTTGTAGCTTTGTCTATGAATAAACCCTTCGACCAAGTCTTAGAAAAAACAATTTTTCCGGCCCTTGGCTTAAAACATAGCTATGTAAATGTACCTAAGACCCAAATGCAAAACTATGCTTTTGGCTATAACCAAGAAAATCAGCCGATTCGAGTTAACCCTGGCCCACTCGATGCCCCAGCATACGGCGTCAAATCCACCTTACCGGATATGTTGAGTTTTATTTATGCCAACCTTAACCCACAGAAATATCCGGCTGATATTCAAAGGGCAATTAATGAAACACATCAAGGTCGCTATCAAGTAAATACCATGTATCAAGCGCTTGGTTGGGAAGAGTTTTCTTATCCGGCAACGTTACAAACTTTATTAGACAGTAATTCAGAACAGATTGTGATGAAACCTAATAAAGTGACTGCTATTTCAAAAGAGCCTTCAGTTAAGATGTACCATAAAACTGGCTCAACCAACGGTTTCGGAACATATGTGGTGTTTATTCCTAAAGAAAATATTGGTTTAGTCATGTTAACCAATAAACGTATTCCAAATGAAGAGCGCATTAAGGCAGCTTATGCTGTGCTGAGTGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter baumannii", "NCBI_taxonomy_id": "470", "NCBI_taxonomy_cvterm_id": "35507"}, "protein_sequence": {"accession": "WP_063857798.1", "sequence": "MRFKKISCLLLSPLFFFSTSIYAGNTPKDQEIKKLVDQNFKPLLEKYDVPGMAVGVIQNNKKYEMYYGLQSVQDKKAVNSSTIFELGSVSKLFTATAGGYAKNKGKISFDDTPGKYWKELKNTPIDQVNLLQLATYTSGNLALQFPDEVQTDQQVLTFFKDWKPKNPIGEYRQYSNPSIGLFGKVVALSMNKPFDQVLEKTIFPALGLKHSYVNVPKTQMQNYAFGYNQENQPIRVNPGPLDAPAYGVKSTLPDMLSFIYANLNPQKYPADIQRAINETHQGRYQVNTMYQALGWEEFSYPATLQTLLDSNSEQIVMKPNKVTAISKEPSVKMYHKTGSTNGFGTYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLSAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-3", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40547", "model_name": "ADC-3", "model_type_id": "40292"}, "2337": {"model_id": "2337", "ARO_accession": "3003850", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-4 is a beta-lactamase found in Acinetobacter baumannii.", "model_sequences": {"sequence": {"3630": {"dna_sequence": {"fmax": "1152", "fmin": "0", "accession": "NG_048655.1", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGTCTACTTTTATCCCCGCTTTTTATTTTTAGTACCTCAATTTATGCGGGCAATACACCAAAAGACCAAGAAATTAAAAAACTGGTAGATCAAAACTTTAAACCGTTATTAGAAAAATATGATGTGCCGGGTATGGCTGTGGGTGTTATTCAAAATAATAAAAAGTATGAAATGTATTATGGTCTTCAATCTGTTCAAGATAAAAAAGCCGTAAATAGCAGTACCATTTTTGAGCTAGGTTCTGTCAGTAAATTATTTACTGCGACAGCAGGTGGATATGCAAAAAATAAAGGAAAAATCTCTTTTGACGATACGCCTGGTAAATATTGGAAAGAACTAAAAAATACACCGATTGACCAAGTTAACTTACTTCAACTCGCGACGTATACAAGTGGTAACCTTGCCTTGCAGTTCCCAGATGAAGTACAAACAGACCAACAAGTTTTAACTTTTTTCAAAGACTGGAAACCTAAAAACCCAATCGGTGAATACAGACAATATTCAAATCCAAGTATTGGCCTATTTGGAAAGGTTGTAGCTTTGTCTATGAATAAACCTTTCGACCAAGTCTTAGAAAAAACAATTTTTCCGGCCCTTGGCTTAAAACATAGCTATGTAAATGTACCTAAGACCCAAATGCAAAACTATGCTTTTGGCTATAACCAAGAAAATCAGCCGATTCGAGTTAACCCTGGCCCACTCGATGCCCCAGCATACGGCGTCAAATCCACCCTTCCGGATATGTTGAGTTTTATTTATGCCAACCTTAACCCACAGAAATATCCGGCTGATATTCAAAGGGCAATTAATGAAACACATCAAGGTCGCTATCAAGTAAATACCATGTATCAGGCACTCGGTTGGGAAGAGTTTTCTTATCCGGCAACGTTACAAACTTTATTAGACAGTAATTCAGAACAGATTGTGATGAAACCTAATAAAGTGACTGCTATTTCAAAGGAACCTTCAGTTAAGATGTACCATAAAACTGGCTCAACTAACCGTTTCGGAACATATGTGGTGTTTATTCCTAAAGAAAATATTGGTTTAGTCATGTTAACCAATAAACGTATTCCAAATGAAGAGCGCATTAAGGCAGCTTATGCTGTGCTGAATGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter baumannii", "NCBI_taxonomy_id": "470", "NCBI_taxonomy_cvterm_id": "35507"}, "protein_sequence": {"accession": "WP_063857801.1", "sequence": "MRFKKISCLLLSPLFIFSTSIYAGNTPKDQEIKKLVDQNFKPLLEKYDVPGMAVGVIQNNKKYEMYYGLQSVQDKKAVNSSTIFELGSVSKLFTATAGGYAKNKGKISFDDTPGKYWKELKNTPIDQVNLLQLATYTSGNLALQFPDEVQTDQQVLTFFKDWKPKNPIGEYRQYSNPSIGLFGKVVALSMNKPFDQVLEKTIFPALGLKHSYVNVPKTQMQNYAFGYNQENQPIRVNPGPLDAPAYGVKSTLPDMLSFIYANLNPQKYPADIQRAINETHQGRYQVNTMYQALGWEEFSYPATLQTLLDSNSEQIVMKPNKVTAISKEPSVKMYHKTGSTNRFGTYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLNAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-4", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40548", "model_name": "ADC-4", "model_type_id": "40292"}, "2338": {"model_id": "2338", "ARO_accession": "3003851", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-5 is a beta-lactamase found in Acinetobacter pittii.", "model_sequences": {"sequence": {"3631": {"dna_sequence": {"fmax": "1152", "fmin": "0", "accession": "NG_048660.1", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGTCTACTTTTATCCCCGCTTTTTATTTTTAGTACCTCAATTTATGCGGGCAATACACCAAAAGACCAAGAAATTAAAAAACTGGTAGATCAAAATTTTAAACCATTATTAGAAAAATATGATGTACCAGGTATGGCTGTGGGTGTTATTCAAAATAATAAAAAGTATGAAATGTATTATGGTCTTCAATCTGTTCAAGATAAAAAAGCCGTAAATAGCAGTACCATTTTTGAGCTAGGTTCTGTCAGTAAATTATTTACCGCGACAGCAGGTGGATATGCAAAAAATAAAGGAAAAATCTCTTTTGACGATACGCCTGGTAAATATTGGAAAGAGCTAAAAAATACACCGATTGATCAAGTTAACTTACTTCAACTCGCGACGTATACAAGTGGCAACCTCGCTTTACAATTTCCAGATGAAGTACAAACAGATCAACAAGTTTTAACTTTTTTCAAAGACTGGCAACCTAAAAACCCAATCGGTGAATACAGACAATATTCAAATCCAAGTATTGGCCTATTTGGAAAGGTTGTGGCTTTGTCTATGAATAAACCTTTCGACCAAGTCTTAGAAAAAACAATTTTTCCGGCCCTTGGCTTAAAACATAGCTATGTAAATGTACCTAAGACCCAGATGCAAAACTATGCTTTTGGCTATAACCAAGAAAATCAGCCGATTCGAGTTAACCCCGGCCCACTTGATGCCCCAGCATACGGCGTCAAATCGACACTACCCGACATGTTGAGTTTTATTCATGCCAACCTTACCCCACAGAAATATCCGACAGATATTCAACGGGCAATTAATGAAACACATCAAGGGTTCTATCAAGTCGGCACCATGTATCAGGCACTTGGTTGGGAAGAGTTTTCTTATCCGGCAACGTTACAAACTTTATTAGACAGTAATTCAGAACAGATTGTGATGAAACCTAATAAAGTGACTGCTATTTCAAAGGAACCTTCAGTTAAGATGTACCATAAAACTGGCTCAACCAACGGTTTCGGAACATATGTGGTCTTTATTCCTAAAGAAAATATTGGCTTAGTCATGTTAACCAATAAACGTATTCCAAATGAAGAGCGCATTAAGGCAGCTTATGCTGTGCTGAATGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter calcoaceticus/baumannii complex", "NCBI_taxonomy_id": "909768", "NCBI_taxonomy_cvterm_id": "40550"}, "protein_sequence": {"accession": "WP_038405930.1", "sequence": "MRFKKISCLLLSPLFIFSTSIYAGNTPKDQEIKKLVDQNFKPLLEKYDVPGMAVGVIQNNKKYEMYYGLQSVQDKKAVNSSTIFELGSVSKLFTATAGGYAKNKGKISFDDTPGKYWKELKNTPIDQVNLLQLATYTSGNLALQFPDEVQTDQQVLTFFKDWQPKNPIGEYRQYSNPSIGLFGKVVALSMNKPFDQVLEKTIFPALGLKHSYVNVPKTQMQNYAFGYNQENQPIRVNPGPLDAPAYGVKSTLPDMLSFIHANLTPQKYPTDIQRAINETHQGFYQVGTMYQALGWEEFSYPATLQTLLDSNSEQIVMKPNKVTAISKEPSVKMYHKTGSTNGFGTYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLNAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-5", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40549", "model_name": "ADC-5", "model_type_id": "40292"}, "2339": {"model_id": "2339", "ARO_accession": "3003852", "model_param": {"blastp_bit_score": {"param_value": "700", "param_type_id": "40725", "param_type": "BLASTP bit-score", "param_description": "A score is a numerical value that describes the overall quality of an alignment with higher numbers correspond to higher similarity. The bit-score (S) is determined by the following formula: S = (\u03bb \u00d7 S \u2212 lnK)/ ln2 where \u03bb is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix. Many AMR detection models use this parameter, including the protein homolog and protein variant models. The BLASTP bit-score parameter is a curated value determined from BLASTP analysis of the canonical reference sequence of a specific AMR-associated protein against the database of CARD reference sequence. This value establishes a threshold for computational prediction of a specific protein amongst a batch of submitted sequences."}}, "ARO_description": "ADC-6 is a beta-lactamase found in Acinetobacter baumannii.", "model_sequences": {"sequence": {"3632": {"dna_sequence": {"fmax": "1252", "fmin": "100", "accession": "NG_048669.1", "strand": "+", "sequence": "ATGCGATTTAAAAAAATTTCTTGTCTACTTTTATCCCCGCTTTTTATTTTTAGTACCTCAATTTATGCGGGCAATACACCAAAAGACCAAGAAATTAAAAAACTGGTAGATCAAAACTTTAAACCGTTATTAGAAAAATATGATGTGCCAGGTATGGCTGTGGGTGTTATTCAAAATAATAAAAAGTATGAAATGTATTATGGTCTTCAATCTGTTCAAGATAAAAAAGCCGTAAATAGCAGTACTATTTTTGAGCTAGGTTCTGTCAGTAAATTATTTACCGCGACAGCAGGTGGATATGCAAAAAATAAAGGAAAAATCTCTTTTGACGATACGCCTGGTAAATATTGGAAAGAGCTAAAAAATACACCGATTGACCAAGTTAACTTACTTCAACTCGCGACGTATACAAGTGGTAACCTTGCCTTGCAGTTCCCAGATGAAGTACAAACAGACCAACAAGTTTTAACTTTGTTCAAAGACTGGAAACCTAAAAACCCAATCGGTGAATACAGACAATATTCAAATCCAAGTATTGGCCTATTTGGAAAGGTTGTAGCTTTGTCTATGAATAAACCTTTCGACCAAGTCTTAGAAAAAACAATTTTTCCGGCCCTTGGCTTAAAACATAGCTATGTAAATGTACCTAAGACCCAAATGCAAAACTATGCTTTTGGCTATAACCAAGAAAATCAGCCGATTCGAGTTAACCCCGGCCCACTCGATGCCCCAGCATATGGCGTCAAATCAACACTACCCGACATGTTGAGTTTTATTCATGCCAACCTAAATCCACAAAAATATCCGGCAGATATTCAACGTGCAATTAATGAAACACATCAGGGTCGCTATCAAGTAAATACCATGTATCAGGCACTCGGTTGGGAAGAGTTTTCTTATCCGGCAATGTTACAAACTTTACTAGACAGTAATTCAGAACAGATTGTGATGAAACCTAATAAAGTGACTGCTATTTCAAAAGAACCTTCAGTTAAGATGTACCATAAAACTGGCTCAACCAACGGTTTCGGAACGTATGTGGTGTTTATTCCTAAAGAAAATATTGGCTTAGTCATGTTAACCAATAAACGTATTCCAAATGAAGAGCGCATTAAGGCAGCGTATGCAGTTTTAAATGCAATAAAGAAATAA"}, "NCBI_taxonomy": {"NCBI_taxonomy_name": "Acinetobacter baumannii", "NCBI_taxonomy_id": "470", "NCBI_taxonomy_cvterm_id": "35507"}, "protein_sequence": {"accession": "WP_017725267.1", "sequence": "MRFKKISCLLLSPLFIFSTSIYAGNTPKDQEIKKLVDQNFKPLLEKYDVPGMAVGVIQNNKKYEMYYGLQSVQDKKAVNSSTIFELGSVSKLFTATAGGYAKNKGKISFDDTPGKYWKELKNTPIDQVNLLQLATYTSGNLALQFPDEVQTDQQVLTLFKDWKPKNPIGEYRQYSNPSIGLFGKVVALSMNKPFDQVLEKTIFPALGLKHSYVNVPKTQMQNYAFGYNQENQPIRVNPGPLDAPAYGVKSTLPDMLSFIHANLNPQKYPADIQRAINETHQGRYQVNTMYQALGWEEFSYPAMLQTLLDSNSEQIVMKPNKVTAISKEPSVKMYHKTGSTNGFGTYVVFIPKENIGLVMLTNKRIPNEERIKAAYAVLNAIKK"}}}}, "ARO_category": {"36000": {"category_aro_name": "antibiotic inactivation", "category_aro_cvterm_id": "36000", "category_aro_accession": "0001004", "category_aro_class_name": "Resistance Mechanism", "category_aro_description": "Enzymatic inactivation of antibiotic to confer drug resistance."}, "35951": {"category_aro_name": "cephalosporin", "category_aro_cvterm_id": "35951", "category_aro_accession": "0000032", "category_aro_class_name": "Drug Class", "category_aro_description": "Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms."}, "40543": {"category_aro_name": "ADC beta-lactamase", "category_aro_cvterm_id": "40543", "category_aro_accession": "3003846", "category_aro_class_name": "AMR Gene Family", "category_aro_description": "ADC beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases with extended-spectrum resistance to cephalosporins but not to carbapenems. ADC beta-lactamases are found in Acinetobacter sp. and Oligella urethralis."}}, "ARO_name": "ADC-6", "model_type": "protein homolog model", "model_description": "The protein homolog model is an AMR detection model. Protein homolog models detect a protein sequence based on its similarity to a curated reference sequence. A protein homolog model has only one parameter: a curated BLASTP bitscore cutoff for determining the strength of a match. Protein homolog model matches to reference sequences are categorized on three criteria: \"perfect\", \"strict\" and \"loose\". A perfect match is 100% identical to the reference sequence along its entire length; a strict match is not identical but the bitscore of the matched sequence is greater than the curated BLASTP bitscore cutoff. Loose matches are other sequences with a match bitscore less than the curated BLASTP bitscore.", "ARO_id": "40551", "model_name": "ADC-6", "model_type_id": "40292"}}}